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Abstract. A parametric rule for multireservoir system operation is formulated and tested.
It is a generalization of the well-known space rule of simultaneously accounting for
various system operating goals, in addition to the standard goal of avoiding unnecessary
spills, including avoiding leakage losses, avoiding conveyance problems, taking into
account the impacts of the reservoir system topology, and assuring satisfaction of
secondary uses. Theoretical values of the rule’s parameters for each one of these isolated
goals are derived. In practice, parameters are evaluated to optimize one or more objective
functions selected by the user. The rule is embedded in a simulation model so that
optimization requires repeated simulations of the system operation with specific values of
the parameters each time. The rule is tested on the case of the multireservoir water supply

system of the city of Athens, Greece, which is driven by all of the operating goals listed
above. Two problems at the system design level are tackled. First, the total release from
the system is maximized for a selected level of failure probability. Second, the annual
operating cost is minimized for given levels of water demand and failure probability. A
detailed simulation model is used in the case study. Sensitivity analysis of the rule’s
parameters revealed a subset of insensitive parameters that allowed for rule simplification.
Finally, the rule is validated through comparison with a number of heuristic rules also

applied to the test case.

1. Introduction

Planning and management of multiple reservoir systems
have been and continue to be the subject of numerous research
works. This attention is due to the essential benefits arising
from reservoir system operation (e.g., hydropower) in combi-
nation with the reduction of natural risks (e.g., flood control).
The problem of reservoir planning and/or management is most
often stated as an optimal control problem. Its solution is not
an easy task because of the large number of variables involved,
the nonlinearity of the system dynamics, the stochastic nature
of future inflows, and other uncertainties of the system (e.g.,
leakage from reservoirs).

Stochastic dynamic programming (SDP) has been repeat-
edly used by many researchers to study the problem [e.g., Su
and Deininger, 1972, 1974; Askew, 1974a, b; Sniedovich, 1979;
1980a, b; Bras et al., 1983; Stedinger et al., 1984]. SDP could be
satisfactory if it did not require excessive amounts of computer
time and storage. To increase the efficiency of the solution
algorithm, some researchers have treated the inflows’ stochas-
ticity in an analytic way without state-space discretization and
then applied efficient deterministic optimization methods [Wa-
simi and Kitanidis, 1983; Loaiciga and Marinio, 1985; Georgaka-
kos and Marks, 1987]. For example, Georgakakos and Marks
[1987] represented the reservoir system dynamics in a state-
space form and proposed an extension of stochastic control
theory, which they termed extended linear quadratic Gaussian
(ELQG). In this way these authors obtained a very efficient
algorithm at the expense of an accurate representation of the
stochastic structure of inflows (i.e., only Gaussian independent
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inflows were considered). In later studies [Georgakakos, 1989]
the problem of the representation of the stochastic structure of
inflows was effectively tackled. Other researchers continued
their studies in the direction of stochastic dynamic program-
ming with the purpose of remedying its deficiencies. Efficient
interpolation schemes for dynamic programming (DP) algo-
rithms are discussed by Johnson et al. [1993]. The problem of
errors resulting from the state-space discretization in discrete
dynamic programming was tackled [Kitanidis and Foufoula-
Georgiou, 1987; Foufoula-Georgiou and Kitanidis, 1988; Fou-
foula-Georgiou, 1991]. These authors proposed gradient dy-
namic programming, which is based on an interpolation
scheme of the cost-to-go function at each stage and reduces
significantly the error due to discretization.

In spite of the large number of optimization techniques
available in the literature, simulation models still remain the
primary tool for reservoir planning and management studies in
practice. The reason is that simulation models allow a more
detailed and faithful representation of the system studied than
optimization techniques do [Loucks and Sigvaldason, 1982].
Moreover, they can be easily combined with synthetically gen-
erated streamflow sequences [Young, 1967; Loucks et al., 1981,
p- 277]. The main drawback of simulation is that unlike opti-
mization, it requires prior specification of the system operating
policy. To remedy this problem, Young [1967] combined the
use of synthetically generated annual inflows into a single res-
ervoir with deterministic dynamic programming and inferred
simple parametric rules for the operating policy using regres-
sion techniques. Other researches have employed optimization
methods within simulation models [Evenson and Moseley, 1970;
Sigvaldason, 1976; Ginn and Houck, 1989; Johnson et al., 1991;
Tejada-Guibert et al., 1993]. Tejada-Guibert et al. [1993] com-
pared two alternative approaches for defining the operation
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policy of a multireservoir system: (1) interpolation in policy
tables derived through SDP and (2) the use of SDP-derived
value functions within simulation to optimize the operating
policy each time a decision is sought; they found this second
approach clearly superior. Johnson et al. [1991] used a simula-
tion model, which includes heuristic operating rules that are
optimized within the simulation for each period of operation.
The optimization tries to drive the real storages as close to the
target storages as possible.

Operators of reservoir systems have long used heuristic rules
that define desired storage and release targets. The well-known
space rule [Bower et al., 1962] defines storage targets so that
the empty space in each reservoir is proportional to the ex-
pected inflow; this rule is applicable to parallel reservoirs for
water supply purposes. The NYC rule, used for the water
supply of New York City, defines storage targets so that the
probability of spill from each reservoir will be equal for all
reservoirs [Clark, 1950, 1956]. Johnson et al. [1991] showed how
heuristic operating policies, including the space rule, can be
effectively used in optimization models.

The aim of this work is to propose and test a parametric
operating rule for a system of reservoirs. The parameters of the
rule are estimated by optimization, using simulation to evalu-
ate the objective function value for each trial set of parameter
values. The rule is a generalization of, and is motivated by, the
space rule to simultaneously account for various goals: (1)
avoiding unnecessary spills, (2) avoiding leakage losses, (3)
avoiding conveyance problems, (4) taking into account the
impacts associated with the reservoir system topology, and (5)
assuring satisfaction of secondary uses. These goals are
achieved through parameterizing the rule and then optimizing
its parameters. For each parameter set a series of simulations
of the system operation allows system objectives to be evalu-
ated and constraints to be satisfied. Parameters are optimized
outside the simulation, or else, for each set of parameter values
in the optimization a simulation is performed. The three-
reservoir system used for the water supply of the greater Ath-
ens area, Greece, is selected as a test case. For validation
purposes the operating rule is compared with a number of
heuristic rules.

The paper is organized in four sections. In section 2 we
present the proposed parametric operating rule; we derive
theoretical values for its parameters in five special cases; we
discuss other theoretical issues raised; and then we describe
the optimization and the simulation model used. In section 3
we analyze an application of this rule for a real-world reservoir
system, and we assess the capabilities of the proposed rule in
comparison with heuristic operating rules. Section 4 summa-
rizes the proposals and tests made and presents the final con-
clusions.

