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1. Introduction 
 

Rainfall disaggregation is emerging as an important tool for both hydrologists and 

engineers to understand the hydrological processes that occur in nature.  This 

knowledge is essential for civil engineering works, such as hydro-electric dams, flood 

alleviation schemes and the management of water-catchments.  In the design of such 

schemes, rainfall data of both daily and hourly time scales are often required.  

However, there is usually a lack of sub-daily information, simply due to the absence 

of hourly raingauges.  In most parts of the world, daily raingauges are far more 

prevalent than hourly raingauges.  Even if such hourly raingauges do exist, they have 

usually only been in operation for a few years, making the length of the recorded 

series insufficient for making statistically significant conclusions. 

 

Disaggregation concerns the generation of lower level time scale data (e.g. hourly 

rainfall data) that are consistent with higher level data (e.g. daily data).  In this sense, 

disaggregation fills the knowledge gap described previously and allows hourly data to 

be generated even though no such historical records exist.  Although these simulated 

time series may not be the actual rainfall depths that fell to the ground in the past, 

their statistics are consistent with the actual time series, as well as the higher time 

scale statistics.  These statistics are often the most important data required in 

engineering design. 

 

The objective of this paper to is examine whether hourly data can be obtained from 

daily data alone.  Previously, most research on disaggregation has incorporated some 

form of low level statistic in its analysis. This paper examines the possibility of 

obtaining hourly time series using only daily or higher level statistics.  This would 

have direct benefit on areas where daily data is freely available but hourly data is 

lacking. 

 

The data set used in this paper comes from an hourly raingauge at Heathrow airport.  

There is access to both hourly and daily records for this site.  Using a proven rainfall 

model together with a simple disaggregation procedure, hourly time series will be 

derived from daily statistics.  By comparing the simulated hourly statistics to the 
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actual recorded data, the effectiveness of the procedure can be determined. 

 

The paper first begins by introducing the rainfall precipitation model used (section 3).  

The method used to fit the model's parameters and its corresponding computer 

programme are described in section 4.  The disaggregation procedure and its 

programme are presented in section 5.  The core of the paper occurs in section 6, 

where the analysis of different combinations of higher level statistics is examined.  

Detailed analysis of the various optimisation schemes is provided and their 

effectiveness is discussed.  Reference to a new method of optimisation, the 

evolutionary algorithm, is also made in this section.  Some examination of the 

extreme statistics of the simulated time series is given in section 7.  This is especially 

important for determining the return periods of extreme rainfall events.  Section 8 

presents power spectrum analysis, which provides an insight into the underlying 

structure to the rainfall.  The paper ends with a summary of the main conclusions and 

some suggestions for further research. 
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2. Notation and Definitions 
  

Throughout this paper, many similar terms and statistics will be used and compared 

with one another, therefore it is imperative that these terms are formally defined so as 

to ensure clarity. 

 

Firstly, statistics are defined as the actual characteristics of the rainfall time series, 

such as the mean, variance or autocorrelation.  These are sometimes referred to as 

data.  These two terms are distinct from parameters, which refer strictly to the 

parameters governing the Bartlett-Lewis point process.   

 

High level statistics refer to those statistics of 24-hr and 48-hr time scales. Low level 

statistics refer primarily to 1-hr statistics, although in certain cases that are explicitly 

expressed, they can refer to 6-hr and 12-hr statistics.  Coarse and fine statistics may 

also be used in place of high and low level respectively.  Autocorrelation and 

autocovariance refers to the lag one autocorrelation and autocovariances. 

 

Historical statistics are those which have been taken from historical records, they are 

actual data taken from rain gauges located on site.  Modelled parameters are those 

that have been derived from these historical statistics, in this case using the method of 

moments.  These modelled parameters are then used to obtain the modelled statistics, 

that is, they are statistics that are based on derived parameters.  Finally, these 

modelled statistics must be distinguished from simulated statistics, which in turn 

refer to statistics derived after disaggregation via simulation.  Both the modelled and 

simulated statistics are also called the estimated statistics, since they are essentially 

estimates of the historical statistics. 
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3. The Bartlett-Lewis Rectangular Pulse Model (BLRPM) 
 

The rainfall model used in this paper is the Bartlett-Lewis Rectangular Pulse Model 

(BLRPM).  This is a continuous time rainfall model for a fixed point in space.  This 

model has been used with considerable success for a wide variety of climates, 

including the U.K. (Onof and Wheater, 1993, 1994).  The model has proven useful for 

reproducing the statistics of both daily and sub-daily time scales (Rodriguez-Iturbe et 

al., 1987, 1988).   

 

The BLRPM is a model for point rainfall time series modelling rainfall at a point, as 

opposed to spatial General Circulation Models which model rainfall over an entire 

area.  The model incorporates Poisson cluster processes.  Storms arrive according to a 

Poisson distribution and are represented by clusters of cells or rectangular pulses with 

constant depth.  Fig. 3.1 shows the process more clearly.  Each cell has a cell length 

and depth that is distributed exponentially, and it is the clusters of such cells that 

constitute the storms. 

 

 

 

 

 

 
Figure 3.1 : Schematic of cluster process and parameters 

The cluster processes within each storm can be represented in several ways.  The 

Neyman-Scott process obtains the number of cells in each storm from a random 

distribution and uses an exponential distribution to obtain the cell arrival times 

(Rodriguez-Iturbe et al., 1987).  The Bartlett-Lewis process, however, obtains the 

total storm duration from an exponential distribution, the cell arrivals being Poisson 

distributed.  This process is described in further detail in the following sections. 

 

3. 1 The BLRPM Five Parameter model 

 

 The original model outlined by Rodriguez-Iturbe et al. (1987) contained five 

η: exponential or gamma 

µx : exponential 

γ : (φη) exponential 
β: (κη) Poisson 

λ : Poisson 
next storm 
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parameters governing the storm and cell characteristics.  Firstly, the parameter λ 

determines the storm arrivals according to a Poisson process.  The parameter β 

determines the cell arrivals, also according to a Poisson process.  The cell depths are 

governed by an exponential distribution with parameter µx.  The entire length of the 

storm is determined by the parameter γ that is also exponentially distributed.  Finally 

the individual cell lengths are distributed exponentially with parameter η.  These are 

all shown in fig. 3.1. 

 

For mathematical convenience, the parameters γ and β are often non-dimensionalised 

using the following equations: 

 κ = β / η  φ = γ / η 

Therefore, for this model there are five parameters governing the process: λ, κ, µx, φ 

and η. 

 

This basic model was found to perform well at various time scales, reproducing most 

of the statistics accurately.  However, it was often found wanting in the fact that it 

could not reproduce accurately the proportion of dry periods for most time scales.  

The model generated fewer wet periods than required, underestimating the proportion 

of dry periods.  In order to overcome this problem, Rodriguez-Iturbe et al. (1988) 

introduced an extra parameter into the model so as to give a better fit to the statistics. 

 

3.2 The BLRPM Six Parameter Model 

 

In this modified model, the cell length is no longer taken from an exponential 

distribution but is now determined by a gamma distribution with shape factor α and 

scale factor 1/ν.  Hence, the parameter η is now replaced by two parameters: α and 

1/ν.  Therefore the model is now governed by six parameters: λ, µx, κ, φ, α and ν.   

 

The statistics to be modelled can be calculated from the six parameters using the 

following equations: 

 Subcalculations: 

 
φ
κ

µ +=1c   (Mean number of cells per storm) 
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T is the respective time period (1, 6, 12 hour) and s is the lag period, usually taken as 

one. 

 

Note that the equation for the proportion of dry periods is different from that quoted 

in Bo et al. (1994) or Rodriguez-Iturbe et al. (1988).  There is a slight correction to a 

three of the φ terms in the expression of f1. 

 

The effect of adding this additional parameter is to randomise the cell length.  The 

(2) 

(1) 

(3) 

(4) 
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value of the storm cell length is no longer restricted to a pure exponential distribution, 

but rather occurs from a gamma distribution, of which the exponential distribution is 

but one form.  This relaxation allows the model to be flexible in its representation of 

the rainstorms. The proportion of dry periods is now much better estimated using the 

six parameter model over the five parameter model and this is verified by Onof and 

Wheater (1993). However there are still some deficiencies, such as the 

underestimation of the skewness and the extreme values.  The six parameter model 

was nevertheless used exclusively in the following analysis. 
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4. Parameter Fitting  
 

4.1 Parameter Fitting: Method of Moments 

 

There are several methods of fitting the BLRPM model to the historical statistics from 

Heathrow.  The Maximum Likelihood method, although very commonly used in other 

models for parameter fitting, is unwieldy in this case (Rodriguez-Iturbe et al., 1987), 

as the likelihood function is difficult to obtain.  The Spectral Method incorporating 

Fourier analysis can also be used.  However, the Method of Moments is a better 

option, as it is significantly simpler and more practical to use.  Also, the method of 

moments has been found to produce parameters that are significantly better than using 

spectral methods (Rodriguez-Iturbe et al., 1987).   

 

The method of moments is set out simply as follows.  More complex mathematical 

formulations of this method are set out in Rodriguez-Iturbe et al., 1988 and Cryer, 

1986.  The set of parameters to be fitted is given by the set Θ, where Θ = {λ, µx, κ, φ, 

η} for the five parameter model and Θ = {λ, µx, κ, φ, α, ν} for the six parameter case.  

Let k be the number of parameters to be fitted, either five or six.  Next, p statistics are 

chosen from the historical data to fit the parameters, and these are denoted by the set 

T, where T = {t1, t2, t3,…. tp}.  These can include the mean, variance, etc. of various 

time scales.  The functions from which the various statistics can be calculated from 

the parameter values in the BLRPM (equations 1- 4) are denoted by the set S, where  

S = {s1(Θ), s2(Θ), s3(Θ), …… sp(Θ)}.   

 

If k = p, then the method of moments requires: 

  S = T      ∀ p        (5) 

This set of p equations is then solved for Θ, obtaining the parameter set.  However, 

the functions that are within the set S are often highly non-linear, therefore it is 

difficult to obtain the Θ explicitly.  Numerical methods must be used in these cases. 

  

Often it is easier to formulate the equations in an error-residual form, such that the 

objective function is now: 
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where wi is the weight attributed to that particular statistic.  These weights are usually 

set to unity in the following optimisation schemes.  The aim is to find a set of 

parameters Θ where the expression in (6) is equal to zero, such that si(Θ)=ti for all 

i={1, 2, 3, …..p}. 

 

Therefore, this objective function is minimised in order to reduce the error between 

the calculated form of the statistics (si(Θ)) and the actual historical data (ti).  In this 

formulation, p can be more than k.  In some optimisation cases set forward later in the 

paper, p is less than k.  This is not an ideal situation as we will have fewer equations 

than unknowns.  Therefore, from a theoretical point of view, p must always be more 

than or equal to k so that there will be more equations than parameters to be 

estimated.  

 

The choice of statistics to include in the set T is rather subjective.  Ideally, these 

statistics should be independent and not highly mutually correlated (Rodriguez-Iturbe 

et al., 1987).  Also the statistics must be able to incorporate all the parameters present 

in Θ.  For most cases, the statistics chosen were the mean, variance, autocovariance 

and the proportion of dry periods corresponding to each of the individual time scales.  

The mean duration of dry periods may also be used, although it must be noted that 

this particular statistic incorporates data from two adjacent time scales. 

 

4.2 Computer Programmes: momentfit and Optima 
 

Computer programmes were used to implement the method of moments.  

momentfit is a FORTRAN coded programme, used on a UNIX platform.  It uses 

the method of moments to fit parameters to the BLRPM, using the formulation set out 

in equation (6).  momentfit uses deterministic optimisation algorithms from the 

NAG routine library to perform the parameter fitting. 

 

This programme was deemed unsuitable for a number of reasons.  Firstly, it required 

the one hour mean to be present in the parameter fitting; if absent, the optimisation 
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routines within the NAG library would go into cycles and deteriorate.  This 

requirement is clearly against the objective of obtaining parameters from daily data 

alone.  Also, the programme was rather inflexible in its specification of parameter 

constraints.  As the programme is located in a UNIX framework, subsequent data 

analysis was rather clumsy, since large amounts of data had to be repeatedly 

transferred from a UNIX platform to a Windows platform. 

 

Optima was developed in order to allow parameter fitting to be performed in a 

Windows environment.  This program is written in VBA (Visual Basic for 

Applications) and is located in the Microsoft Excel spreadsheet package, making it 

easier to manipulate and analyse data.  The user enters the historical data via dialogue 

boxes and there is range of six different types of statistics (mean, variance, 

autocovariance, autocorrelation, proportion of dry periods and mean duration of dry 

periods) to choose from.  The parameters are then fitted using the minimisation 

technique shown in section 4.2 above (equation 6).  The SOLVER function is used to 

perform the optimisation of this objective function.  Constraints to the parameters can 

also be easily modified.  In addition, the user can also specify whether to fit 

parameters according to the six or five parameter model.  Further specifications on 

these two programmes, as well as other computer programmes, can be found in the 

Appendix A. 

