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INTRODUCTION

Rainfall is the primary input to river flows. For continuous flow simulation therefore, one 
possible approach is to develop a continuous simulation model for rainfall, and to route its 
output through runoff models to obtain simulated flow sequences. Here, we review some 
recent developments in stochastic rainfall modelling. The aim is to provide rainfall 
simulations that are appropriate for hydrological application.

The next section deals with the development of models that can be calibrated using 
radar rainfall data. Such data represent an important source of information regarding the 
fine-scale structure of spatial rainfall fields. However, recognising their current limitations 
with respect to accuracy and record length, we subsequently describe some alternative 
methods that can be used when radar data are scarce, unreliable or absent. A more detailed 
account of the work is given by Wheater et al. (2000).

SPATIAL-TEMPORAL MODELLING USING RADAR DATA

There are several different approaches to the modelling and simulation of precipitation. In 
this section we focus upon a category of stochastic models, which aim to provide a 
simplified conceptual representation of the rainfall process in continuous space and time. 
This is done using probabilistic assumptions that enable rainfall structures to be represented 
using a few physically interpretable parameters. Such an approach is particularly suited to 
continuous simulation in the context of flow generation: the models’ representation of 
rainfall in continuous space and time gives complete flexibility of application, and they are 
cheap to simulate.

Our approach is a spatial analogue of models that have been used to represent the 
temporal process of rainfall at a single site (e g. Rodriguez-Iturbe et al., 1987; 1988). The 
models use a hierarchical representation of rainfall, in which the smallest element is a rain 
cell -  a localised area of relatively intense rainfall. It is known that cells tend to cluster 
within larger-scale structures that we call storms. These storms themselves cluster, to form 
rain events. At the spatial scale of UK catchments, these correspond to weather systems. 
We treat the interior of a rain event as a stationary stochastic process. However, there are 
many different types of event, and the parameters of this process will typically vary 
between event types. We therefore construct, for each month of the year, a library of model 
parameters to reflect the prevailing types of weather system during that month.
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Modelling event interiors

In our model, a rain event consists of a collection of storms. Storm centres originate in a 
Poisson process in space (in practice, this means some large region containing the area of 
interest) and time, and they move with a constant velocity during their lifetimes. Each

storm consists of a cluster of 
elliptically shaped rain cells, 
scattered about the storm centre 
in both space and time and 
moving with the same velocity as 
the storm centre. Each cell 
deposits rain at a constant rate 
(or intensity) over its entire area, 
and throughout its lifetime. The 
numbers of cells, their 
intensities, shapes and sizes, their 
temporal durations and their 
displacements about the storm 
centre, are random variables. 
Various independence
assumptions are made, but are
not discussed here. The spatial 

Figure 1. Schematic diagram showing the spatial structure structure 0f  a storm is shown 
ot storms within the spatial-temporal model tor . .
event interiors schematically in Figure 1.

In the model used here, the spatial distribution of cells about a storm centre is 
bivariate normal. We therefore refer to the model as the Gaussian Displacements Spatial- 
Temporal Model (GDSTM). By varying the parameters of the displacement distribution, 
storms with different characteristics can be produced. For example, we can obtain 
‘scattered showers’ if the variance of this distribution is large relative to the mean cell size. 
Rain bands result from a distribution with elongated elliptical contours. For simplicity, the 
shapes of cells within a storm are taken to be the same as the elliptical contours of the cell 
displacement distribution. A full description of the model requires distributions to be 
specified for all of the random components. Details may be found in Wheater et a!. (2000), 
and in Northrop (1998).