2. Parametric Rule
2.1.

A system of N reservoirs is assumed for which an operating
policy is sought. The policy is focused on consumptive water
uses such as water supply for domestic and industrial use and
irrigation. Other uses such as hydropower generation, recre-
ation, or navigation are assumed absent or of secondary im-
portance in this study. Our approach, however, can easily ac-
commodate such nonconsumptive uses. The reservoirs are
connected in series or in parallel to form a network with any
topology. Water is withdrawn from all of them to meet a

Description of the Rule

NALBANTIS AND KOUTSOYIANNIS: A RULE FOR MULTIPLE-RESERVOIR SYSTEMS

common downstream target release D (equal to the water
demand). The continuity equation for each reservoir i is given
for a certain time period by

S;=BS;+Q,— R,— L, — SP; 1)

where BS; is the beginning-of-period storage for reservoir i
(known); S, is the end-of-period storage, which is unknown; Q;
is the inflow; R, is the total release from the reservoir; L, is the
total loss due to evaporation and leakages, and SP; is the
reservoir spill. Reference to time interval is omitted for con-
venience.

Let IV denote the total storage in the system at the end of the
time period of interest. In the simple case of one reservoir,
is completely determined by (1), in which case we omit the
subscript i and replace S with V. The operation of a system of
N reservoirs is much more complicated as, this time, the state
of the system is described by N variables §;, satisfying

E S;=V ()

Assuming that the target release is fulfilled and the inflows,
losses, and spills from all reservoirs are estimated in some
manner, the total end-of-period storage of the system is given
by

V=2 (BS;+Q;~L;—SP)—D ©)

i=1

Thereafter the problem is to determine the releases from all
reservoirs such that their sum equals D. Equivalently, the
problem is to distribute the total volume V" into the N reser-
voirs such that (3) is satisfied. This can be done in numerous
ways, as the problem has several degrees of freedom. We call
a specific way to perform this distribution an operating rule. To
avoid ambiguity, we express the operating rules by means of
some quantities S, which stand for the target storage for the
reservoir i at the end of the period. The real storage S; is
generally different from the target storage S’ because of the
physical constraints that were not considered in the determi-
nation of S7. We propose to distribute V' according to the
following rule:

St=a,+ bV (4)

where a; and b;, i € {1, ---, N}, are unknown parameters.

There exist 2N parameters for a system of N reservoirs. We
note that because of (2) we have two constraints on the pa-
rameters, i.e.,

N
a,=0 > b=1 (5)
i=1

i=1

and thus the number of unknown parameters is finally 2(N — 1).
It will be shown in the next subsection that the rule specified by
(4) is a generalization of the well-known space rule.

Having defined the operating rule in the linear form of (4)
with parameters a; and b; obeying (5), we have introduced a
convenient parameterization of the problem. This raises im-
portant issues regarding the validity of the rule proposed.
These are related to (1) the ability of equation (4) to take into
account various policies that result from different concerns
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about the system, (2) the need for further mathematical devel-
opment of the rule to take into account physical constraints of
the system, and (3) parameter issues such as whether the lin-
earity of (4) is appropriate and whether the number of param-
eters is sufficient. These issues are discussed in the following
subsections.

2.2. Justification of the Rule’s Form

In this subsection we study five particular operating policies,
which result from different concerns about the system proper-
ties and objectives. In each case we deal with one isolated
objective of the system such as the minimization of spills or
losses. To be able to obtain the operating rule for each case as
an analytical solution, based on a theoretical objective func-
tion, we do not consider all physical constraints of the system
at this stage. At a later stage we will incorporate the physical
constraints in the rule. The five cases examined do not exhaust
all possible concerns about the reservoir system operation, but
they are indicative of the form such policies can take. As we
will see, in all cases the result is the linear rule (4) with the
particular values of coefficients a, and b, dependent on the
main concern chosen. This justifies the linear form of (4) as a
generalization of various operating rules.

2.2.1. Restricting spills. Assume that the primary con-
cern is to avoid unnecessary spills from one reservoir while
others still have empty space. This rule is appropriate for the
refill cycle of the reservoirs or, equivalently, for the wet season.
Spills are more likely to be avoided when more empty space is
left for the reservoirs with larger expected cumulated inflows
up to the end of their refill cycle. It has been shown [Sand,
1984; Johnson et al., 1991] that the minimum expected value of
the total spills of the system corresponds to the case in which
the probability of spill is the same for each reservoir, i.e.,

prob(CQ,; = K; — §;) = const Vi (6)

where CQ is the cumulative inflow to reservoir i from the end
of the current period to the end of the refill cycle, K; is the
storage capacity of reservoir i, and prob( ) denotes probabil-
ity. Johnson et al. [1991] showed that under the assumption that
the distribution of CQ,/E[CQ;] (with E[ ] denoting expec-
tation) is the same for each reservoir i, (6) results in

> K-V

K, — S} YA

E[CQ]1 ™ [ » M
> E[CQ]

j=1

This is the well-known space rule, which consists in keeping
equal for all reservoirs the ratio of the empty space to the
expected cumulative inflow for the rest of the refill cycle. Equa-
tion (7) can be rewritten in the form of (4) for each i with
values of parameters

E[CQ;

a;=K,—b; >, K b,»=N[7] (8)
2 E[CQ]

j=1

If the reservoirs are all located in a region with the same

climatic regime, the ratios b, of (8) do not vary significantly
from one month to another as demonstrated in Figure 5 for the
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case study. Thus quantities a; and b; of (8) can be considered
as time invariant.

Furthermore, the assumption that the distribution of CQ,/
E[CQ;] is the same for all reservoirs is not obligatory to get the
linear rule (4), as different assumptions can result in the same
equation. For example, if all CQ, have Gaussian distributions,
one can easily obtain that (6) results again in (4) with a; and b,
given by equations slightly different from (8).

2.2.2. Restricting losses. Very often the leakages from
reservoirs are not negligible, especially if the reservoirs are
natural lakes on a karstic background. It is also likely that
evaporation losses are of main concern, especially if we con-
sider natural shallow lakes. Thus let us assume that the losses
due to leakage and evaporation are of much more importance
when compared with spills. The losses due to leakage are
commonly a function of water surface elevation, and those due
to evaporation are a function of the surface area of the reser-
voir. Given the reservoir storage-elevation and area-elevation
relationships, we can express the total losses of this kind as a
function of storage, i.e.,

L;=1,(S) (9)

If our concern is to minimize losses, using algebra and some
rather general assumptions (functions /;(S;) increasing and
concave, which holds for almost any reservoir; see Appendix
A1"), we find that the most efficient rule is the one that stores
all water V" at the reservoir m whose value /,,,(V) is the min-
imum among those of other reservoirs /;(7). Mathematically,
this is expressed again by the linear equation (4) but with
coefficients a; = 0 for all i, b,, = 1 for the specific reservoir
m whose value /,,(V) is the minimum among all other /;(V),
and b, = 0 for all other i (except for i = m).