 

The SOLVER function was used within Microsoft Excel to perform the optimisations.  

SOLVER uses the Generalised Reduced Gradient (GRG2) non-linear optimisation 

code developed by Leon Lasdon, University of Texas at Austin, and Allan Waren, 

Cleveland State University (1998).  This method uses a deterministic, gradient based 

optimisation search scheme to find the optima.  There are also some tests for 

optimality incorporated in the engine that allows the solver to test whether a global 

optimum has been reached.  A different SOLVER engine was also tried, an 

evolutionary algorithm developed by Frontline Systems, Inc (1999).  This is 

introduced in section 6.3. 

 

Optima was subsequently used to perform all the optimisations cases.  This was 

done after some testing to ensure that the results obtained under optima were similar 
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to those produced by momentfit.  Using optima allowed the use of pure daily 

data in the parameter fitting.  Errors could be easily checked and corrected by 

changing the constraints or the initial values. 

 

The optimisation path is rather sensitive to the initial values used to begin the 

optimisation.  This is due to the highly complex nature of the objective function.  The 

feasible region, being situated in six dimensional space, is liable to contain many local 

optima.  The GRG2 solver uses gradient based techniques to find an optimum; 

therefore it may arrive at a local optimum rather than the global optimum.  This 

requires many trials of different initial values, so as to ensure that the objective 

function value obtained is the actual optimum required.  Often, the optimum was 

found to occur at point where one or more of the parameters was at a constraint.  This 

meant that the optimum occurred at the edge of the feasible region.  These 

observations were disregarded, since the constraints are set subjectively, and a better 

optimum could usually be found within the feasible region.   

 

The evolutionary algorithm was introduced in the analysis to combat this problem of 

initial values. The initial point of optimisation is theoretically less of a problem when 

an evolutionary engine is used, since it randomly samples the feasible region for 

potential solutions.  These ideas are developed further in section 6.3. 
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5. Disaggregation 
 

5.1 Uses of Disaggregation 

 

Disaggregation is an important step in the process to obtain lower-level time scale 

data from higher time scales.  In this paper, the objective is to be able to model hourly 

(lower level time scales) using purely daily data (higher level time scales).  Therefore, 

if we can obtain suitable parameters from daily data, we can use these parameters to 

perform a disaggregation and obtain hourly time series data. 

 

In this project, the disaggregation was performed on the most promising sets of 

parameters.  This was done as a check on the disaggregation procedure.  Since 

disaggregation is a simulation, the statistics generated may fluctuate depending on the 

parameters used, as well as the random seed utilised in the simulation.  Therefore, 

some variation from the historical and modelled statistics is to be expected. 

 

Using the simulation also allows us to obtain statistics from the time series that are 

not explicitly modelled.  Higher order statistics, such as the skewness, can be 

calculated from the simulated disaggregated time series, and this can be compared 

with the historical data to observe the goodness of fit.  Disaggregated data can also be 

used to find out more about the extreme value plots of the simulated data.  This will 

help determine whether the process can accurately estimate the return periods of the 

extreme events. 

 

5.2 Procedure and methodology 

  

Disaggregation refers to the method of obtaining lower time-scale time series and 

properties, from higher time-scale time series.  For example, disaggregation can be 

used to derive monthly-level time series and statistics from an annual time series.  

Most conventional disaggregation models work by incorporating the lower-level 

variables within the higher-level variables using a linear function (Koutsoyiannis and 

Manetas, 1996).  In this way, they reproduce the entire first and second order 

properties of the lower-level variables, as well as their mutual cross-correlations.  The 
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correlation between the higher and lower-level variables is also retained. 

 

A simpler and more efficient method of disaggregation has been recently developed 

by Koutsoyiannis et al. (1996).  This method is different from conventional methods 

in that it firsts generates a lower-level time series with no reference to the higher-level 

variables.  There are essentially three steps to the process: 

1. Generate a time series according to an appropriate model.  In Koutsoyiannis' 

paper, the seasonal autoregressive (PAR(1)) model was used.  In our case, the 

BLRPM was adjusted for use in the disaggregation. 

2. Use an accurate adjusting procedure to correct the generated lower-level time 

series so that its terms add up to the corresponding higher-level variables. 

3. Repeat the process until a suitable time series can be obtained which improves on 

the higher order statistics that are not explicitly preserved in Step 2 

 

Step one generates the lower-level time series with no reference to the high level 

properties, simulating the rainfall according to the parameters entered by the user.  

Step two uses an accurate adjusting procedure to correct this time series so that the 

error between the sum of the generated lower-level series and the corresponding 

higher-level variable is reduced.  These procedures are called accurate because they 

preserve certain statistics or in special cases, the entire distribution of the lower-level 

series even after the adjustment is performed. 

 

There are three different methods of adjustment: the proportional, linear and power 

methods.  The proportional method is ideal as it uses a very simple proportional 

scheme to correct the time series.  However, it is only fully accurate for lower level 

variables with a gamma distribution incorporating a similar scale parameter as the 

higher level variables.  The linear method has an advantage of being able to cope with 

any distribution, relaxing the constraints found in the proportional method.  Its 

disadvantage is that it has a propensity to return negative values.  The power method 

is a combination of the first two methods, and is able to perform calculations with the 

logarithms of statistics, but it is has the disadvantage of not being an exact procedure.  

This method returns only positive values. 

 

The proportional adjusting procedure is used in this paper.  It is mathematically 
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where ~X s  is a lower-level (e.g. hourly) synthetic series that has been generated by 

some stochastic model (in our case, the Bartlett-Lewis model).  Z refers to a term in 

the higher-level data series Zr (r = 1, 2, …).  Therefore, the sum of v lower level time 

steps will equal to one higher level time step (r).  Xs is the newly adjusted time series 

term. 

 

Step three repeats the previous two steps until a time series is obtained that reproduces 

higher-order statistics (such as skewness) that resemble the actual data available.  

These statistics are not explicitly preserved in the previous adjusting procedure.  This 

repetitive sampling may seem tedious and time wasting, but due to the parsimony 

parameters of the lower level model used, this method may be more efficient in the 

end. 

 

For this paper, the BLRPM was used to generate rainfall at a low level time scale, 

using parameters optimised by various optimisation schemes.  This corresponds to 

step one above of the disaggregation procedure.  Adjustments were then made, so that 

the hourly rainfall depths added up to the daily depths.  This was done using the 

proportional adjustment method.  This process was then repeated until better values 

could be obtained for those statistics that were not explicitly preserved in the 

adjustment. 

 

The coupling of the BLRPM and the adjustment procedure contains several problems.  

As the BLRPM is a continuous time model, as opposed to the discrete time 

disaggregation model, some assumptions and modifications have to be made.  It is 

assumed that the clusters of wet days are independent (arrivals of the storms being a 

Poisson process), and therefore a separate BLRPM model is run for each cluster.  This 

"discretises" the time series so that the adjustment procedure can proceed.  Longer 

clusters of cells may have to be split into two or more cells for the model to cope. 
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5.3 Hyetos 

  

The computer programme Hyetos was used to perform the disaggregation.  This piece 

of software was produced by Koutsoyiannis and Onof (2000).  In this program the 

user is required to enter in the parameters from the Bartlett-Lewis Rectangular Pulse 

Model; the six-parameter model is used.  The actual historical rainfall time series can 

also be entered, so that the disaggregated and historical statistics can be compared.  

As an output, the programme gives the fully calculated statistics of the hourly time 

series, as well as the simulated time series obtained.  Statistics are calculated for wet 

and dry periods as well as the whole time period.   

 

Hyetos uses the proportionate adjusting procedure.  As mentioned before, this 

procedure is exact given two conditions: the lower-level distribution must be a gamma 

distribution, and this gamma distribution must have the same scale factor as the higher 

level distribution of variables.  This procedure was used partly because of its 

simplicity and also partly because it does not return negative values.  Since rainfall 

time series contain many zero entries, if a linear adjusting procedure were to be used, 

the chance of obtaining negative values would be high.  This will result in nonsensical 

results, as there is no such thing as a negative rainfall.  Therefore, Hyetos implicitly 

assumes that rainfall is distributed according to a gamma distribution.  Stationarity 

within each month is also assumed. 

 

Repetition is also used in the programme to improve the statistics that are not 

explicitly reproduced by adjustment.  In the process of repetition, a further refinement 

is made by considering the distance:   
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This term is the difference between the generated higher level terms and the actual 

higher level terms, and is calculated for every repetition of the time series.  Once this 

distance reaches a minimum threshold level, the repetition stops and the adjusting 

procedure is applied.  Therefore, this ensures that the generated results are close to the 

actual variables, thereby allowing accurate higher order statistics to be obtained. 
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Repetitions are user defined, and if the limit of repetitions has been met, the model 

will try to use other methods to model the rainstorm.  If an especially long storm is 

encountered, the model will randomly split the storm in several portions, using a 

separate model to represent each portion.  The programme then enters into a higher 

level of repetitions. 

 

The procedure for the algorithm and the hierarchy of the various levels of repetition 

are shown more clearly by the chart in Appendix A, obtained from the help files 

within Hyetos. 

 

The output of the programme can be in both text and graphical form.  Graphs showing 

comparisons between the historical and simulated statistics are drawn up, detailing the 

skewness and proportion of wet periods, as well as the autocorrelation for lag n 

periods.  More detailed statistics are given in text files. 
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6. Optimisation and Analysis 

 
The data set consists of 39 years (1949-1987) of rainfall data from a single rain gauge 

at Heathrow Airport, Southwest London, U.K.  The area is a wet region with 

approximately half the days of the year having some rainfall.  The mean annual 

rainfall depth is about 600mm.  Heathrow shows a rather stable climate, with the 

mean rainfall depths in the months of January and July being almost the same.  These 

two months are classic "winter" and "summer" months, and the climatic stability is 

evident from the similarity of their rainfall depths.  

 

The raingauge at Heathrow is an hourly gauge, therefore rainfall statistics at time 

scales hourly and higher were available.  This allowed the effectiveness of 

disaggregation to be evaluated. 

 

Data was analysed using the Fortran computer program gaugestats, which gave 

the various historical statistics for the time periods under analysis.  Statistics were 

analysed individually by the month.  For each month, parameters obtained from 

spectral analysis were also available. 

  

Parameter fitting using Optima was performed for a variety of cases.  The objective 

of the procedures was to use daily (24-hour) statistics to obtain BLRPM parameters, 

so as to predict smaller time-scale statistics  (1-, 6-, and 12-hour).  This was done in 

two steps: first obtain the BLRPM parameters using method of moments for a variety 

of different cases and initial parameter values, and then analyse each set of parameters 

to find their properties at smaller time-scales by using the BLRPM functions or 

disaggregation. 

 

6.1 Four different cases: Optimisation using 1-hr, 6-hr, 12-hr and 24-hr statistics 

 

To begin the study, historical statistics at daily and lower time scales were used.  All 

optimisation was carried out using the method of moments, minimising the objective 

function described in equation 4 of section 4.2.  All weights to the statistics were set 

to one.  Four different cases were considered. 
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6.1.1 Description of four cases 

 

Case 1 Only the 1-hour mean, variance, autocorrelation and proportion of dry periods 

statistics are used to obtain parameters.  This is clearly not part of the objective, but is 

done as form of "control" in order to compare other results.  However, it was 

discovered, as discussed later, that even the validity of using this case as a control was 

questionable.  All parameters are initialised at 0.1 before the optimisation, this value 

being arbitrarily chosen. 

 

Case 2 The parameters are first initialised at a value of 0.1.  Next, the 1-hour mean, 

variance, autocorrelation and proportion of dry periods are used to get a set of 

parameters.  This new set of parameters is then used as the initial values for the next 

optimisation.  The next optimisation is now performed with the 6-hour mean, a total 

of five statistics being used in the optimisation.  Another set of parameters is obtained 

and these are in turn used for the next optimisation.  The next optimisation now 

includes the 6-hour variance, now there are a total of six statistics in all: 1-hour mean, 

variance, autocorrelation and proportion dry periods, and 6-hour mean and variance.  

This process is repeated, adding in the 6-hour statistics one by one, until all the 6-hour 

statistics are included (a total of eight statistics being used: 1-hour and 6-hour mean, 

variance, autocorrelation and proportion of dry periods). 

 

Next, the 1-hour proportion of dry periods is taken out, leaving the optimisation to be 

done with seven statistics.  This is repeatedly performed until all the 1-hour statistics 

are removed, leaving only the 6-hour statistics.  Then the process is starts again, 

adding the 12-hour statistics one by one as before, and then removing the 6-hour 

statistics one by one.  Finally, the 24-hour statistics are added and the 12-hour 

statistics removed.  After a total 27 optimisations a final set of parameters is obtained.   