The GDSTM has 11 parameters. These are physically interpretable quantities such 
as the expected cell duration, mean cell intensity and expected number of cells per storm. 
They can be estimated from a sequence of radar images by selecting some properties of the 
data, and finding parameter values that reproduce them as closely as possible (usually in a 
weighted least-squares sense). These properties might include the mean and variance of 
rainfall intensities, spatial and temporal autocorrelations at different scales, and the 
probability that an arbitrary region experiences no rainfall during a specified period. Their 
values, under the model, can be derived from its continuous space-time representation -  see 
Northrop (1998) for details. Numerical methods are required to estimate the parameters 
from a given set of fitting properties. To ensure the stability of such methods, it is helpful to 
estimate groups of parameters separately where possible. Section 2.8 of Wheater et al.
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(2000) contains some discussion of the issues involved. In general, parameter estimates for 
the GDSTM agree closely with previous studies, with respect to such quantities as cell and 
storm size and duration.

Validation of the GDSTM can be carried out by comparing observed and theoretical 
properties not used in the fitting procedure. For use as input to a continuous flow 
simulation, it may be important to reproduce relatively complex properties of rainfall fields, 
such as the extent and duration of localised areas of heavy rainfall (which can be quantified 
using suitable summaries of a rainfall sequence in which all rainfall intensities below some 
high threshold are set to zero). Such properties cannot be determined analytically, but can 
be explored by simulating the fitted model.

To illustrate the appearance of realisations from this model, Figure 2 shows an 
hourly sequence of radar images from the Wardon Hill radar station in south-west England,
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Figure 2. Visual assessment of the GDSTM fitted to the rain event of 6 February 1994, 13:00-14:00. The 
temporal separation of the images is 1 hour. Top: Observed data. Bottom: Simulation

together with an hourly sequence of images simulated from the GDSTM fitted to this event. 
The images are at 2x2km: spatial resolution, and cover an area of 104x 104km2. The model 
parameters were estimated from a 1-hour sequence of 5-minute radar images from the 
middle of this event. Figure 2 includes time periods outside that used for model fitting, to 
illustrate the movement of the rain event over the area (see the following Section). The 
observed and simulated sequences exhibit broadly similar features, although the 
simulations have a more obvious cellular structure than the data. Quantitative assessments
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of fit, described in Wheater et al., (2000), indicate that the model reproduces many 
hydrologically significant features of this event.

The GDSTM has been fitted to data from a total of 207 rain events, recorded at 
Wardon Hill between September 1993 and March 1997. The events have been split by 
month, to allow for seasonal variations. We therefore have 12 monthly libraries of 
parameter estimates that can be used to generate different types of events as appropriate in 
each month of the year.

Modelling event sequences

The GDSTM is stochastically stationary in both space and time, and hence is only 
appropriate for modelling the interiors of rain events. To obtain realistic continuous 
simulations of rainfall sequences, we need to model the process by which events enter 
and leave a catchment. Wheater et al. (2000) give the motivation, and supporting data 
analyses, for the scheme described here. We define two types of event: Type 1 events are 
those that extend over the entire area of interest for part of their lifetime, and Type 2 
events are those that may produce a significant amount of rainfall, but do not cover the 
entire area. Analysis of Wardon Hill radar data indicates that, even at spatial scales as 
large as 10,000km2, Type 1 events are responsible for a large proportion of the total 
rainfall. We model the stochastic process of events and dry periods using a semi-Markov 
process with 3 states (‘dry’ periods, Type 1 events and Type 2 events). The durations of 
sojourns in each state are independent random variables, modelled using Weibull 
distributions. For simulation purposes, events of any duration can be generated by 
simulating the GDSTM within a quadrilateral, of appropriate size, that moves across the 
catchment. The random geometries of these quadrilaterals are determined by analysing 
the edges of observed rain events. For the simulation in Figure 2, the quadrilateral is an 
approximately rectangular region, aligned in a North-South direction and moving from 
west to east: the leading (eastern) and trailing (western) edges appear in the first and final 
images respectively.