2.2.3. Ensuring conveyance. A third rule will be consid-
ered for periods with low system storage. In such periods the
main concern is not avoiding reservoir spill but making with-
drawals so as not to drive one or more reservoirs empty while
demand cannot be satisfied from the remaining reservoirs be-
cause of limited conveyance capacity. In such a case it is
straightforward that the optimal distribution is such that the
storage in each reservoir is proportional to the conveyance
capacity of the relative aqueduct. This rule is expressed by the
same linear rule (4) but with coefficients

G

N
2 G
j=1

b=

ai207

(10)

for all i, where C; is the conveyance capacity of the aqueduct
through which the release from reservoir i is made.

2.2.4. Taking into account the impacts of topology. In the
above cases all reservoirs were assumed implicitly to be topo-
logically equivalent; that is, each of them is located at a dif-
ferent river or branch of river, and they are all connected by
separate aqueducts with the consumption location. However,
in many cases there appear to be differences in the topology of
the reservoir system that may affect greatly the operating rule.
Let us consider, for example, the case where the reservoirs

'Appendices are available on microfiche. Order from American
Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC
20009. Document 97WRO01034M; $2.50. Payment must accompany
order.
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form a cascade along the same river. In such a case the spills of
all reservoirs but the most downstream one are not a loss for
the system. Moreover, for energy-saving reasons (e.g., minimi-
zation of pumping) it may be a gain for the system to store the
water as far upstream as possible. In addition it is always
possible to move the water from upstream to downstream if
necessary, while the opposite needs pumping. Thus a good
operating rule for such a case would be to keep the water at the
most upstream reservoir (if feasible), leaving the downstream
reservoirs empty. Mathematically, this is expressed by the same
linear rule (4) with coefficients a; = 0 for alli, b,, = 1 for the
most upstream reservoir m, and b, = 0 for all other i (except
fori = m).

2.2.5. Assuring satisfaction of secondary water uses. In
many cases, apart from the main water use, there are some
secondary water uses in the neighborhood of each reservoir
(e.g., irrigation, satisfaction of environmental demands, etc.).
In such cases we want to avoid situations where some reser-
voirs are almost empty, while others are almost full. Thus we
can set a rule that stores the water proportionally to cumula-
tive local water demand for consumptive use CLD; in order to
balance the satisfaction of all local uses. This leads again to the
linear rule (4) with

E[CLD|]
N

> E[CLD]]

j=1

a,~=0, i Y i

(11)

We have seen that in each of the above simple situations the
operation rule has always the linear form (4) with parameters
a; and b; given by different simple equations for each case. In
real-world situations we have to deal with more than one such
concern (or goal) simultaneously. In these situations we can
keep the formalism and parameterization of the linear rule,
but the parameters a;, and b, are no longer determined by
simple equations such as the above because the objective func-
tion is not simple enough to be treated analytically. The pa-
rameterization of the rule allows for estimation of parameters
using simulation via sampling and search procedures [Loucks
et al., 1981, p. 65]. Before we proceed to the description of the
models for simulation and optimization it is necessary to in-
corporate physical constraints into the linear rule in order for
it to be operational for real-world situations.

2.3. Further Development of the Rule and Parameter
Issues

In introducing (4) we have ignored the physical constraints,
which demand that the storage cannot be negative nor can it
exceed the reservoir capacity. To correct this inconsistency, we
modify (4) so that

0 a;+blV <0
SE=qa,+bV 0=a;+bV=K, (12)
K 4+ bV >K,

However, this creates another inconsistency as the quantities
S:* defined by (12) may no longer add up to V. Several ad-
justment procedures can be used, the most refined being the
transformation of straight lines of (4) into broken lines. Here
we adopt another procedure that is computationally simpler.
We distribute the departure V' — 2]’-\’: 1 §;* proportionally to

the quantity S;* (1 — §;*/K;) so that (S;* = 0) maps to
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($7* = 0) and (S}* = K;) maps to (S7* = K,). In this way
the adjustment procedure does not affect the cases where the
reservoir i was found by (12) to be either empty or full. Thus
we get the final target storage S7* by

SpE(1 = Si¥/K, &
Sp= S+ — ( ) V-2 S
=1
Zspa-spiK)
j=1
=S8+ ¢(1 = /K] (13)
with
N
V-2 8
j=1
¢ = (14)

N
2 SpE(1 = SH/K)

j=1

We note that under certain circumstances (e.g., for ¢ lying
outside of the interval [—1, 1]), (13) may lead to values of S/*
that still violate the physical constraints. These circumstances
are described in detail in the Appendix A2 along with an
iterative algorithm to obtain §7* such that 0 = §7* = K; in all
cases. We emphasize that the final operating rule, expressed by
means of S7*, is completely determined from the initial pa-
rameters a; and b,. An example of an initial rule expressed in
terms of S} along with its corresponding final rule expressed in
terms of S7* are given in Figure 6 for the case study described
in section 3.

Having introduced the full mathematical description of the
rule proposed, several issues concerning the rule’s parameters
are raised: (1) Is the linear form (4) of the rule adequate, or do
we need a more complicated nonlinear form? (2) Is the num-
ber of parameters in the rule (two parameters per reservoir)
adequate, or do we need more or fewer parameters? (3) Do we
need to introduce a seasonal variation of the parameters?

It is difficult to answer these questions in a strict mathemat-
ical sense. However, we will attempt to give some detailed but
rather intuitive answers. The answer to question 1 is threefold.
First, as we have shown in section 2.2, the lincar form is
justified for several simple cases. Second, the operational form
of the rule is not strictly linear since the corrections (12) and
(13) introduce strong nonlinearity as demonstrated in the ex-
ample of Figure 6, where the final target storages and their
initial values are compared. The initial linear form is, in fact,
used as an efficient way to parameterize the problem using two
parameters for each reservoir. Third, the physical constraints
of a reservoir system strongly modify the form of any initial
rule no matter which this specific form is. Different initial rules
thus have very similar final operational forms. To demonstrate
that numerically, we can experiment using a quadratic rule
instead of the linear, i.e.,

Si=al+bV+ch? (15)
where a, b}, and ¢ are parameters for each reservoir i.
Experimenting with different sets of parameters a; and b; of
(4), we can find a parameter set of this linear rule such that the
final rules (after introducing corrections for constraints) of
both the linear and quadratic form are very close to each other.
A comparison of the two rules (linear and quadratic) is illus-
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trated in Appendix A3 for the quadratic rule with the highest
possible curvature, where the final forms are almost indistin-
guishable (the overall root-mean-square error, normalized by
the respective reservoir capacity, is less than 0.1%).