The diagram below gives a schematic of the process: 

 1-hour    12-hour 

 

 

6-hour    24-hour 
Figure 6.1: Schematic of optimisation process for Case 2 
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The bars represent the number of statistics being used in each optimisation, a full bar 

representing four statistics.  On average, about 6 statistics are used to estimate 6 

parameters, which is desirable. 

 

Case 3 The parameters are first initialised at a value of 0.1.  Next, the 1-hour mean, 

variance, autocorrelation and proportion of dry periods are used to get a set of 

parameters.  This new set of parameters is then used as the initial values for the next 

optimisation.  The next optimisation is now performed with the 24-hour mean, a total 

of five statistics used in the optimisation.  A new set of parameters is obtained and 

these are in turn used for the next optimisation.  The next optimisation now includes 

the 24-hour variance, now there are a total of six statistics in all: 1-hour mean, 

variance, autocorrelation and proportion dry periods, and 24-hour mean and variance.  

This process is repeated, adding in the 24-hour statistics one by one, until all the 24-

hour statistics are included (a total of eight statistics being used: 1-hour and 24-hour 

mean, variance, autocorrelation and proportion of dry periods).   Next, the 1-hour 

statistics are phased out one by one until we are left with purely 24-hour data and a 

final set of BL parameters.  This is a highly condensed version of Case 2, skipping out 

the steps using 6- and 12-hour data. 

       1-hour 

 

 24-hour  
Figure 6.2: Schematic showing optimisation process for Case 3 

 

Case 2 and 3 basically use 1-hour data to get an initial point of reference (essentially a 

Case 1 optimisation), before slowly adding in more statistics from larger time-scales 

for optimisation.  Case 2 and 3 still require 1-hour data, therefore they do not entirely 

fulfil the objectives. 

 

Case 4 Only 24-hour data are used in the optimisation, thus fulfilling the aims of the 

exercise.  A variety of initial points are chosen and the objective function is 

minimised to obtain the optimal parameter set.  

 

In summary, case 2, 3 and 4 are all basically optimisations that are based only on four 
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24-hr statistics.  Case 2 and 3 are differentiated from case 4 in that their initial values 

are influenced in some way by statistics from lower level time scales.  For case 2, 

numerous optimisations are performed, phasing in and out 1-hr, 6-hr and 12-hr 

statistics, so that a tentatively better initial parameter set is obtained to perform the 

final optimisation.  For case 3, only the 1-hr and 24-hr statistics are used.  For case 4, 

a range of arbitrary initial values is selected.  Only this final case is truly independent 

of statistics from lower time scales. 

 

The rationale for choosing these cases is based on the need to examine the sensitivity 

of the optimisation to the initial values.  Cases 2 and 3 have their initial values 

influenced by the lower time scale statistics before the final optimisation using pure 

daily statistics is carried out.  Case 2 was chosen to test the effect of 1-hr, 6-hr and 12-

hr statistics on the initial values and subsequent optimisation, as well as to look for 

trends in the parameters during the phasing in and out of low level statistics.  Case 3 

was chosen to observe how hourly statistics could influence the initial values and the 

optimisation path.  These cases are then compared to case 4 to determine if there is a 

significant effect of using initial values influenced by low level statistics on the 

optimisation process. 

 

6.1.2 Analysis of the four cases 

 

Trends within Case 2   

 

This case was performed on the months of April, June and September. 

 

This case was introduced in the hope that by phasing in and out the different statistics 

from different time scales, some sort of trend might be observed in the model 

parameters λ, ν, α, etc.  The parameter values were plotted on to a histogram for each 

optimisation so that any trends could be identified, and a sample for September is 

attached below in fig. 6.3.  Histograms from other months are placed in the Appendix 

B.  As can be seen clearly from the graphs, there appears to be no clear-cut trend 

among the different parameters as the historical statistics from higher time scales are 

introduced in the optimisation.  All the parameters seem to vary widely and there is no  
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fixed pattern.  When the histograms are compared to other months' graphs, there does 

not seem to be any underlying pattern.  This observation does not prove that such a 

trend does not exist: if a different objective function, or another optimisation scheme, 

is used a trend may very well be uncovered. 

 

Analysis prior to disaggregation 

 

After each final optimisation was performed, the modelled parameters were 

substituted back into the equations 1-4 found in section 3.2, using T as one, six or 

twelve.  These parameters were used to find the statistics for lower time scales.  The 

results are the modelled statistics.  These values are then compared with the historical 

statistics for goodness of fit.  In this way, we can discover whether by using 

parameters optimised purely from 24-hr data, we can obtain accurate lower time scale 

statistics.  

 

Table 6.1 shows the resulting BLRPM parameters for the four cases, while table 6.2 

shows the modelled and historic statistics for the month of September.  The shaded 

cells show the historic data, while the clear cells show the modelled statistics.  Tables 

for April and June are also given in the Appendix B. 
Table 6.1: BLRPM parameters for the four cases for September 

 

λ µx κ ν α φ  
0.013182 2.044199 0.343042 0.754222 3.406974 0.044585 Case 1 
0.023331 2.426034 1.21067 0.022293 2.585572 0.013381 Case 2 
0.019561 2.108476 0.521216 0.540097 3.2211 0.082485 Case 3 

0.021472 28.74444 1.298096 0.402423 9.023899 0.945574 Case 4  
 

Table 6.2: Historical and Modelled statistics for September 

 

Case 1 1 6 12 24  Case 2  1 6 12 24 
Mean 0.0734 0.4403 0.8807 1.7614  Mean 0.0734 0.4403 0.8807 1.7614 
 0.073409 0.440453 0.880905 1.76181   0.072801 0.436805 0.87361 1.747221 
Variance 0.196515 3.053057 8.118511 19.51673  Variance 0.196515 3.053057 8.118511 19.51673 
 0.196513 3.016797 8.2047 21.41521   0.185646 3.131526 8.095259 19.51934 
Autocor. 0.4877 0.3019 0.2051 0.1372  Autocor. 0.4877 0.3019 0.2051 0.1372 
 0.487701 0.359836 0.305057 0.229231   0.583994 0.292542 0.205603 0.141847 
Pro. dry 0.9225 0.8136 0.7208 0.5902  Pro. dry 0.9225 0.8136 0.7208 0.5902 

 0.922505 0.848389 0.782827 0.668054   0.953127 0.848163 0.737365 0.557302 
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Case 3 1 6 12 24  Case 4  1 6 12 24 
Mean 0.0734 0.4403 0.8807 1.7614  Mean 0.0734 0.4403 0.8807 1.7614 
 0.073403 0.440417 0.880834 1.761669   0.073381 0.440284 0.880568 1.761136 
Variance 0.196515 3.053057 8.118511 19.51673  Variance 0.196515 3.053057 8.118511 19.51673 
 0.2056 3.101032 8.034782 19.51672   0.154968 2.966236 7.944915 19.51673 
Autocor. 0.4877 0.3019 0.2051 0.1372  Autocor. 0.4877 0.3019 0.2051 0.1372 
 0.488064 0.295501 0.214515 0.142712   0.672209 0.339225 0.228253 0.141909 
Pro. dry 0.9225 0.8136 0.7208 0.5902  Pro. dry 0.9225 0.8136 0.7208 0.5902 

 0.931092 0.840792 0.74754 0.591113   0.910538 0.828572 0.739274 0.588473 
 

For the observations that follow, most of the examples are quoted from the statistics 

of September, although these trends were observed throughout the other months 

considered. 

 

Case 1 

 

Case 1 shows the worst results, with significant variation in the variances and 

autocorrelation.  For example, although the 1-hr autocorrelation is very well 

estimated, the 6-hr, 12-hr and 24-hr autocorrelations are all overestimated, by up to 

50%.  It appears that parameters obtained using only 1-hr historical statistics are not 

suitable for the estimation of higher time scale statistics.  This could indicate that the 

characteristics of the 1-hour data are not preserved when aggregation occurs.  Other 

structures could be present and influence the higher time scales; there is no 

straightforward aggregation.  For these reasons, case 1 must not be used as a 

"control"; all comparison must strictly be with the historical statistics.  

 

Case 2 

  

Case 2 gives better results than case 1, but still contains some statistics that are poorly 

estimated, such as the 1-hr autocorrelation.  There was a similar trend for all the three 

months that case 2 was performed: at all times, case 3 proved a better optimisation 

scheme.  There could be several reasons for this.  Firstly, a greater number of 

historical statistics are used to find the initial starting points for the final optimisation, 

allowing a greater amount of error to be incurred.  Any error in previous optimisations 

could be carried forward to the final optimisation, in the form of a poorly estimated 

model parameter set.  This could result in a poor initial value for the optimisation, due 

to some error from previous optimisations.  Also, the 6-hr and 12-hr historical 
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statistics could include some non-stationarities or periodicities that are inherent in 6-

hr or 12-hr time scales.  For example, there could be some differences between a 12-

hr nighttime period and a 12-hr daytime period.  Such physical periodicities are less 

likely to occur in the more mutually regular 1-hr and 24-hr time scales.  These are 

elaborated in the following section. 

 

It was decided that case 2 was not a suitable optimisation scheme to proceed with, and 

therefore analysis using this case stopped after the three months aforementioned.  

Firstly, it is long-winded in its determination of the initial values and requires many 

levels of data.  More importantly, it does not estimate the lower time scale statistics 

well.  It has to be noted that this scheme may be improved if variable weights are 

added to the historical statistics used in the various optimisations, but this will 

generate more problems, such as the subjective question of what value of weight to 

assign. 

 

Case 3 

 

The optimisation scheme according to case 3 shows much better results in estimating 

the 1-hr statistics than case 2.  In fact, case 3 can be considered to be the best case of 

the four.   This in effect implies that the inclusion of 6-hr or 12-hr statistics does not 

help in obtaining accurate 1-hr modelled data.  It is suspected that the cause of this 

arises due to the fact that the physical basis of 6- or 12-hr data has no meaning.  6 and 

12 hours are simply arbitrary divisions of a half and quarter day used in statistical 

analysis.  A 12hr night statistic is likely to be very different from a 12hr day statistic, 

likewise for the 6-hr time scale.  This is not true, however, for the 1-hr and 24-hr 

periods, which show more regular and stationary behaviour.  Therefore, using such 

statistics in the optimisation scheme may be of no use for obtaining accurate 1-hr 

modelled data. 

 

Therefore, if hourly data is to be used to determine a suitable a initial starting point 

for an optimisation using only daily data, we may not need to go through 6- and 12-

hourly data, but simply jump straight to 24-hour data.  This proves to be the most 

accurate and efficient method of getting 1-hr modelled statistics from daily data.  It 
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must be noted that this scheme is not truly independent of hourly data, as it still uses 

some hourly data before the final optimisation. 

 

Case 3 is better at estimating the 1-hr statistics than case 4.  This shows that there is 

some effect in using 1-hr data to find a suitable initial starting point.  Some 

characteristics of the 1-hr data have been preserved through the parameters and these 

influence the initial point of optimisation, allowing a better set of optimal parameters 

to be found.  

 

Case 3 was repeated for every month for the data set and the results are shown in fig 

6.4.  As can be seen, the modelled statistics follow very closely the actual historic 

statistics.  The mean and the autocovariance are very well estimated for almost every 

month.  There are some discrepancies, with the variance having the most significant 

deviation from the historical values.  This may be accounted by the fact that these 

months showed rather high objective functions in their optimisations. 

 
Figure. 6.4: Case 3 historical and modelled statistics for the whole year 
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Case 4 

 

Using purely 24-hour statistics gave surprisingly close results for all time scales.  

Using an example from Table 6.2, apart from the 1-hr variance, the other statistics are 

well reproduced.  (Note that the error 1-hr autocorrelation is due to the error in the 1-

hr variance alone, the 1-hr autocovariance is well estimated.)  This case uses no 

hourly data to get the BLRPM parameters.  This may mean that the daily data in fact 

incorporates the all the information all we need to get hourly statistics.  Case 4 is still 

slightly less accurate than case 3, although it was found that for some months where 

case 3 did not give very accurate results, case 4 could obtain excellent results for the 

1-hr modelled statistics (see Appendix C for October or November statistics).  This is 

very encouraging as the findings imply that pure daily statistics may be used to 

accurately model hourly statistics. 

 

The main problem of this optimisation scheme, and indeed all the following schemes, 

is finding a suitable initial point to start the optimisation.  As proven by case 3, whose 

initial values are influenced by hourly statistics, a suitable initial point can give very 

good results.  A wide range of initial points was used, with every parameter being 

initialised to this value, this being done for the sake of simplicity.  Typically, the 

values of initial points ranged from 0.1 to 3.4.  Higher values proved unsatisfactory, 

firstly because such high values are improbable as optimal BLRPM parameters, and 

also because such high values tended to skew the optimisation process toward giving 

a value of zero for the proportion of dry periods statistic. 

 

A distinct characteristic of the optimisations is that a wide range of initial values often 

gave a single value for the objective function.  For example, in table 6.3, the month of 

January gave an objective function value of about E-6 for optimisations with initial 

points 1.1, 1.25, 2.4 and 2.65.  This could imply two alternatives: the presence of a 

local optimum in the feasible region of the optimisation, or the presence of a very flat 

region of the objective function.  In the former case, the BLRPM parameters would be 

rather similar to each other at the end of the optimisation.  In the latter case, the 

BLRPM parameter sets would differ, meaning that different points in the feasible 

region give the same value.  The likelihood is that both phenomena are present.   
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Table 6.3: Case 4 initial points and 1-hr modelled statistics for January 

1-hr  historical case 4 modelled statistics 
initial points -- 1.1 1.25 1.4 2.4 2.65 
mean 0.0673 0.0673 0.0673 0.0628 0.0673 0.0672 
variance 0.0927 0.0756 0.0695 0.1429 0.0806 0.0735 
autocovariance 0.0495 0.0483 0.0484 0.0514 0.0481 0.0489 
proportion of dry periods 0.8922 0.8913 0.8879 0.9206 0.8877 0.8871 
objective function -- E-6 E-6 0.09 E-5 E-6 

 

Another observed characteristic is that, if such a local optimum exists for different 

initial points, it tends to be the lowest objective function value.  Take for example 

January, as mentioned before, there exists a local optimum with objective function in 

the region of E-6.  However, when optimisation begins with initial values of 1.4, the 

objective function converges on the value 0.09.  This means that a different local 

optimum has been found.  The presence of many local optima is a common trend, this 

can lead to confusing sets of parameters due to the complexity of the feasible region.  

The cause of this could be the fact that only four statistics are being used to estimate 

six parameters.  The important observation is that the local optimum with the lowest 

objective function value tends to be returned from the most number of initial starting 

points for the majority of the months. 

 

It would be natural to conclude that this lowest local optimum is the global optimum, 

and this may be true at least within the feasible region defined by the constraints.  

However, there is no direct evidence of this fact, due to the complex nature of the 

objective function.  There is no optimality test for the global optimum.  There may 

very well exist another optimum with an even lower objective function value.  

Therefore, this value and its corresponding set of BLRPM parameters can only be 

referred to as the lowest local optimum.  By identifying the lowest local optimum for 

each month and using its corresponding set of BLRPM parameters to substitute into 

equations 1-4, we can obtain modelled 1-hr statistics.  This procedure was performed 

on Case 4 for every month, using a wide range of initial points.  These are the values 

plotted against the historical statistics in fig 6.5.  In this way, the best parameter sets 

are selected for the range of initial points tested in each month, and used to derive the 

hourly modelled statistics. 
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Figure 6.5: Case 4 historical and modelled statistics for the whole year 
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although it is invariably underestimated, and tends not to be as consistent. 

Considering only the optimisations arriving at the lowest local optimum in January, 

the variance can range from 0.069542 to 0.080551.  These values are always below 

the historical value 0.09272.  Other examples can be found in Appendix C. 

 

For other local optima with high values of objective function, these trends are not 

followed.  Results may arise with variances that are overestimated (almost never the 

case for the lowest local optimum) or autocovariance very badly estimated.  However, 

it was also observed that there were some cases were the hourly statistics were 

extremely accurately estimated.  For example, in April (table 6.4), there is a clear 

lowest local optimum for the initial points of 0.2, 0.3, 1.4 and perhaps 2.4.  Initial 

values 0.8 and 2.65 give poor high objective function values.  However, notice that 

the hourly statistics are accurate for 0.8, yet very poor for 2.65.  This may be just a 

random occurrence that the BLRPM parameters are very good for this high objective 

function value.  
Table 6.4: Case 4 initial points and 1-hr modelled statistics for April 

1-hr  historical case 4 modelled statistics 
initial points -- 0.2 0.3 0.8 1.4 2.4 2.65 
mean 0.057 0.056965 0.057281 0.055558 0.056609 0.056506 0.058199 
variance 0.082197 0.06225 0.068546 0.08239 0.054036 0.071847 0.048186 
autocovariance 0.044493 0.039686 0.039172 0.046805 0.039718 0.044867 0.036641 
proportion of dry periods 0.9104 0.911512 0.902163 0.93552 0.906066 0.888418 0.894033 
objective function -- E-5 0.0002 0.005 0.0008 0.0011 0.006 

 

It must be noted at this point that the global optimum obtained under the optimisation 

using hourly data is not likely to be equal to the global optimum obtained under 

optimisation using daily data.  There will be some error between the two parameter 

sets.  Therefore, obtaining a very good fit for the daily statistics (low objective 

function) does not guarantee that there will be an equally good fit using the same 

parameters for the hourly statistics.  Hence, there could arise the situation where an 

imperfect fit is found (such as another separate high-value local optimum) using daily 

data, yet the hourly data are modelled accurately.  This could explain the existence of 

accurate hourly modelled statistics from high objective functions. 

 

In summary for this case, it has been found that a wide number of optimisations 

starting from different initial points tend converge to a single value in the objective 
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function.  This value is usually the lowest found for all the trials performed.  Termed 

the "lowest local optimum", the modelled statistics derived are found to fit closely 

with the historical data, with the exception of the variance, which is underestimated.  

Trials with initial points that do not arrive at this lowest local optimum have higher 

objective functions.  The modelled statistics derived from these parameters are often 

poorly estimated when compared to historical data, although there are a few notable 

exceptions where the statistics are highly accurately estimated. 

 

6.2 Cases using more high-level statistics 

 

For each of the cases above, the final optimisation is performed with only four 

statistics.  As mentioned before in section 4.2, this is clearly inadequate, as there are 

only four equations estimating six parameters.  By adding more statistics from the 48-

hr time scale, we can use six or eight statistics to find the optimal parameters.  An 

example of the results can be found in table 6.5, the rest of the statistics being found 

in Appendix C. 
 

Table 6.5: Various results and modelled statistics for November 

 

1-hr historical 8stats 
initial points -- 1.1 1.4 1.85 2.2 2.4 2.65 evo evo 
mean 0.0856 0.085829 0.085385 0.085675 0.085463 0.085327 0.08561 0.085602 0.085566 
variance 0.154528 0.219853 0.109858 0.118516 0.090057 0.08888 0.161487 0.087652 0.10492 
autocovariance 0.087076 0.080104 0.08238 0.084607 0.073497 0.073263 0.078628 0.072973 0.078894 
proportion of dry periods 0.8868 0.894785 0.857938 0.839325 0.861613 0.851047 0.878991 0 0.085839 
objective function value --  0.4 0.4 0.4 0.4 0.4 0.69 0.4 
The mean and the proportion of dry periods are well estimated.  There may be two local minima (1.4/1.85 and 2.2/2.4)  
The evolutionary algorithm gives a higher or equal objective function 
1-hr historical 6stats 
initial points  2.2 2.4 1.85 evo 
mean 0.0856 0.084121 0.085343 0.086503 0.085463 
variance 0.154528 0.100575 0.094522 0.08347 0.105903 
autocovariance 0.087076 0.076525 0.074413 0.06589 0.079535 
proportion of dry periods 0.8868 0.877323 0.875732 0.871254 0.857328 
objective function value  0.4 0.4 0.4 0.4 
Very similar to 8stats, since the error in the objective function lies primarily 
in the daily variance.  The evolutionary algorithm manages to obtain the same 
local minimum as the GRG2 engine, although it takes a much longer time 
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6.2.1 Optimisation using eight statistics (8stats) 

 

For this case, eight statistics are used, namely the 24-hr and 48-hr mean, variance, 

autocovariance and proportion of dry periods.  These eight statistics were used to 

optimise the parameters.  The results are shown in fig 6.6 on the following page.   

 

The general trend is similar to that of Case 4.   Once again, the main problem in the 

optimisation is to find a suitable initial starting point.  Once a range of starting points 

have been tried, local optima must be identified to find the best-estimated set of 

BLRPM parameters.  Most of the feasible initial points converged to a lowest local 

optimum, while a few rare cases converged to other higher optima.  These latter cases 

usually gave poorly modelled statistics. 

 

An interesting observation is that the initial values that gave the lowest local optimum 

in case 4 were not guaranteed to be the same initial points that produced the lowest 

local optimum under optimisation with eight statistics. This meant that the whole 

range of initial starting points had to be tested, and the best initial points under case 4 

could not be used as initial points for this optimisation. 

 

Another observation is that the range of feasible initial values is much less than 

before.  In all cases, initial points of values less than 1.1 were not valid, because the 

optimisation path tended to bring the parameter values to one of the lower constraints.  

If the initial values were set to less than 1.1, the optimisation will cause the µx value 

to fall to its lower constraint, resulting in an abnormally high objective function.  This 

was also the case for high initial values.  This time, the optimisation path tended to 

cause the parameter κ or ν to veer to their upper limits, causing the objective function 

to be too high. 

 

As can been seen from fig. 6.6, the estimated hourly statistics are not as good as those 

under case 3or case 4.  For this optimisation scheme, the objective function tended to 

be higher than previous cases.  This is due to larger number of statistics being used in 

the optimisation, which leads to more difficulty in obtaining a set of parameters that 

gives low errors to every statistic used.  Objective function values were of the range  
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Figure 6.6: 8stats historical and modelled statistics for the whole year  

 
Figure 6.7: 6stats historical and modelled statistics for the whole year  
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E-3 to E-1, this is much higher than the typical range of E-7 to E-5 of case 4 (see 

Appendix C).  This is also reflected in the plots, as the modelled statistic shows a 

much larger deviation from the historical values.  Previously, the variances were 

almost always underestimated, whereas in this case, the variances are overestimated 

for quite a few months (February, July and October).  For the summer months (June 

to September), the modelled variances are significantly inaccurate.  This could be due 

to the fact that these months contain complex seasonal weather patterns that are 

difficult to model.  It is noted that the objective function for July and August were 

extremely high in the order or 1.4 - 4.0, with most of the error arising from the daily 

variance term.  This high objective function value could explain the inaccuracy of the 

estimated variance, suggesting that if a lower local optimum could be found, the 

variance may be better estimated. 

 

The other statistics are relatively well estimated.  The proportion of dry periods shows 

some deviation, especially in the month of November, when compared to other cases.  

This once again may be attributed to the high number of statistics being used to 

estimate the parameters, allowing more errors to be incurred. 

 

6.2.2 Optimisation using six statistics (6stats) 

 

Optimisation was performed using six historical statistics.  These included the 24-hr 

mean, variance, autocovariance and proportion of dry periods, and the 48-hr variance 

and proportion of dry periods.  The 48-hr variance was included in the hope that it 

would improve the estimation of the hourly variance, which seems to be the most 

difficult statistic to estimate.  The 48-hr autocovariance was deemed to be well 

estimated and having low errors, hence it was not included in this optimisation 

scheme.  The 48-hr mean is incorporated in the 24-hr mean, and therefore it does not 

require being included. This leaves six statistics to be used to estimate six parameters, 

a theoretically sound case. 

 

The optimisation scheme was tried with a wide range of initial values, and the results 

are shown in fig. 6.7 before on page 32.  Once again, the lowest local optimum was 

identified and these statistics were plotted.  The lowest local optimum tended to be 
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easier to identify than under the 8stats case.  The conclusions set before under Case 4 

and 8stats were generally found to be evident under this optimisation scheme. 

 

The optimisation process tended to follow closely with the 8stats optimisation 

scheme.  Most of the error incurred in the objective function under this scheme arose 

from the daily variance and autocovariance.  Therefore, as the optimisation 

proceeded, the error accumulated at these two daily statistics, even as the other 

statistics were optimised to very accurate levels.  Hence, on first appearance, the 

optimisation scheme did not seem to be very different from 8stats. 

   

However, it is the modelled parameters and their corresponding statistics that are 

important and it was found that this optimisation scheme gave much better estimates 

of the summer months variances, which were poorly estimated in the 8stats scheme.  

The proportion of dry periods also did not show any irregularity.  This could probably 

be accounted by the fact that the objective function only incorporates six statistics, 

leaving less room for error.  Having an equal number of statistics and parameters to be 

estimated may have also had an effect on the improving variance estimates. 

 

The graphs show that the estimated results under the 6stats case are in fact very 

similar to case 4.  This implies that although theoretically unsound, from a purely 

empirical viewpoint, case 4 actually gives good estimates of the hourly statistics.  

Therefore, taking a pragmatic view, it may be feasible to use only four daily statistics 

to get hourly estimates of parameters.  This will require less data to be gathered and 

less computation.  However, as this method is not theoretically sound, it remains an 

empirical observation, and will need further verification using other data sets. 