The above discussion already gives some indication of the
adequacy of the number of parameters (question 2): the use of
three parameters per reservoir instead of two essentially makes
no difference. We could also consider reducing the number of
parameters to one parameter per reservoir, thus formulating
the rule as a homogeneous line of the form S = b, V. To test
this, we approximated a quadratic and a linear nonhomoge-
neous rule with a linear homogeneous rule (see Appendix A3).
In both cases we obtained approximations of the final opera-
tional rules with overall root-mean-square error less than 10%,
although the initial rules differed by as much as 100%. This
suggests that the rule may be satisfactory for practical appli-
cations even in its reduced homogeneous form. However, to
develop a clearer idea of the adequacy of the number of pa-
rameters, we must assess the sensitivity of the objective func-
tion to some parameters. As it will be shown in the section 3,
in our test case we started by using two parameters per reser-
voir (a; and b;) and found that the optimum of the objective
function was practically insensitive to a;, which indicates that
one parameter per reservoir suffices. This, however, cannot be
transferred to any reservoir system without prior investigation.

Question 3 concerns another form of nonlinearity that can
be introduced through seasonal variation of the parameters.
First, we note that in systems consisting of reservoirs with very
high capacities that perform overyear regulation, there is no
reason to consider target storages dependent on the season, as
the overyear variation of storage is more important than the
within-the-year variation. In systems with smaller capacities it
seems reasonable to have the target storages dependent on the
season. However, the parametric rule implicitly contains such a
dependence of the target storages on V. This is particularly
true for reservoirs with considerable drawdown in the dry sea-
son. In such cases V' takes large values only in the wet season.
We note, though, that intermediate values of 1V are normally
attained twice a year: once during the refill period and once
during the drawdown period. It may be beneficial to distribute
among the reservoirs the same total volume V' in a different
way in each of the two periods. This means that the use of two
parameter sets for the rule, one for the refill and one for the
drawdown period, may be advantageous. For simplicity the
parameters a; and b; are considered in this study as time
invariant and constant for each reservoir. However, the ap-
proach proposed can be directly modified to include two pa-
rameter sets, but this will require more computations because
of the doubling of the number of parameters.

2.4. Optimization Model

As described above our proposal in this paper is to consider
the coefficients a; and b; of the operating rule as unknown
parameters and to determine them by optimization. Their val-
ues are optimized in the following way:

1. A simulation model of the reservoir system operation is
built together with a multivariate stochastic model of the sys-
tem’s inflows. A long series of synthetic inflows is generated
and is passed into the simulation model to evaluate the objec-
tive function of the optimization model described in point (2),
below.

2. An optimization method is used to determine a; and b;.
At each evaluation of the objective function one or more
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simulations of the system operation (depending on the con-
straints of the optimization) for the whole operation period are
performed. Thus, in our case, simulation is embedded in the
optimization algorithm.

To formulate the objective function of the optimization
model, we consider two typical problems. In the first problem
the objective is to maximize the target release of the system for
a given reliability level. For example, this is the objective in the
first three simple cases examined in section 2.2, which can be
represented by a common objective function. Mathematically,
this is expressed by

max D = fi(a, b) (16)

where a = (a,,*+, ay)” and b = (b, *+-, by)”. The
constraint for this optimization is related to a total reliability
measure that the system should have, i.e.,

N
prob ER,-=D =a

i=1

(17)

where « is the reliability level. For example, if a = 0.95, the
above equation means that in a simulated period of 2000 years
the total release equals the target release D during 1900 years
(95%), whereas we allow 100 years (5%) where the target
release is not completely satisfied. The failure probability o'
corresponds to the case of partial satisfaction of the demand
and ' = 1 — «a. Apparently, failure occurs in cases where
release targets are not physically achievable.

In the second problem our concern is the cost of conveyance
(or the profit, in cases of energy production). This is, for
example, our concern for the fourth case examined in section
2.2. In this problem we can formulate the objective function as

N

min E| >, ¢/(R) | = fy(a, b)

i=1

(18)

where c¢;(R;) is the cost paid for conveying the quantity R; to
the consumption location (negative in cases of energy produc-
tion) and expectation is taken over the releases. Equation (17)
still remains a constraint for (18).

Other concerns of the system may lead to different objective
functions (single or multivariate) or to different constraints. In
this paper we consider only the above two problems with sin-
gle-objective optimizations having the form of equations (16)
and (18).

2.5.

As we have seen previously, the optimization process in-
volves a certain number of simulations of the system operation.
In each simulation, trial values of the parameters a; and b, are
used. At each time period of simulation the following compu-
tations are performed:

1. The end-of-period storage in the system V' is estimated
from (3).

2. The target storages S are obtained from (4). Then,
these are corrected according to (12) and (13) to give the final
values of the target storages S7*.

3. The releases from each reservoir are determined so as to
meet the target storages S7* while also satisfying

Simulation of the System Operation

0=R,=C; (19)
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Figure 1.

In case the releases R; are outside the limits set by (19) they

are set equal to these limits, and the remainder from the total

target release is redistributed among the remaining reservoirs.
4. The spill from each reservoir i is given by

SP, = max {0, (BS;+ O, — R, — L, — K))} (20)

In some cases this procedure may require an iteration. Ini-
tially, to estimate V" in step (1), spills are assumed zero. If
nonzero spills are derived from (20), V' is reevaluated on the
basis of those spills, and the whole procedure is repeated again.
Finally, the simulation model may include other equations that
determine leakages and safety storages. Examples are dis-
cussed in the next section in the presentation of the case study.

3. Case Study

3.1. The Reservoir System for Water Supply of the Greater
Athens Area and Its Simulation

The reservoir system of greater Athens is used to supply
water mainly for domestic and industrial use to the metropol-
itan area of Athens. It comprises two main reservoirs (Figure
1): (1) the Mornos Reservoir with an active storage capacity of
643 hm? and (2) the natural Lake Iliki with a storage capacity
of 587 hm>. A small reservoir near Athens, the Marathon
Reservoir, with a storage capacity of 41 hm?, is also part of the
system. This reservoir is considered full all the time for emer-
gency situations. Major water transfer works are (1) the Mor-
nos Aqueduct, some 200 km long, which carries water from the
Mornos Reservoir to Athens and comprises a number of dif-
ferent hydraulic works, for example, 70 km of tunnels, and (2)
the Iliki Aqueduct from Iliki to the Marathon Reservoir, which
is some 60 km long. The growing water demand and the sys-
tem’s vulnerability to drought during the severe drought of
1989-1990, which was followed by 6 years with low flows ex-
cept for 1990-1991 [Nalbantis et al., 1994], led public author-
ities to decide to construct a new reservoir (Evinos) with a dam
at the site of Aghios Dimitrios on the Evinos River just west of
the Mornos River Basin. Water from the new reservoir will be
diverted to the neighboring Mornos Reservoir and from there

Layout of the Athens water supply system.