 

In summary for the cases of eight and six statistics, the conclusions that were 

presented for case 4 were invariably manifest in these two cases.  This can been seen 

from the data tables in Appendix C.  Once again a lowest local optimum was 

identifiable, and the estimated statistics from this parameter set were close to the 

historical data.   The variance was once again an exception, being underestimated 

most significantly in the summer months.  The objective functions for these values are 

higher than before, reflecting the fact that more statistics, and therefore more sources 
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of error, are being used.  Modelled statistics from 6stats are a much better estimation 

of the historical statistics than 8stats. 

 

6.3 Disaggregation  

 

Disaggregation is performed on the modelled parameters for two main reasons.  The 

first reason is to obtain a disaggregated time series so that hourly, albeit simulated, 

data can be produced for practical engineering purposes.  Disaggregation was also 

performed in the hope that such a process would improve the hourly modelled 

statistics, such that they more closely resemble the historical data. 

 

6.3.1 Disaggregation using 6stats parameters 

 

Hyetos was used to disaggregate the best sets of parameters for each month.  Using 

the BLRPM parameters obtained under the 6stats optimisation scheme, Hyetos was 

run to obtain a simulated disaggregated time series.  The parameters selected 

corresponded to the lowest local optimum obtained within the range of initial values 

used.  The statistics corresponding to this disaggregated time series are then compared 

to the actual historical data.  The results are shown in fig. 6.8 below. 

Figure 6.8: Disaggregated 6-hr historical and modelled statistics  
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The results from the disaggregation follow very closely the results from using the 

modelled statistics.  Hyetos is essentially a simulation, and therefore it is expected 

that the final results will resemble the modelled statistics, since the two processes are 

based on the same set of BLRPM parameters.  However, there seems to be small 

improvement in the estimation of the statistics.  The simulated statistics tend to lie 

closer to the modelled statistics rather than the historical statistics.  Therefore, 

disaggregation fulfils the first objective set forth in section 6.3, but probably not the 

second.  Any improvement is due to the repetition used within disaggregation to 

obtain better time series. 

 

Nevertheless, disaggregation does provide a powerful tool for obtaining hourly time 

series data.  Combined with the findings from section 6.2, disaggregation forms an 

empirical method of obtaining hourly time series and statistics from pure daily 

statistics. 

 

 6.3.2 Other disaggregation schemes 

 

Modelled parameters from other optimisation schemes were also disaggregated.  

These were done on parameters derived under case 3, case 4, 8stats and 6stats, chosen 

for their excellent reproduction of modelled statistics, such that they closely 

resembled the historical statistics. This was done to test the process of disaggregation; 

to ensure that the disaggregation process does not alter the statistics.  This is a 

different criterion than under section 6.3.1, where sets of parameters were chosen 

when their objective function was a lowest local optimum.   

 

It was expected that the simulated statistics and time series after disaggregation would 

closely resemble the historical statistics, since these parameters were chosen precisely 

for the close fit between the modelled and the historical statistics.   Some of the 

results are shown in the fig. 6.9-10 in the following pages, and in Appendix D.  It is 

noted that the simulated statistics show highly accurate estimates of the historical 

data, for both the dry period statistics and the wet period statistics.  The 

autocorrelation for lag periods of more than one are also closely estimated.  In 

particular, the skewness was also very well simulated, showing rather accurate results,  
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Figure 6.9: Results from Hyetos for disaggregation with BLRPM parameters optimised under 

Case 4 (initial value of 0.3) for September
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Figure 6.10: Results from Hyetos for disaggregation with BLRPM parameters optimised under 

Case 3 for April  
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even though this statistic was not explicitly modelled in the BLRPM.  This is 

encouraging, as it is a third order statistic.  Therefore, although disaggregation may 

not improve the modelled statistics, it may give accurate estimates of other higher 

order statistics such as skewness. 

 

In summary, disaggregation gives a close fit with the modelled and historical data, 

hence if a good set of parameters can be found from the 24-hr or 48-hr data, the 1-hr 

statistics can be estimated by disaggregation to high accuracy.  An hourly time series 

can therefore be derived from daily data.  Other statistics, such as skewness and lag-n 

autocorrelations also can be estimated accurately, provided an excellent set of 

BLRPM parameters is used. 

 

6.4 The Evolutionary Algorithm 

 

In recent years, significant advances have been made in optimisation methods.  One 

of the most prominent and unusual breakthroughs has been the development of 

genetic algorithms (GA).  These are algorithms that are based on the principles behind 

the theory of evolution, such as survival of the fittest, mutation and reproduction. 

Such algorithms have been widely used for optimisation problems in a whole variety 

of fields.  These algorithms are only just beginning to be implemented in the field of 

hydrology.   

 

For this project, one of the major problems encountered was the selection of an 

appropriate initial starting point, as the deterministic nature of gradient-based 

optimisation algorithms causes the optimisation path to be sensitive to the initial 

points of the optimisation.  Genetic algorithms have the unique characteristic of being 

non-deterministic, and therefore largely unaffected by the initial starting point.  

Therefore, if such algorithms can be effective in the optimisation for parameter fitting, 

there would be great benefit as there would be no need for a large number of trials to 

try out different initial points. 

 

The Evolutionary Solver GA was used to perform the optimisations in this project.  

This is an evolutionary algorithm that has been developed by Frontline Systems, Inc., 

specially as a Microsoft Excel SOLVER engine.  Therefore, by downloading the 
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package from the website and installing it within the Excel spreadsheet application, 

the Evolutionary Solver can be used as an alternative optimisation engine.  The new 

algorithm can be simply substituted for the original default SOLVER engine.  In order 

to implement this, a variant of the programme optima, name evo, had to be 

developed to cope with the needs of the new SOLVER engine. 

 

6.4.1 Basic principles of the Evolutionary Algorithm 

 

The evolutionary algorithm's code and algorithm details are much too complex to be 

discussed in this paper, therefore only the basic principles behind the method will be 

presented.  Much of the following material has been provided by the developers from 

Frontline Systems, Inc. (1999). 

 

Random Sampling 

 

Unlike normal gradient-based optimisation procedures, the evolutionary algorithm 

relies on random sampling.  Solutions are randomly picked from the feasible region, 

as defined by the constraints explicitly set forth by the user.  This allows the algorithm 

to explore large areas of the feasible region simultaneously.  This therefore prevents 

the algorithm from being trapped within local minima; if one solution has reached a 

local minimum, there will still be other solutions available in other regions that may 

reach an even more optimal solution. 

 

Populations 

 

The solutions are kept together in a set called the population.  This population is the 

essence of the algorithm, as it contains all the potential candidates for the optimum 

solution.  In this respect, the algorithm differs from deterministic methods that keep 

only one potential solution throughout the optimisation process.  The evolutionary 

algorithm does have a "best" solution within the population, but it also keeps the other 

solutions in case they are able to replace this "best" solution. 
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Mutation and Reproduction 

 

The population mirrors nature by imposing on the set of solutions a mutation rate.  

This is a constant, user-defined rate at which a solution is extracted from the 

population and randomly changed, or "mutated".  This is done in the hope that the 

mutated solution may be an improvement from its previous incarnation.  Of course, 

there is an equal likelihood that the solution will be worse off, and if this is the case, 

then the algorithm will attempt to "repair" the mutation, though not with guaranteed 

success.  This particular algorithm uses three different methods of mutating the 

solutions. 

 

Two good solutions may be also combined together, forming a better solution.  This is 

based on the process of reproduction in nature.  The new solution will carry the best 

characteristics of both its "parents", and therefore it is hoped that it will be a better 

solution.  This algorithm uses two methods of reproduction. 

 

Natural Selection 

 

Both the previous processes are performed in order to improve the solution set.  If a 

more optimal solution is found, that solution will become the next "best" solution.  At 

each iteration step (called a subproblem), the worst, or "least fit" solutions are 

removed from the population, being replaced by "more fit" solutions.  This mirrors 

the principle of natural selection, or survival of the fittest.  In this way, the population 

is constantly improved, with weak solutions being removed and strong solutions 

entering in. 

 

Disadvantages 

 

However, there are quite a few substantial drawbacks to the method.  Firstly, the 

process is atheoretic, it merely an analogy to nature and does not have a solid 

theoretical background.  Also, due to the large amount of calculation required at each 

subproblem, the algorithm is rather time consuming.  It can take a few hours to 

perform the optimisation for the BLRPM parameters, while a normal gradient-based 

optimisation would take a few minutes at most. 
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The algorithm can only judge the strength of a particular solution in relation to the 

other solutions.  Therefore, it can never actually know when a solution is truly 

optimal.   There is no optimality test to perform on the solutions.  Therefore, even 

after the algorithm has been completed, the optimal solution may still not be found, 

simply because the algorithm has not explored a particular region, and cannot 

comprehend that its present solution is not optimal.  For this reason, the evolutionary 

algorithm should be used on optimisations with difficult or no tests for optimality, 

simply because there would be no better alternative.  More importantly, because it has 

no test for optimality, it does not know when to stop.  Heuristic methods have to be 

used to discontinue the algorithm; these include putting a limit on the convergence of 

the solutions in the population, and limits on time as well as iteration steps. 

 

For this project, the optimisation of the BLRPM parameters is highly complex, and 

does not have a test for optimality.  Therefore the optimisation has inherent difficulty 

in the judgement of "optimal" solutions.  Hence, this disadvantage of the evolutionary 

algorithm should not significantly affect the optimisation scheme. 

 

6.4.2 Analysis of results 

 

The evolutionary algorithm was performed on five different months: January, April, 

August, September and November.  The algorithm was used on case 4, 8stats and 

6stats, all the optimisation schemes that previously required a range of initial points to 

be tested.  The results can be seen in the data tables within Appendix C, where they 

are marked under the columns "evo". 
Table 6.6: Various Results and modelled statistics for April 

 historical 8stats 
initial point - 0.1 0.2 0.3 0.8 1.5 2.65 evo evo 
mean 0.057 0.057 0.057 0.057 0.057 0.057 0.057 0.056 0.057 
variance 0.0822 0.056 0.06 0.055 0.073 0.059 0.071 0.049 0.148 
autocovariance 0.04449 0.041 0.041 0.041 0.044 0.041 0.041 0.041 0.056 
proportion of dry periods 0.9104 0.908 0.909 0.9 0.899 0.906 0.905 0.86 0.929 
objective function value - 0.006 0.006 0.007 0.006 0.006 0.006 0.02 0.016 
 historical 6stats 
initial point - 0.4 0.8 1.4 1.8 2.4 2.65 evo 
mean 0.057 0.054 0.057 0.056 0.056 0.056 0.057 0.056 
variance 0.82197 0.089 0.058 0.075 0.072 0.05 0.086 0.06 
autocovariance 0.04449 0.041 0.041 0.042 0.041 0.04 0.041 0.042 
proportion of dry periods 0.9104 0.927 0.906 0.912 0.917 0.9 0.906 0.09 
objective function value - 0.014 0.002 0.003 0.004 0.002 0.002 0.018 
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Although the evolutionary algorithm was deemed to have an exceeding amount of 

potential, it was a failure in terms of practical implementation.  This was a 

disappointment, as had it had succeeded in finding optimal solutions, it would have 

solved the problem of finding the appropriate initial points.  Take for example the 

results in fig. 6.6, the objective function values obtained from the evolutionary 

algorithm are much higher than those of the GRG2 engine are.  The corresponding 

modelled statistics are also poorly estimated.   

 

The main problem with the algorithm engine was the length of time it took.  Often, 

the optimisation was performed over night, but only mediocre results were obtained.  

The algorithm is effective at reducing the objective function value to the order of 1.0-

4.0 at a fairly rapid length of time.  However, once it enters into a refinement stage, 

the improvements in the objective function are few and far between.  For example, it 

can take a minute for the algorithm to reduce the objective function from 200 000 to 

5, but another half-hour to reduce it down to 4.95.  This trend was repeated no matter 

what the optimisation scheme was used.  Its performance pales in comparison to the 

GRG2 engine, which gives much faster results. 

 

Substantial manipulation of the constraints had to be performed in order to obtain 

reasonable results.  As the refinement proceeded, the mutation rate and the 

convergence tolerance were set to even more stringent values, to make sure that the 

algorithm sought out and considered as many varied potential solutions as possible.  

This resulted in a longer run time for the programme. 

 

Another observed problem was that the algorithm tended to return extremely wild 

parameter sets, with φ and κ values in terms of 50 or 80.  These values are clearly out 

of proportion, and the reason that the algorithm acts in such a way is that the 

constraints to the parameters are set to rather large ranges (E-7 to 100).  Therefore, as 

the algorithm explores the feasible region it captures such ridiculous parameters.  This 

is actually a sign that the algorithm is actively searching the entire feasible space, 

looking for alternative optima.  This puts it at an advantage over the GRG2 algorithm, 
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which may be trapped in a local optimum.  The obvious solution to would be to 

change the constraints, but when these were reduced to more realistic values, there 

arose another problem.  This time the algorithm tended to stick to the limits of the 

parameter constraints (especially for the parameters α and ν), again skewing the 

objective function. 

 

Nevertheless, a few good results were obtained, and these can be seen in table 6.5 for 

November.  Using the evolutionary algorithm does not appear to give better results 

than the normal deterministic methods.  At most, it has obtained parameters that 

return an equally good objective function when compared to using the GRG2 engine.  

For the majority of the time, it returns inappropriate objective functions, for the 

reasons set above.  It appears that the objective function is too complex for the genetic 

algorithm and that the GRG2 is a more efficient tool for optimisation.  In the end, it 

was decided that the method was not suitable for use for the rest of the project, partly 

for its poor results and partly because the trial period for the downloaded software had 

come to an end. 

 

Despite the poor results, the evolutionary algorithm cannot be totally disregarded in 

further studies.  In this project, only a single package was used to perform the 

algorithm.  Better results may be found by using different software packages or a 

different formulation of the objective function. In any case, genetic algorithms have 

had a mixed success rate its application, and since their development is still in its 

infancy, it should be used in conjunction with deterministic methods, rather than in 

place of them.  Rapid developments in this field may lead to further breakthroughs, 

allowing new improved algorithms to be used, which may lead to better results. 
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7. Analysis of Extreme Data 
 
7.1 Background and methodology 
 
The Bartlett-Lewis Rectangular Pulse Model has been successful in the reproduction 

of a variety of statistics for a wide range of time scales, however one of its major 

deficiencies has been its inability to predict extreme values accurately (Onof and 

Wheater, 1993).  Extreme statistics are needed for the estimation of return periods for 

extreme rainfall events.  These values are used to fit extreme value distributions (Type 

I, Type II and Type III distributions) to find appropriate depths for the specified 

design life of the engineering project.  For both the hourly and daily time scales, the 

model underestimated the extreme values, as it had not generated enough extreme 

rainfall events within the simulated period, as compared to historical data.  This 

phenomenon is thought to relate to the fact that the model is not very accurate at 

reproducing the skewness of the time series.  The model tends to return time series 

with a significantly lower skewness than the historical data, therefore indicating the 

lack of extreme values in the simulated series.  

 

In section 6.3, it was noted for the modelled parameter sets that gave extremely 

accurate modelled hourly statistics, when these same parameters were used for 

disaggregation, the simulated time series returned an accurate skewness statistic.  This 

is unusual, since no skewness or third order terms were used in the optimisation 

process.  The accurate reproduction of the skewness after disaggregation indicated 

that extreme values might also be better reproduced by incorporating the 

disaggregation procedure. 

 

The objective of the investigations presented in this section is to determine the 

extreme data characteristics of the disaggregated time series, and to find out whether 

they are better modelled after using a combination of the BLRPM and disaggregation. 

 

Three months were chosen for analysis: March, August and December.  These months 

were chosen for their spread throughout the year, incorporating both summer and 

winter months.  Referring to fig. 6.8 in section 6.3, the modelled statistics for March 

are extremely well estimated, almost exactly the same as the historical data.  The 

modelled statistics for December are reasonably estimated, while they are relatively 
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poorly estimated for August.  Therefore, the best results would be expected from 

March, followed by December and August. 

 

Using the same parameter set as that used to derive the modelled statistics, Hyetos 

was used to simulate 39 years of monthly data, for each of the three months.  For each 

month, this simulation was repeated thirteen times, each time using a different random 

seed.  This generated thirteen different sets of simulated series based on the same 

parameter set, allowing a framework to be established to determine the spread of 

values caused by the choice of random seed.  The thirteen sets of data are plotted on a 

logarithm plot so that the spread (maximum and minimum) of values can be easily 

seen, and this is compared to the actual historical data.   

 

For each disaggregation, the time series output was entered into a spreadsheet.  For 

each year, the maximum rainfall depths for the 1-hr, 6-hr and 12-hr time scales were 

determined.  Using this 39 year maximum value data, the FORTRAN programme 

gev was used to fit an extreme value distribution to the maximum value data.  There 

are three possible distributions available, the Type I (Gumbel) distribution, the Type 

II or the Type III plot.  The goodness of fit is given by a K-value, where a value close 

to zero indicates a good fit to the Type I distribution, a K-value less than zero 

indicates a Type II distribution, and a positive K-value denotes a Type III distribution.  

The programme gives an output of the rainfall depths with respect to the Gumbel 

reduced variate, which is related to the return period according to the equation: 

 Gumbel Reduced Variate (GRV) = -ln(-ln(1-1/T))    (9) 

where T is the return period.  This entire process is then repeated for the 6-hr and 12-

hr time scales for each month.  The actual historical data are also processed to obtain 

similar plots, and these are used to compare with the simulated plots. 

 

7.2 Analysis results  

 

Extreme values were determined for 1-hr, 6-hr and 12-hr intervals for each of the 

three months.  A Type I  (Gumbel) distribution was used to plot all the data points, 

since the majority of the K-values fell between -0.2 and 0.2.  The plots show the 

rainfall depth against the Gumbel reduced variate, which is related to the return period 
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of the rainfall depth. 

 

Fig. 7.1 shows the hourly extreme values for the three months considered.  The blue 

lines show the thirteen simulations performed, and the maximum and minimum of the 

spread can be estimated from these plots.  The plots diverge steadily as the return 

period increases.  The red line shows the plot for the historical statistics. The data and 

K-values for the simulation can be found in Appendix E. 

 
Figure 7.1: 1-hr extreme values  
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since it shows that if the parameters derived from pure daily data can model the 

hourly statistics accurately, it can also give very accurate estimates for the extreme 

values of rainfall.  For August and December, the parameters did not model the 

historical statistics as accurately, and this is reflected in the plots for the extreme 

values.  The historical values show a larger number of extreme rainfall events than the 

simulated series.  The result could be due to the inaccurate BLRPM parameters being 

used or may simply indicate that the BLRPM is unable to reproduce enough extreme 
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events.  The close relation between the skewness and the extreme values would 

indicate that corresponding results would be obtained for the skewness statistic. 
Figure 7.2: 6-hr extreme values  

The extreme 6-hr extreme values are more surprising, as show by fig. 7.2.  The results 

show that the 6-hr extreme values are very accurately estimated for every month.  The 

historical plots lie straight in the centre of the spread of simulated series.  This appears 

to indicate that the disaggregation procedure has actually improved the estimation of 

6-hr extreme values.   

 

The 12-hr extreme value results are also encouraging, as shown in fig. 7.3.  For this 

time scale, the historical plot tends to lie at the lower end of the spread of the 

simulated series.  This is in reverse to all the previous observations, since the 

simulations have now generated more extreme rainfall events than required!  Hence, 

simulation can give a reasonable, albeit slightly higher estimation of the extreme 

value plot. 
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Figure 7.3: 12-hr extreme values 

 

The Type 1 distribution is a good representation of the distribution of the extreme 

values. The majority of the K-values for the simulations lay within the range of -0.2 

and +0.2, indicating a Gumbel distribution.  The simulations that had K-values 

beyond this range tended to fall below the stipulated range, (but never beyond -0.4), 

indicating that for these particular simulations, a Type 2 distribution may be more 

appropriate.  Nevertheless, these values were plotted using a Type 1 distribution for 

consistency. 

 

In summary, using disaggregation in combination with the BLRPM appears to give 

better estimates for the extreme values than using the BLRPM alone.  This result is in 

agreement with the paper by Onof and Koutsoyiannis (2000).  This is most 

significantly reflected in the 6-hr data, which are excellently reproduced.  The 12-hr 
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well estimated, the extreme values will follow in suite.  Otherwise, the 1-hr statistics 

will tend to be underestimated, with insufficient extreme hourly rainfall events being 

generated. 

 

The reason behind this improvement can be attributed to the repetition stage of the 

disaggregation process.  As described in section 5, the disaggregation process 

involves repetition of the simulation, so that better high level statistics are obtained.  

Performing this repetition makes the chances of obtaining good estimates for the 

statistics that are not explicitly preserved much higher.  Skewness, and therefore the 

extreme value statistics, is improved from the original Bartlett-Lewis rainfall model. 

 

The process has yet to be repeated for the rest of the months to check for any 

anomalies.  Since only a simple proportional disaggregation procedure is used, better 

results may be found by using a different disaggregation procedure, such as the linear 

or power adjustments.  Other disaggregation procedures may be coupled with the 

BLRPM to improve the hourly extreme values, and further research is required in this 

area. 
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8. Power Spectrum Analysis 
 

8.1 Introduction and Methodology 

 

The power spectral density function, or power spectrum for short, shows the 

contributions of various frequencies to a process.  Therefore, for a given rainfall time 

series, the power spectrum will show the frequency decomposition of the variance of 

the series, showing the relative effect each frequency has on variability of the process. 

Formally, the power spectrum is the Fourier transform of the autocovariance process: 

( ) ( ) ∞<<= −∞
∞∫ ωγ

π
ω ω 01 dsesf siTT     (10) 

where T is the time scale being considered, and γ is the autocovariance function.   

 

Power spectrum analysis has been carried out on rainfall time series by Bo, Islam and 

Eltahir (1994), working with rainfall data from Italy and Kentucky, U.S.A.  Using the 

same rainfall model together with disaggregation, they found that the power spectrum 

showed two distinct regions, firstly a flat section among the low frequencies, and then 

a negative sloping curve as the frequencies increased.  The corner frequency that 

separated the two regions was found to be related to the rate of storm arrival, or λ.  

The flat region in the power spectrum was of particular interest, since this indicated 

that below the corner frequency, the contribution from each frequency would be 

roughly equal.  Therefore for such low frequencies, the spectrum is virtually 

equivalent to a spectrum for white noise.  Working with both disaggregated and 

aggregated data, this research group managed to find that the power spectrum closely 

matched each other.  Hence they inferred that the BLRPM is self-consistent, in that 

despite using information from a high level time scale, (though not beyond the corner 

frequency), the model could estimate to high accuracy statistics at lower time scales.   

 

These findings seem very much in agreement to the findings set forth in this paper, in 

that the use of coarse time scale statistics can be used to estimate accurate fine time 

scale statistics.  Further evidence for these empirical findings can be offered by 

analysis of the power spectrum.  If the power spectrum of the historical data is close 

to the simulated plot, then this will re-emphasise the observations presented before. 



 52

A numerical method is needed to evaluate the power spectrum.  This was done using 

the FORTRAN programmes pg/mdtomo/gaugebin.   The programme uses the 

time series entered to calculate the Fourier transform, and gives the modulus of the 

real and imaginary terms, with respect to the frequency.  The result is a plot of power 

against frequency, the frequency being the number of times every half a month (372 

hours). 

 

8.2 Analysis of Results 

 

A computer programme, pg/mdtomo/gaugebin was used to derive the power 

spectrum for each and every month for the historical time series.  The results are 

plotted in fig. 8.1.  Note that both axes are logarithmic, and that the x-axis is in terms 

of frequency per half month. 
Figure 8.1: Monthly power spectrum for historical data 
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lower frequencies, and a negative sloping region for high frequencies.  This is perhaps 

more evident in fig. 8.2, which shows a simple monthly-averaged power spectrum.  

However, it is noted that the individual months' spectra show a much flatter initial 

portion; the averaged spectrum appears to still have a slightly downward sloping 

curve in its initial portion.  This effect may be due to the averaging of the spectra over 

the months, including the fact that different months contain different numbers of days, 

which may lead to distortions in the curve.   It is advisable to use individual months' 

spectra for comparison with simulated data rather than the averaged spectrum, 

although this latter spectrum is useful for general observations. 
Figure 8.2: Averaged spectrum for historical data 
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optimisation schemes do indeed fall within this range.  However, most of the λ values 

cluster around the lower end (≈ 0.02) of this range (see the BLRPM parameter charts 

at the bottom of the data tables in Appendix C), indicating that the corner frequency 

may be lower than the graph indicates.  Observations from fig. 8.1 indicate that most 

of the individual monthly spectra have corner frequencies around 6 - 9 per half month.  

These values correspond to a range of λ between 0.01613 and 0.02494, and are nearer 

to the observed λ values from the optimisations. 

 

The observations indicate that the frequencies below the corner frequency are not 

useful for the estimation of results, since they correspond to what is essentially 

random noise.  Only statistics from the frequencies above the corner frequency, that 

is, periods below 48 hours, are suitable. 

 

It is interesting to note the spread of the spectra between the various months in fig. 

8.1.  The spectra corresponding to winter months tend to occur lower than those 

corresponding to the summer months.  There is a clear upward shift in the spectra 

from winter to summer.  This seems to imply the variability arising from all the 

frequencies increases during the summer.  This might have some connection to the 

variable results obtained for the summer months during the optimisation, especially 

the underestimated variance statistics. 

 

The programme was then modified to accept simulated time series.  Time series were 

generated using disaggregation (Hyetos), for each month.  The parameters were the 

same as those used to derive the modelled statistics in fig. 6.8.  The power spectra for 

these series were then used to compare with the historical spectra. 