to Athens via the Mornos Aqueduct. The storage capacity of
the reservoir is small (104 hm®) as compared to that of the
Mornos Reservoir. On the other hand, inflows to the new
reservoir are of a magnitude comparable to that of the inflows
to the Mornos Reservoir. As a result, the Mornos Reservoir
will be the main storage work for the Evinos River flows as
well. A map with the reservoir system is given in Figure 1, while
a schematic layout is sketched in Figure 2, where, also, the
technical characteristics of the system are annotated. Mean
values, standard deviations, and lag-one autocorrelation coef-
ficients for monthly inflows to the three main reservoirs (Evi-
nos, Mornos, and Iliki) of the system are given in Table 1.
Water from the western part of the system (Evinos and
Mornos reservoirs) flows to Athens via gravity. Contrary to
this, water from Lake Iliki has to be pumped. Another impor-
tant feature of the system is that Lake Iliki lies on a karstic
geologic formation that causes significant leakages. These de-
pend strongly on the water surface elevation of the lake and
may equal half of the annual inflow for high elevations. Anal-
ysis of historical data established two distinct leakage-elevation
relationships: a first one for the dry period (April through
September) and a second one for the wet period (October
through March). The relationship for the dry period is given by

L;=0.01242Z%*—-0.999Z + 17.46 + ¢ (21)

where L, is the monthly leakage in cubic hectometers and Z is
the water elevation of the lake in meters. For the wet period
the following relationship was found

L, =0.01242Z*—-0.999Z + 22.16 + ¢ (22)

In both (21) and (22) a random term e is added to account for
discrepancies from the deterministic L, — Z relationship. For
this term, E[e] = 0, while its standard deviation is o, = 2.64
hm? for the dry period and o, = 5.96 hm? for the wet period.
These two statistics are used to produce simulated values of
leakages through random generation of e that are added to the
deterministic part in (21) and (22) during simulation.

The Mornos Reservoir leakages are concentrated in a lim-
ited area of the reservoir and are rather small compared to



NALBANTIS AND KOUTSOYIANNIS: A RULE FOR MULTIPLE-RESERVOIR SYSTEMS 2171

El

L
ol
29
(-3 |
@E lliki Lake
£ ; | Evinos Reservoir +4510 +78 m ¢ 587 hm?
@ 81 | +455t0 +500 m « 104 hm3

Boeoticos Kifissos River

2400 km2 e 353 hm3

_________________ ’
liki Aqueduct
60 km e 7.5 m¥/s Marathon Reservoir
+186 to +223 m « 41 hm?3
Haradros Stream
120 km2 ¢ 10 hm3
————————— »
Tunnel Outlet
+440 m <
alatsi
Treatment Plant
+155m

Treatment Plant
To distribution

<
<

-
own
_gc?
9 E
=
o N
< o
2 E
ex
=
«©
o
=2

|
|
|
|
|
|
|
|
|
v v
Figure 2. Schematic representation of the Athens water supply system. Characteristic data of the system are
annotated: for rivers, the watershed area and the mean annual reservoir inflow; for reservoirs, the minimum

and maximum water level and the active storage capacity; for aqueducts, the length and conveyance capacity;
and for other components, the characteristic water levels.

those of Lake Iliki. They are effectively modeled via the fol-
lowing linear relationship:

L, =22.865%x1073(Z — 384.2) Z=384.2m (23)

Apart from water supply to the greater Athens area, the
system provides water for irrigation of the Kopais Plain in the

Boeotia district. This secondary water use is fixed by decree at
50 hm?/yr but may be reduced in case of water shortages in the
water supply of Athens.

In the simulation model of the system operation an arrange-
ment has been made for keeping safety storages in case of
possible damages to the system aqueducts. For the case of

Table 1. Mean Values, Standard Deviations, and Lag-One Autocorrelation Coefficients of
Monthly Inflows to the Reservoirs of the Athens Water Supply System
Evinos Mornos Tliki§

m* st rk m s r m s r
October 7.2 6.5 0.32 12.2 13.9 0.16 20.1 10.1 0.59
November 30.4 23.5 0.17 31.0 22.9 0.32 25.3 9.4 0.65
December 60.0 471 0.49 48.8 28.1 0.01 443 375 0.46
January 48.3 34.6 0.19 51.9 32.3 0.25 52.5 28.5 0.60
February 56.4 32.0 0.75 48.1 25.8 0.31 53.1 20.7 0.59
March 47.8 27.1 0.0 39.9 14.3 0.23 63.3 18.3 0.26
April 34.0 12.2 0.29 33.4 9.7 0.73 40.4 21.5 0.78
May 18.5 7.1 0.60 24.1 10.5 0.78 18.9 14.5 0.80
June 8.2 3.1 0.73 13.5 5.9 0.48 3.8 5.4 0.45
July 4.7 1.5 0.81 6.4 3.8 0.0 0.4 1.0 0.54
August 3.1 0.8 0.68 53 3.1 0.20 1.3 2.6 0.47
September 2.9 0.9 0.11 4.8 2.9 0.75 9.9 6.8 0.56
Year 321.5 111.2 0.17 319.1 77.9 0.03 333.4 115.8 0.0

Where the record periods are defined as follows: Evinos, 1961-1963 and 1970-1988; Mornos, 1951-
1956, 1963-1968, and 1979-1988; and Illiki, 1960-1964, 1968-1976, and 1977-1988.

*Mean value, in cubic hectometers.
fStandard deviation, in cubic hectometers.
fLag-one autocorrelation coefficient.

§Inflow from B. Kifissos River (not including inflow from Iliki’s own basin)
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Table 2. Monthly Water Demand Distribution Coefficients
d; (j =1,2,--+, 12) for the Athens Water Supply System

Water Supply of Irrigation of

Athens, % Kopais Plain, %
October 8.75 0.00
November 7.75 0.00
December 7.75 0.00
January 7.17 0.00
February 6.58 0.00
March 7.42 0.00
April 7.58 2.58
May 8.67 7.17
June 9.33 17.58
July 10.08 39.84
August 9.75 32.83
September 9.17 0.00
Annual sum 100.00 100.00

damage to the Mornos Aqueduct a sufficient volume of water
is always kept in Lake Iliki to satisfy water demand of Athens
and irrigation of the Kopais Plain for six months to come.
Minimum inflow to Lake Iliki as well as the storage in the
Marathon Reservoir are considered to contribute to safety
storage. Owing to the large dead volume of the Mornos Res-
ervoir (119 hm?), which can be pumped in emergency situa-
tions, and to the absence of local water uses from that reser-
voir, no such safety concern was necessary for the case of
damage to the Iliki aqueduct.

The annual target release D is expressed in cubic hectome-
ters per year. In the calculations this is first transformed into a
monthly mean value D,,,(= D/12), which, in turn, is distrib-
uted throughout the months of the year via the water demand
distribution coefficients

(24)

where d; and D; are the water demand distribution coefficient
and the target release for monthj (j = 1, 2, 3,---, 12),
respectively. Water demand distribution coefficients for both
the water supply of the greater Athens area and the irrigation
of Kopais Plain are given in Table 2.