 

The important test for the disaggregation procedure is whether the simulated 

disaggregated time series can reproduce the power spectrum observed in the historical 

data.  Time series generated by Hyetos were used as input into the programme to find 

the simulated time series' power spectrum.  This was done for several months and the 

simulated spectra were compared to the historical data.  Fig. 8.3 shows plots for 

various months. 
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Figure 8.3: Simulated and historical spectra 

 

It is clear from these plots that the simulated spectra do indeed following closely to 

the historical spectra.  The effect is most significant in the lower frequencies, and this 

is due to the fact that these frequencies correspond to periods of days and higher.  The 

statistics are completely preserved for such time scales since they are higher than the 

historical time scales available.  No disaggregation is needed to obtain such statistics, 

the statistics can be derived exactly by aggregation.  For several months, the two 

spectra are almost exact.   

 

Divergence does occur for other months, and this is rather worrying, since it occurs at 

the high frequencies corresponding to periods of about 1 hour, exactly the time scale 

that is being estimated.  Divergence usually occurs around a frequency value of about 

120 per half month, corresponding to a period of roughly 3 hours.  This is quite near 

the hourly time scale being aimed for, therefore disaggregation should reasonably 

preserve the characteristics of the series down to this time scale.   
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From this observation, it could be concluded that, using only coarse time scale data, 

statistics from the intermediate time scales of 6-hr and 12-hr can be estimated very 

accurately.  Modelled statistics for such time scales are shown in Appendix B, and 

this conclusion does hold true to some extent.  It is observed that for statistics that are 

estimated with low accuracy at the hourly time scale, the 6-hr and 12-hr estimates are 

increasingly better estimated.  Evidence from the extreme values is also encouraging, 

since 6-hr and 12-hr extreme values are well estimated, while 1-hr values being more 

variable.  This could be related to the divergence of the power spectra occurring at the 

3 hour time scale for the various months, resulting in good values for the 6-hr and 12-

hr statistics where there is convergence, and poor results for the hourly statistics 

where there is a slight divergence.  There are of course some anomalies to this case, 

and further investigation must be done in this area.   

 

The monthly simulated power spectra for the entire year are shown in fig. 8.4 below. 
Figure 8.4: Monthly simulated power spectra 
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The power spectra derived from the simulated time series have the same shape as the 

actual spectra.  There is also some evidence of the summer months' spectra being 

located in the upper portions of the range, while the winter months gathering at the 

lower end of the range of values.  This mirrors the observations made before in the 

historical spectra.  When the simulated months are averages out, the result is a plot 

shown in fig. 8.5. 
Figure 8.5: Averaged simulated and historical spectra 
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affect the final results, in turn passing on the error to the power spectra.  Therefore 

divergence may be a result of poor disaggregation.  Using a range of random seed for 

the simulation programme also appears to give only minor changes to the power 

spectra. 

 

The close relation between the simulated and actual spectra shows that the 

disaggregation procedure is consistent at reproducing the underlying variability 

structure behind the time series.  This gives further merit to the use of disaggregation, 

since if this underlying structure may be found, the resulting simulated statistics are 

likely to be well estimated.  It would be difficult to try and model the power spectrum, 

since its analytical form is rather complicated (Bo et al., 1994) therefore it would  

probably be impractical to model a power spectrum and work backwards to find the 

statistics required. 
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9. Conclusions 
 

Hourly rainfall data is often required for engineering or hydrological purposes, but is 

also often severely lacking, both in terms of spatial coverage as well as length of 

recorded time.  Daily rainfall data is readily available, however, and this paper 

examines a method of obtaining such hourly time series from daily data.  The 

randomised Bartlett-Lewis Rectangular Pulse Model, in combination with 

disaggregation using adjusting procedures, appears to be able to estimate hourly 

statistics to a reasonable accuracy.  The main conclusions can be summarised in the 

following points: 

1. The six parameter Bartlett-Lewis Rectangular Pulse Model is used together with a 

proportional adjusting procedure in the disaggregation process.  These are used to 

simulate a low level time series in order to compare with the actual hourly data 

available.  Data from an hourly raingauge at Heathrow Airport, U.K. was used. 

2. Parameter fitting of the Bartlett-Lewis Rectangular Pulse Model requires the use 

of various historical statistics from the daily or 48-hr (coarse) time scales.  

Optimisations were performed using 4, 6 and 8 statistics.  The optimisations using 

four or six statistics showed the best reproduction of hourly (fine) time scale 

statistics.  Using eight statistics incurred significant error, which may be attributed 

to a larger number of statistics being used to estimate fewer parameters. 

3. Using six statistics gives better results than using four statistics.  The use of six 

statistics is the most theoretically sound, since there are an equal number of 

statistics and parameters being estimated.  However, the use of only four daily 

statistics is only slightly less accurate, and has the advantage of being faster and 

being purely dependant on 24-hr statistics. 

4. The optimisation procedure is strongly affected by the initial points selected, as 

the feasible region is complex and contains local minima.  A large range of initial 

points must be tried to identify the local minima present.  Often the majority of the 

initial points would converge to a local minimum that returned the lowest 

objective function value among all the trials performed.  This was termed the 

lowest local minimum. 
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5. The parameters obtained from this lowest local minimum showed distinct 

characteristics.  The modelled statistics derived from these parameters were 

compared to the historical data and it was found that the mean, autocovariance and 

proportion of dry periods were well estimated.  The variance was only reasonably 

estimated for about half the months.  In particular, the summer months showed a 

strong underestimation of the historical variance.  It is thought that this might 

relate to the relatively higher power spectra shown by the summer months. 

6. Other parameter sets that did not belong to the lowest local optimum (i.e. having a 

higher objective function) were also used to derive modelled statistics.  These 

statistics were on the whole poor estimates as compared to the ones obtained 

previously, and did not accurately model the historical data.  There was, however 

a significant minority of modelled statistics that were highly accurate.  This latter 

observation is probably due to the fact that there is a disparity between the 

objective function using an optimisation with pure hourly data, and an 

optimisation with pure daily data.  Therefore, the highly accurate statistics may be 

due to the optimisation finding a local minimum that may be lowest under 

optimisation with pure hourly data, but not with pure daily data. 

7. The importance of the initial values is re-emphasised by the investigations in Case 

3, where the initial values are modified by the hourly data prior to the optimisation 

using only daily data.  This case produced the most accurate results for all the 

months and all the statistics.  Although highly accurate, this method cannot be 

used in practise, since it still requires some hourly input. It may be possible to find 

some correlation within a network of rain gauges, that incorporates some hourly 

rain gauges, between the gauges with hourly readings and those without.  Hourly 

statistics from a neighbouring rain gauge may be used to modify the initial values 

for an optimisation using statistics from a daily rain gauge.  This is an area that 

requires further research. 

8. The use of disaggregation was vital in producing the actual simulated time series.  

Disaggregation itself seemed to give only a small improvement on the modelled 

statistics, as the simulated statistics followed the modelled statistics closely.   

9. For parameter sets that gave very accurate modelled statistics, when these were 

used in disaggregation, the skewness was particularly well estimated.  This is 



 61

encouraging since the skewness statistics has often been underestimated in the 

BLRPM. 

10. The evolutionary algorithm may be used to overcome the problem of finding a 

suitable initial value.  However, the engine used in this study proved too slow and 

ponderous, producing poor results at an inefficient rate.  This may indicate the 

need for a reformulated objective function to better suit the needs of the algorithm. 

11. The extreme values for the simulated time series were particularly well estimated 

for the 6-hr and 12-hr time scales.  This shows that the repetition process in the 

disaggregation procedure has a positive effect in improving the lack of extreme 

rainfall events that was a deficiency in the BLRPM.  Varied results are returned 

for the 1-hr extreme events.  It appears that the 1-hr extreme data is only well 

represented if the other statistics are modelled with a high accuracy. 

12. The power spectrum of the time series consists of two parts: a flat portion in the 

lower frequencies that appears to be random white noise, and a negative sloping 

portion in the higher frequencies that contains the variability structure of the 

series. 

13. The simulated power spectrum was well reproduced by disaggregation and lay 

close to the actual spectrum.  This indicates that the disaggregation procedure 

preserves the underlying variability structure of the rainfall time series.  Any 

divergence occurs at a frequency corresponding to a period of three hours, 

therefore indicating that coarse statistics may be used to estimate accurately 

statistics up to the three hour time scale.  This time scale is close the hourly target.  

The fact that the divergence is small indicates that hourly statistics may still be 

reasonably well estimated using coarse statistics. 

 

In conclusion, the coupling of the randomised Bartlett-Lewis Rectangular Pulse 

Model and the proportional adjusting disaggregation procedure proves to be a good 

framework in which hourly data can be simulated from daily statistics.  Apart form 

some deficiencies in the hourly variance and extreme value plot, the mean, 

autocovariance and proportion of dry periods are often well estimated. These results 

seem to be re-emphasised and justified by the close relation between the simulated 

and actual power spectra.  The use of the Bartlett-Lewis rainfall model in conjunction 
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with disaggregation appears to be very promising for the derivation of hourly rainfall 

time series from daily statistics.  

 

 

 

Suggested areas of further research: 

1. Case 3 shows a strong case for the modification of the initial values by hourly 

statistics, before the optimisation is performed.  In practise, this case is impossible 

to perform since the hourly statistics are precisely the statistics that are being 

estimated.  It may be possible to find some correlation within a network of rain 

gauges, that incorporate some hourly rain gauges, between the gauges with hourly 

readings and those without.  Therefore, hourly statistics from a neighbouring rain 

gauge may be used to modify the initial values for an optimisation using statistics 

from a daily rain gauge. 

2. The feasible region is highly complex and a different objective function may be 

used to elucidate its nature and the location of the local minima.  A suggested 

objective function would consist of the error terms being expressed in percentage 

terms, instead of the absolute values of error used in this paper.  A similar study 

could be carried out on the optimisation process by varying the weights applied to 

each statistic. 

3. The use of the evolutionary algorithm in this paper was very basic and a different 

type of algorithm (such as simulated annealing or neural networks) could be used 

in another study.  The feasible region and the objective function could be tailored 

to suit the algorithm, or an entire algorithm customised for the Bartlett-Lewis 

rainfall model, could be written. 

4. Only three months of extreme value data was considered, due to time constraints.  

The remaining months may be analysed, and other simulated time series from 

different optimisations could be examined as well.  The links between the extreme 

values and skewness can be elucidated. 

5. More work needs to be performed on the analysis of power spectra developed 

from disaggregated simulations.  Special attention should be applied to 6-hr and 

12-hr modelled statistics. 
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APPENDIX A 
 

 COMPUTER PROGRAMS 
 
 
Developed by author: 
Optimisation programmes: Optima, norway and evo  A-1 
 
Bought-in: 
Disaggregation programme: Hyetos      A-3 
SOLVER engine: Evolutionary Algorithm     A-5 
Other programmes: gaugestats, momentfit,    A-6 

gev, pg/tomo   



OPTIMA 
 
Optima was developed for the needs of the project and its main features and algorithm is 
explained here.  It uses a SOLVER engine to perform the optimisations, which can be 
considered as a black box.  Because of the nature of Visual Basic within Excel, it is rather 
difficult to reproduce the full code in text form, as the coding is placed in many different 
parts of the programme.  Two sister programs, norway and evo were also produced in the 
development of optima. 
 