3.2. Brief Review of the Model Used
for Synthetic Inflow Generation

A multivariate stochastic model was used for generation of
inflows. The model generates the runoff of the three basins and
the concurrent rainfall depths at the three reservoirs simulta-
neously. In addition, it generates the evaporation depths from
the three reservoirs simultaneously but with no reference to
the concurrent rainfall and runoff. These generations result in
equivalent water depths, while the corresponding volume
quantities are determined during the system simulation, given
the variation of the reservoir areas. For each of the two cases
(concurrent rainfall and runoff, and evaporation) we start with
the generation of annual quantities, which is performed by a
multivariate AR(1) model. Then these quantities are disaggre-
gated into monthly depths as the monthly step was proven
sufficient for the system simulation. The disaggregation is per-
formed using the Dynamic Disaggregation Model (DDM)
[Koutsoyiannis, 1992]. This model preserves the first three mar-
ginal moments of the lower level (monthly) variables, the lag-
one autocorrelation coefficients, and the lag-zero cross-
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correlation coefficients. We note that the test hydrologic
system for the development of DDM was the same system as
the present application, and thus the interested reader is re-
ferred to Koutsoyiannis [1992] for a detailed description of the
model and its performance.

3.3. Results

The proposed method was applied in two real-world prob-
lems related to the water supply system of greater Athens. In
the first problem (problem 1) the ultimate development of the
system is studied. Specifically, the maximum possible system
release is sought by taking no account of the operating cost
(i.e., for pumping). In the second problem (problem 2) the
system operation is studied for a level of development lower
than the ultimate, considering this time the related economic
aspects. Specifically, a target release level is assumed to be less
than the maximum that is estimated in problem 1, and the
minimization of the operating cost is sought.

In problem 1 the total target release from the system, D, is
maximized for a selected level of failure probability. The ob-
jective function to be maximized is given by (16), while con-
straint (17) must also be satisfied. The adopted level of the
probability of failure for the water supply system of greater
Athens is o' = 1% [Koutsoyiannis and Xanthopoulos, 1990], a
value that provides a high level of security. So during the
optimization process, the point (a, b) in the parameter space,
which yields the maximum target release for o' = 1% is sought.
However, the simulation of the system operation for a specific
set of parameter values yields «' for a given water demand D.
To avoid an excessive number of simulations with large com-
puting times, we followed a procedure with two steps. In step
1 a level of target release D is selected and parameters are
estimated that minimize the probability of failure or, other-
wise, maximize the system reliability

N
max prob E R, =D | = fi(a, b) (25)
i=1
with the constraint
D = const (26)

Step 2 simply involves finding a target release that gives the
desired level of reliability with the parameter values already
estimated in step 1. The basic hypothesis behind this two-step
optimization lies in the fact that (16) and (17) can be inter-
changed as far as their role as objective function and constraint
is concerned. This is reasonable when the assumed level of
target release in step 1 does not differ significantly from the
target release estimated in step 2, a condition that must be
checked a posteriori.

All simulations are based on a synthetic data set for a period
of 2000 hydrological years. Nine hydrological variables are
simulated, i.e., three reservoirs (Evinos, Mornos, and Iliki) X
three variables (runoff, precipitation, and evaporation).

The main focus of this work is to explore the features of the
approach associated with the parameterization of the proposed
reservoir system operating rule and not to establish an efficient
optimization algorithm. Our purpose is served better by using
the uniform grid method of parameter optimization already
described in classical texts [Loucks et al., 1981, pp. 65-68]. In
this study the method is applied in the form of successive steps
or iterations with grids that are nested to each other and
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become progressively finer. In this method the objective func-
tion is evaluated via simulation at all the grid points of the
parameter space that satisty constraints (5). The algorithm
starts by dividing the interval of variation P,(p) of each pa-
rameter p with an interval divider 8, to obtain the initial
(coarsest) grid. Then, we construct a second grid with finer
resolution by taking a smaller interval P,(p) of each parame-
ter p only in the vicinity of the optimum and dividing it by a
divider 8,. This is considered as the first iteration. The algo-
rithm proceeds in this way for a number of iterations M until
convergence to one or more optima. Note that simulation runs
are performed for M + 1 grids. The convergence criterion
depends on the objective function to be optimized. For (25), of
step 1, iterations are stopped when maximum difference be-
tween failure probability values within a grid drops below the
critical value &; = 0.002. This is chosen as a small multiple of
0.0005, which is the minimum probability level that can be
calculated for a period of simulation of 2000 years.

In our study the parameter set is six-dimensional, i.e., (a,
a,, as, by, b,, bs), where indexes 1, 2, and 3 correspond to
Evinos, Mornos, and Iliki, respectively, but owing to (5), this is
reduced to a four-dimensional problem. Preliminary tests
showed little sensitivity to parameters a; (i = 1, 2, 3). One
example is given in Table 3 for a particular set of parameters
b = (0.20, 0.80, 0.00) and D = 700 hm>. This table shows that
results are insensitive to parameters a, and the rule proposed
was initially overparameterized, at least for our case study.

Given the results of the sensitivity analysis and the discus-
sion of the number of parameters presented in section 2.3, we
opted to proceed to the optimization of parameters b, (i = 1,
2, 3) by selecting constant values for a;, i.e.,a, = 0 (i = 1,
2, 3), or equivalently, to use the homogeneous instead of the
complete linear rule. In this case the parameter space is ini-
tially three-dimensional with 0 =< b, =1 (i = 1, 2, 3) and is
restricted to a two-dimensional parameter space given that (5)
holds. The results are presented in Table 4. In Figure 3 we
depict the results of the initial (coarsest) grid in contours with
equal probability of failure for the space of parameters b, that
is mapped to an equilateral triangle. We observe that (1) the
probability of failure follows a rather smooth and continuously
curved surface; (2) this surface is not symmetrical with respect
to the sides of the triangle, which is explained by the different

Table 3. Sensitivity Analysis of the Failure Probability
o' of the Athens Water Supply System to Parameters
a; (i =1, 2, 3) for Step 1 of the Optimization Process

Parameters «;

a,

Test Evinos Mornos Tliki %
1 0 -500 500 1.40
2 0 —400 400 1.40
3 0 -300 300 1.40
4 0 -200 200 1.40
5 0 —-100 100 1.40
6 0 0 0 1.40
7 100 —400 300 1.40
8 100 -300 200 1.40
9 100 -200 100 1.40
10 100 —-100 0 1.40

In the case of maximization of the expected annual total release
from the system (Problem 1). The annual target release is 700 hm?.
Parameters b; are held constant: b, = 0.20 for Evinos, b, = 0.80 for
Mornos and b5 = 0.00 for Iliki.
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Table 4. Summary of Results of the Optimization Process
for Problem 1 (Step 1) and Problem 2.