Features 
 
- Written in VBA within a Windows environment 
- Incorporated within Excel for easy data manipulations 
- Data entry and initial parameters are set via dialogue boxes 
- Choice of statistics include mean, variance, autocovariance, autocorrelation, proportion 

of dry periods and mean duration of dry periods 
- Choice of time scales include 1hr, 6hr, 12hr and 24hr 
- Choice of use of five or six parameter model 
- Sister programme norway was developed for time scales of 1, 2 and 4 days 
- SOLVER engine efficiently optimises the objective function using the GRG non-linear 

optimisation code 
- Sister programme evo uses an evolutionary algorithm in its SOLVER engine for the 

optimisation 
- Parameter constraints can be changed easily 
- Parameters are tabulated and graphed at user’s indication 
- Matrices comparing historical and modelled statistics can be drawn up 
 
Coding 
 
Input (required) : Historical data as entered via the dialogue box 
 
Input(optional) :  Initial values for the parameters 
   Constraints on the parameters 
 
Output :   Parameters from the optimisation 
 
Output (optional) :  Graphs and tables of parameters 
   Matrix comparing modelled and historical data 
 
The code is expressed in the flow chart on the following page.  The background is coloured 
according to the different spreadsheets that the programme is working within.  Each text 
box shows the user action from the user point of view and the corresponding codes and 
subroutines that are activated.  Minor codes (such as the cancellation and deletion of cell 
contents) have been omitted for clarity. 
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User Action: 
Choose Autocovariance or AutoCorrelation 
Input data via “Input Historical Data” button 
 
Subroutines:   
statEnterButton_Click() 
displays dialogue box for user to enter values 
EnterButton_Click() 
Reads data from box and displays it on “data”
spreadsheet 
EnterMatrix() 
Reads data from box and displays it on Matrix 
EnterVal() 

User Action: 
Press “Compute” button 
Choose 5 or 6 parameter model 
 
Subroutines 
Compare 
Displays dialogue box for choice of 5 or 6 parameter mode, initialises and formats spreadsheet correspondingly. 
Reads data from “data” spreadsheet and transfers it to “optima” spreadsheet, stores it into its internal memory and checks for errors 
Using formulas from Module 1, calculates the respective modelled values for the statistics using a variety of subroutines 
Calculates the errors between the modelled and historical values and their sums to obtain an objective function 
Tabulates all data on “optima” spreadsheet 
ErrorCheck 
Checks for errors in compare 
BLFormula 
Calculates modelled statistics for 6 parameter model 
FiveFormula 
Calculates modelled statistics for 5 parameter model 
ErrorSum 
Calculates the sum of error terms for objective function 
Modules 1 and 6 
Contains functions for the different statistics for the 6 and 5 parameter model respectively 

User Action: 
Press “Solve” button 
 
Subroutines: 
Sol 
Specifies and defines the optimisation problem for SOLVER 
SOLVER 
Performs the optimisation using the standard GRG or the evolutionary algorithm 

User Action: 
Press “Transfer Results” button 
 
Subroutines: 
TransferResults 
Transfers the Results to the “results” 
spreadsheet, graphs are produced 
automatically in Excel 

User Action: 
Switch to “matrix” spreadsheet 
Press “Transfer Parameters” button 
 
Subroutines: 
TP 
Transfers the parameters to the “matrix” 
spreadsheet, values are produced automatically 
in Excel 

Other: 
Module 3 
Reformats the whole workbook in case 
the user changes the format accidentally 
and the program does not work 
Module 5 
Contains coding for the start-up 
procedure   

OUTPUT : PARAMETERS 

OUTPUT: GRAPHS OUTPUT: MATRIX 

INPUT: HISTORICAL DATA 
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Hyetos 
 
The details of this programme are quoted from Koutsoyiannis and Onof (2000). 
 
Hyetos uses a windows environment including several forms for input and output of 
parameters and model options, and graphical forms for plotting and comparing 
hyetographs and statistics. It includes also help files with instructions and 
documentation. It can perform in each of the following modes depending on the 
user selections: 

1. Disaggregation test mode (without input). An initial sequence of storms is 
generated using the Bartlett-Lewis model with the given parameters and then 
aggregated into hourly and daily scale. The daily sequence serves then as an 
“original” series, which is disaggregated, thus producing another synthetic 
hourly series. This mode is appropriate for testing the disaggregation model 
itself (e.g. by comparing original and disaggregated statistics). 

2. Full test mode (with hourly input). In this mode an input file containing hourly 
historical data must be available. The difference from the Mode 1 is that the 
original sequence is read from the file rather than generated. This mode is 
appropriate for testing (e.g. by comparing original and disaggregated statistics) 
the entire model performance including the appropriateness of the Bartlett-
Lewis model and its parameters and the disaggregation model. 

3. Operational mode (with daily input). This is similar to Mode 2 the difference 
being that the input file contains no hourly data but only daily. This is the usual 
case for the model application. It cannot provide any means for testing.  

4. Rainfall model test mode (with hourly input). This is similar to Mode 2 but with 
synthetic data not disaggregated but generated from the Bartlett-Lewis model 
with the given parameters. This mode is appropriate for testing whether the 
Bartlett-Lewis model fits the historical data (in terms of several statistics).  

5. Simple rainfall generation mode (without input and without disaggregation). 
This is similar to Mode 4 but with no input provided (simply the Bartlett-Lewis 
model parameters are entered). This mode is appropriate for generation of 
rainfall series using the Bartlett-Lewis model with the given parameters without 
performing any disaggregation.  

 
Details of the repetition and disaggregation scheme are shown in the figure below, 
with reference to the disaggregation of daily rainfall depths of a cluster of L wet 
days (preceded and followed by at least one dry day). The scheme was assembled 
so as to optimise computer time and incorporates four levels of repetition. Initially 
(Level 0), the Bartlett-Lewis model runs several times until a sequence of exactly L 
wet days is established. Then (Level 1), the intensities of all cells and storms are 
generated and the resulting daily depths are calculated. These are compared to the 
original ones by means of the logarithmic distance 
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where iZ  and iZ~  are the original and generated, respectively, daily depths of day i 
of the wet day sequence and c a small constant (= 0.1 mm). The logarithmic 
transformation is done to avoid domination of the very high values and the constant 
c was inserted to avoid domination of the very low values. If the distance d is 
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greater than an accepted limit da, then we re-generate the intensities of cells (Level 
1 repetitions) without modifying the time locations of storms and their cells. If, 
however, after a long number of Level 1 repetitions, the distance remains higher 
than the accepted limit, this may mean that the arrangement of storms and cells is 
not so consistent with the original (and unknown) one. In this case we abandon this 
arrangement and generate a new one, thus entering Level 2 repetitions. 
Furthermore, in the case of a very long sequence of wet days it is practically 
impossible to get a sequence of wet days with departure of daily sum from the given 
daily rainfall lower than the specified limit. In these cases the sequence is 
subdivided into sub-sequences (in a random manner), each treated independently 
from the others (Level 3 repetitions). Eventually, the sequence with distance smaller 
than the accepted limit is chosen and further processed by determining the lower-
level (e.g., hourly) rainfall depths and applying them the proportional adjusting 
procedure. 

Does number of 
repetitions for the 
same sequence 

exceed a specified 
value?   

Does total number 
of repetitions 

exceed a specified 
value?   

Obtain a sequence of storms and cells that form  
a cluster of wet days of a given length (L)

For that sequence obtain a sequence of cell 
intensities and the resulting daily rain depths

Do synthetic 
daily depths 

resemble real 
ones (distance 
lower than a 

specified limit)?

Split the wet day cluster in 
two (with smaller lengths L)

End

Y
Y Y

NN

N
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ve

l 1

Le
ve

l 2

Run the BL model for time t > L + 1
and form the sequence of wet/dry 
days

Does  
this sequence 

contain L wet days 
followed by one or 

more dry days?

End

Level 0

Adjust the sequence

Was the wet day 
cluster split in two

(or more) sub-
clusters?

Join the wet day clusters

Le
ve

l 3

Y

N

N

Y
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The Evolutionary Algorithm 
 
The field of genetic algorithms is a new and exciting area of research.  The idea of using principles from biology 
in optimisation and search algorithms was initially proposed by John Holland in the 1970's.  Holland believed 
that by applying the same principles in optimisation, he could create an environment where an initially random 
set of solutions is allowed to evolve into better and better solutions.  In this way, problems that were difficult to 
solve deterministically could be encoded and solved with relative ease.  Presently the field of genetic algorithms 
has itself evolved (!) and now encompasses a wide variety of disciplines, ranging from optimisation to parallel 
algorithms, and classifier systems to neural networks.  It is important to note that genetic algorithms are not the 
only form of optimisation method based on analogy.  Other metaphorical methods, such as neural networks or 
simulated annealing, are also areas of active research. 
 
Genetic algorithm researchers often have significant differences in their implementation of the algorithm.  
Therefore, if one were to look within algorithms written by different people, the programme architecture is likely 
to be significantly different.  This is important to note, as there are few strict rules for implementation.  The basic 
genetic algorithm is inherently modular in nature, therefore allowing individuals to add, alter or remove parts 
without affect the rest of the algorithm.  This has led to a wide spectrum of shades of code.  This situation is 
exacerbated by the lack of solid theory (although such research is presently very active) to the metaphorical 
nature of the algorithm, resulting in all evaluation being based purely on performance.  This once again poses 
problems, due to the random nature of the algorithm.  However, the basic principles behind the algorithm do not 
change, and these are briefly discussed below. 
 
Genetic algorithms can be considered as consisting of two elements.  The first is an encoding mechanism which 
encodes the information from each potential solution set.  The very first algorithms used binary forms of code, 
later methods developed numerical codings.  The codes are stored in strings called chromosomes.  The second 
element is a method of evaluating each potential solution and determining its fitness, in other words, determining 
whether it has reached the objective. 
 
Modern genetic codes usually consist of the following modules: a module to generate a random solution for the 
population, a module to encode the solutions, a module evaluate the fitness of each solution and finally, a module 
that applies reproduction and mutation principles to the population.  The actual method of implementation is 
different for each specific algorithm, leading the rich variety of forms the genetic algorithm can take. 
 
The distinguishing feature of a genetic algorithm is the reproduction, or in GA jargon, crossover, processes.  
These are the procedure by which chromosomes are selected and mixed together to produce offspring, or 
children.  The selection of the parents is usually based on the "Roulette wheel parent selection", where parents 
are chosen with probabilities according to their fitness.  In this way, the most fit solutions will get to reproduce 
more often, producing offspring of increasingly better fitness.  Therefore, the characteristics of dominant 
solutions, or "super individuals", are quickly spread across the population.  The exact process of the crossover is 
an area of active research.  Initial methods used one-point crossover techniques, where the chromosomes were 
simply cut at one point and the portions switched across.  More sophisticated methods are now used. 
 
If crossover were the only procedure to be used, "inbreeding" would quickly arise, such that a single solution 
would be overly dominant.  There would be a lack in the diversity of the population and important solutions may 
be missed out.  Mutation is therefore employed to keep the algorithm in place, continually churning up new 
solutions, so as to keep the variety within the population at a certain level. 
 
Hybrids of genetic algorithms and normal deterministic methods have been developed.  These often prove to be 
better than the pure GA or optimisation methods when used alone.  These hybrid models are of much interest and 
it is recommended that these models are used if customisation to the BLRPM is to be undertaken. 
 
The robustness of a genetic algorithm has often been a sticking point, since it is often the case that an algorithm 
may be able to work with one specific problem, but not give as good a performance when transferred to another 
situation.  Genetic algorithm researchers have been searching for an algorithm that is sufficiently robust to work 
in most situations, but have often failed.  Current thinking is that such robustness is not the ideal.  Rather, genetic 
algorithms may be better utilised if customised to the problem, give the solution in an efficient and effective 
manner. 



Other programmes 
 
These computer programmes were minor codes used in specific parts of the project.  All 
the programmes were "bought-in".  The programmes are written in FORTRAN, with 
gaugestats and momentfit being situated on a UNIX platform.  To access these two 
programs, a telnet connection had to be made to a computer in University College London. 
For each programme, the input and output are given, with a brief description of its use. 
 
gaugestats 
 
Input:  time series data for the historical or a simulated data set 
Output: important statistics derived from the time series, such as mean, variance, etc. 
 gaugestats was used to find the major statistics for each month and time scale 
of the historical data set.  The values were then used in the optimisation.  It can also be 
used to find statistics from a simulated time series, although Hyetos immediately does such 
calculations at the end of the simulation. 
 
momentfit 
 
Input:  statistics used to fit parameters to the BLRPM  
Output: optimal parameters for the BLRPM 
 momentfit was the initial parameter fitting programme used, before Optima was 
developed.  This programme was used to check the algorithm in Optima. 
 
gev 
 
Input:   maximum rainfall depths for time period (years) 
Output: modelled Type 1, 2 or 3 distribution for the extreme rainfall depths 
 gev was used to obtain plots for the extreme rainfall depths.  Simulated data was 
analysed and the maximum rainfall depth for each year in the data set was picked out.  
These values were processed by the programme, modelling a suitable distribution to these 
values.  The Gumbel reduced variate, given in the output, is then plotted with the extreme 
rainfall depths. 
 
pg/tomo 
 
Input:  rainfall time series historical data or simulated time series 
Output: power spectrum of the variance with respect to frequency 
 pg/tomo was used to derive the power spectrum for the rainfall time series.  The 
output was a spectrum for each year that was analysed, therefore, the final power spectrum 
had to be derived by averaging out the values from these years. 
 
Other simple codes were written for the averaging of the power spectrum and the selection 
of maximum rainfall values from various time scales.  These were written in VBA and are 
very minor codes written to aid calculation and are not explicitly described here. 
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APPENDIX B 
 

 DATA TABLES: CASES 1-4 
 
 
Histograms of parameters under case 2    B-1 
 
Tables of historical and modelled values for June and April B-3 



APPENDIX C 
 

 DATA TABLES: Case 4, 8stats and 6stats 
for all twelve months 

 
 

Data tables show for each month the 1-hr modelled statistics for each optimisation 
scheme over a range of initial values.  The corresponding modelled parameters are 
also included.  Some comments are made below each table, drawing attention to 

anomalies to the general trends.



APPENDIX D 
 

 DISAGGREGATION DATA 
for various months and optimisation schemes 



APPENDIX E 
 

 EXTREME VALUE DATA 
corresponding to figures 7.1-7.3 

 
 