Problem 1
(Step 1) Problem 2
Mean annual target release, hm? 700 600
Number of iterations, M 3 6
Initial interval for b, [0, 1] [0,1]
Interval divider §; (j = 1, -++, M) 2% 2
Critical value for stopping 0.002 0.005
Final failure probability, % 1.40 1.00
Mean annual abstraction from Lake 182 104

Tliki E[R5], hm?

*For all iterations except the first, where 8, = 5.

conditions of the three reservoirs; (3) the lowest values of the
surface correspond to b5 = 0, which is explained by the high
leakages of Lake Iliki (the zero value means that we withdraw
water from Iliki as much as possible); (4) there is a flat area
with minimum probability (equal to 1.4%) rather than a single
point; and (5) further investigation of this area is needed for
the selection of the final parameter set.

After three iterations we obtained the final grid. The flat
area already detected in the initial grid was proved larger, and
no probability less than 1.4% appears. The flat area is advan-
tageous as it provides flexibility: any point with o' = 1.4%
could be chosen. The selection of the final parameter set was
based on engineering criteria. We have chosen the point with
the lowest value of b,, which corresponds to conveying as
much water as possible from the Evinos to the Mornos Res-
ervoir. The idea behind this is to store water as close to Athens
as possible for safety reasons. Thus the final parameters set is
(a, b) = [(0, 0, 0)7, (0.08, 0.88, 0.04)7]. In Table 4 we
depict the main characteristics of the optimization process.

The optimization process for problem 1 is completed with

.......................

0.0 0.2 0.4 06 08 1.0
b

Figure 3. Contours of equal probability of failure o’ (%) of
the Athens water supply system for the first (coarsest) grid of
step 1 of the optimization process of problem 1. The annual
target release is 700 hm?. Parameters a; are zero for all reser-
Voirs.
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Figure 4. Contours of equal probability of failure o’ (%) of
the Athens water supply system (solid lines) and of equal mean
annual abstraction from Lake Iliki E[R;] in cubic hectometers
(dashed lines) for the first (coarsest) grid of the optimization
process in problem 2. The annual target release is 600 hm?.
Parameters a; are zero for all reservoirs.

step 2 of the overall procedure. The final maximum target
release for &' = 1.0% is estimated at 690 hm?/yr, a value very
close to that of step 1 (700 hm?).

Problem 2 involves minimizing operating costs for a given
level of target release and a level of system reliability. The
problem is formulated so as to optimize the objective function
(18) with the constraints (17) and (26). Water from the western
part of the system (the Evinos-Mornos subsystem) flows to
Athens via gravity, while water from Iliki is pumped. Conse-
quently, the operating cost of the Evinos and Mornos works
can be neglected if compared to the cost from Iliki. Further-
more, the cost of pumping is a linear function of withdrawals
R; from Iliki. So the objective function (18) becomes

min E[Rs] = f(a, b) (27)

As in problem 1, the uniform grid method is applied with
parameters a; = 0 (i = 1, 2, 3) and parameters b; satisfying
(5). The procedure here tries, for a given target release D, to
get a solution that is closer to satisfying constraint (17) while at
the same time optimizing f, in (27).

The results are presented in Table 4. The values of the
objective function for the initial (coarsest) grid are also shown
in Figure 4, where we have drawn contours of equal probability
of failure and of equal mean annual abstraction from Lake
Iliki. We observe that the general shape of the surface of
probability is quite similar to that of Figure 3 and has its
minimum values in the same region (although the absolute
values of probability are different in the two figures). Figure 4
allows us to localize the area where the contour with proba-
bility of failure 1% passes, i.e., where the constraint (17) is
valid. Guided by this we constructed a finer grid and so on. The
criterion to stop the iteration was to obtain improvements of
the objective function that are less than a certain critical value
&, in relative terms. In our case &, = 0.005. Table 4 summarizes
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the results. The final set of optimal parameters is (a, b) = [(0,
0, 0)%, (0.106, 0.291, 0.603)7]. The value of the objective
function is E[R;] = 104 hm>. Note that this value is 78 hm?
lower than the corresponding value for problem 1 (182 hm?).
We can also easily notice that the optimal parameter set of
problem 2 is clearly different from that of problem 1.

To validate the rule proposed, we compared the above re-
sults with those obtained by heuristic rules with no parameters
to be optimized. These are (1) the well-known space rule
expressed by (8), (2) the leakage rule as described in section
2.2, and (3) the conveyance rule given by (10). We have tested
all three rules applied throughout the year as well as combi-
nations of them applied separately for the dry and wet season,
as shown in Table 6 (except for three combinations that had no
meaning).

The comparison is performed only for Problem 1 since in
this problem we can find the maximum target release from the
system that corresponds to a failure probability equal to 1%.
The application of the above heuristic rules to Problem 2 is not
possible because, in that case, there is no degree of freedom:
once the target release is fixed the failure probability is also
fixed and cannot be made equal to its desired level (1% in our
case).

For each one of the three basic heuristic rules we estimated
the values of the parameters in equation (4). First, the param-
eter values for the space rule are estimated. From Figure 5 we
conclude that ratios E[CQ;]/2)_, E[CQ;] are nearly constant
for all months with mean values 0.313, 0.297, and 0.390 for
Evinos, Mornos, and Iliki, respectively. With these values we
obtain from (8) the values of (a, b) shown in Table 5. The
graphical representation of the space rule is given in Figure 6,
in comparison with the optimized rules of problems 1 and 2.
The parameter sets for all other heuristic rules, determined
from the corresponding equations of section 2.2, as well as
those obtained by optimizing the parametric rule for problems
1 and 2, are shown also in Table 5. We observe that (1) in all
rules the parameters a; are zero except for the space rule, (2)
the parameter b for Lake Iliki optimized for problem 1 (para-
metric rule) takes a value similar to that of the leakage rule,
and (3) the parameters b; for the Evinos and Mornos reser-
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Figure 5. Ratios of cumulative monthly inflows into each
one of the three reservoirs to the system cumulative monthly
inflows (b; in (8)). Cumulative inflows are considered up to the
end of the refill cycle. Displayed values for the months of the
refill cycle (October to April) are averages for the common
period (for all reservoirs) of data availability (1979-1980 to
1987-1988). Continuous, dashed, and dotted lines correspond
to the Evinos, Mornos, and Iliki reservoirs, respectively.
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Table 5. Parameter Values for Various Heuristic
Operating Rules and the Optimized Proposed Rule

Evinos Mornos Iliki
aq, a, as,
Rule hm* b, hm® b, bhm® b,
Space —315 0313 247 0297 68 0.390
Leakage 0 1 0 0 0 0
Conveyance 0 0.377 0 0377 0 0246
Parametric, problem 1 0 0.080 0 0.880 0 0.040
Parametric, problem 2 0 0.106 0 0291 0 0.603

voirs optimized for problem 1 are not well approximated by
any one of the heuristic constant-parameter rules.

In Table 6 we depict the annual target release corresponding
to the 1% failure probability for each one of the rules tested.
These results allow us to make the following observations and
interpretations. First, the space rule, applied throughout the
year (case 1), gives a total annual release of 620 hm?, which is
70 hm? less than that obtained by our method. This is expected
since the avoidance of spills results in storing water mainly in
the Mornos and Iliki reservoirs, thus leading to high leakage
losses especially from Iliki. Second, the introduction of the
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Figure 6. Graphical representation of operating rules for (a) the final parameter set of problem 1, (b) the
final parameter set of problem 2, and (c) the parameter set of the space rule. Solid lines with rhombi, squares,
and circles correspond to reservoirs 1, 2, and 3 (Evinos, Mornos, and Iliki), respectively, and represent the
adjusted rule (equation (13)). Dashed lines represent the initial linear rule (equation (4)).
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Table 6. Annual Target Release Satisfied With 1% Failure
Probability for Various Heuristic Operating Rules and the
Optimized Proposed Rule (problem 1)

Rule

Throughout Annual Target

Case the Year Wet Season  Dry Season Release, hm?
1 S 620
2 S L 620
3 S C 628
4 L 633
5 L C 635
6 C 652
7 P 690

The rules are applied throughout the year or by season.
S is the space rule; L is the leakage rule; C is the conveyance rule;
and P is the parametric rule proposed.

leakage rule in the dry season while the space rule is still used
in the wet season (case 2) does not improve the results. In this
case the leakage rule tries to store all water of the dry season
in the Evinos Reservoir, while in the previous wet period this
was almost emptied by the space rule to keep empty space for
the significant inflows from the Evinos basin. Because of the
very low inflows in the dry season, no sensitivity to the intro-
duction of the leakage rule is revealed. Third, the introduction
of the conveyance rule in the dry season while the space rule is
still used in the wet season (case 3) gives a small improvement
of 8 hm? with regard to the previous case. We note that the
conveyance rule tries to store more water in the Evinos-
Mornos subsystem, thus producing a beneficial result. Fourth,
the leakage rule used throughout the year (case 4) performs
better than the space rule and the combination of the latter
with the leakage rule. In this case the leakage rule tries keep
the Evinos Reservoir full for both seasons. In the wet season
this is perfectly possible because of high inflows but is done at
the expense of a significant risk of spillage. However, the Mor-
nos reservoir is left relatively empty, although it does not leak
significantly (as compared to Iliki). Fifth, the leakage rule used
throughout the year (case 4) has a slightly better performance
in comparison with the space rule combined with the convey-
ance rule (case 3). Again, here the introduction of the leakage
rule in the wet season proved beneficial. Sixth, the perfor-
mance of the leakage rule when combined with the conveyance
rule in the dry season (case 5) improved very slightly in com-
parison with the leakage rule throughout the whole year (case
4). We notice the same beneficial result of the use of the
conveyance rule in the dry season, although the improvement
is minor. Seventh, the use of the conveyance rule throughout
the year (case 6) has the maximum performance of all the
other rules tested (cases 1-5). As said before, this rule tries to
store more water in the Evinos-Mornos subsystem, which hap-
pens to have large conveyance capacity. Coincidentally, the
same subsystem has also lower leakage losses. As a result, the
two effects are combined to improve the performance, but this
is undoubtedly a fortuitous situation.

Comparing the results from all six rules or combinations
thereof (cases 1-6) with those of the parametric rule proposed
(case 7), we observe that in all cases the parametric rule gives
significantly better results. We note that our parametric rule
tries to store water mainly in the Mornos Reservoir, leaving
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small quantities to the other two reservoirs; this behavior is not
encountered by any of the heuristic rules tested.

As mentioned above, the heuristic rules without parameters
subject to optimization are not suitable for problems such as
problem 2 examined here. However, for illustrative purposes
we give results only for the space rule in this case. Simulations
with this rule and a level of annual target release of 600 hm?
gave a probability of failure equal to 0.6% and a mean annual
release from Iliki of 127 hm?>.

4. Summary and Conclusions

A parametric rule for multireservoir system operation is
formulated and tested. It can be considered a generalization of
the well-known space rule, which aims at avoiding unnecessary
spills in one reservoir while others still have empty space. The
proposed rule is much more general in the sense that in addi-
tion to the spill-avoidance objective, it simultaneously accounts
for various other system operating goals: avoiding leakage
losses, avoiding conveyance problems, taking into account the
impacts of the reservoir system topology, and assuring satis-
faction of downstream secondary uses. The rule is parameter-
ized so that it contains two parameters for each reservoir.
Theoretical values of the parameters are derived for each one
of the above isolated goals. Since many real-world problems
involve more than one of these goals, parameters are evaluated
numerically to optimize one or more objective functions that
are selected by the user. The rule drives a simulation model of
the reservoir system, which is embedded in a scheme that
optimizes the rule’s parameters.

The parametric rule proposed is tested on the case of the
water supply system of the city of Athens, Greece, comprising
three main reservoirs on three separate water basins. Its com-
plexity and idiosyncrasies make the system ideal as a test sys-
tem, since many of the operating goals examined theoretically
appear in this case study. Two problems are tackled in this case
study. First, the ultimate development of the system is consid-
ered, and the total release from the system is maximized for a
selected level of system reliability. Second, an intermediate
development of the system is sought, and the pumping cost is
minimized for a given reliability and a given level of target
release less than that obtained in the first problem. A detailed
simulation model on a monthly timescale has been used in the
analyses. This included a generation model of synthetic annual
hydrological data and a model for disaggregation of annual
values into monthly values. Also, it included models describing
system losses such as leakages and evaporation. The system’s
operating details such as the maintenance of safety storages
were also taken into consideration. It appears that the para-
metric rule proposed has proven satisfactory in tackling the
problem of finding the capabilities of a reservoir system on a
long-term basis. Through its parameterization it effectively
accommodates various system operating goals into a single-
objective function. Insensitivity to a subset of the parameters
was revealed in the case study, which allowed further simpli-
fication of the rule and restriction of the dimension of the
parameter space to half the initial value.

Finally, the rule proposed is validated through comparison
with other heuristic rules that satisfy specific goals (avoidance
of spills, leakage losses, and conveyance problems). In all cases
the proposed parametric rule was superior in its performance.
Of course, storage and release trajectories obtained are not
“optimal” in the absolute mathematical sense as the trajecto-
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ries must comply with a simple parametric relation. Neverthe-
less, once optimized, the proposed rule is very simple, mathe-
matically, to apply even for a nonexpert user and is therefore
recommended for situations with long-term studies of reservoir
systems.
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