Seasonality is an important feature of rainfall sequences. It can be incorporated 
into the process of event arrivals, by fitting separate Weibull sojourn distributions for 
each month of the year. To reproduce seasonal variations in event types, in any month we 
generate events using GDSTM parameter sets sampled randomly from the corresponding 
library of parameter estimates. The overall algorithm for continuous simulation is as 
follows: (i) generate the time until the next event, by sampling from the current month’s 
Weibull distribution for dry period lengths (ii) determine the event type, according to the 
appropriate frequencies for the month (iii) determine the event duration by sampling from 
the appropriate duration distribution (iv) select a GDSTM parameter set from the current 
month’s library (v) simulate the GDSTM within a moving quadrilateral, to give the 
correct duration (vi) return to step (i).

The performance of this scheme has been investigated by comparing properties of 
simulations with those of observed radar sequences. Comparisons have been done for 
data at time scales of 15 minutes, 1 hour and 1 day, and at spatial scales ranging from 
2x2km“ up to 104xl04knT. Various properties have been investigated, ranging from 
basic statistical measures (means, variances, autocorrelation functions and proportions of 
an area that are dry) to analyses of extreme behaviour. In general, the scheme reproduces
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a wide range of features of observed rainfall fields. Again, details may be found in 
Wheater et al. (2000).

ALTERNATIVES, FOR APPLICATION IN THE SHORT-TERM

At present, the continuous simulation scheme described above has two drawbacks. The first 
is its reliance on radar data, which are limited both in terms of availability and quality. 
Realistically, it may be 5-10 years before adequate data are available to support the scheme 
operationally in the UK. A simplified version of the model, which may be calibrated using 
sub-daily data from a raingauge network, is described in Section 5.1 of Wheater et al. 
(2000). However, it has been found that even dense gauge networks do not provide 
sufficient spatial information to identify features on the scale of rain cells. Moreover, the 
availability of sub-daily gauge data is also limited in the UK at present.

The second drawback is that, except for seasonally varying parameters, the scheme 
is stationary in both space and time. It may therefore be inappropriate, in its present form, 
for use in regions with a lot of topographic variability, or for the generation of long rainfall 
sequences when long-term changes in climate are suspected. It is anticipated that this may 
be overcome by further model development. However, at present it may be appropriate to 
consider alternative methods, which are suitable for application in the short term.

Generalized Linear Models

Although radar and sub-daily raingauge data are relatively scarce in the UK at present, 
long daily records are more abundant. These can be used to study non-stationarities in 
rainfall sequences, and to develop daily rainfall simulation models. In principle, the 
output from such models can be downscaled to any desired resolution using some 
appropriate method. Hourly data may be adequate for most flow simulation purposes.

Many techniques are available for generating daily rainfall sequences. Here, one 
of the primary concerns is the incorporation of non-stationarities. A powerful and flexible 
technique, which allows non-stationarities to be quantified and incorporated, is that of 
Generalized Linear Models (GLMs). These are standard in the statistical literature, and 
were introduced into the study of daily rainfall by Coe and Stern (1982). The basic idea, 
which is an extension of linear regression, is to use the values of various predictors to 
forecast a probability distribution for the amount of rainfall at a site on a given day. In 
fact, this distribution is specified in two parts -  we model the probability of rainfall 
occurrence separately from the amount of rain if non-zero. Previous days’ rainfall 
amounts can be used as predictors, to account for autocorrelation. Other predictors might 
include quantities representing regional variation (such as site altitude), seasonal 
variability, long-term trends and ‘external’ climatological factors such as the North 
Atlantic Oscillation (NAO). Models can be specified in such a way that the effect of a 
predictor depends on the values of others -  for example, it is known that the NAO affects 
European climate predominantly in the winter months. Models can be fitted, and 
compared, using Maximum Likelihood; they can be tested using a variety of simple but 
informative checks. By defining suitable dependence structures between sites, it is 
possible to build a multivariate GLM that allows simulation of non-stationary daily 
rainfall sequences over a network of sites.

The GLM methodology has been applied to many rainfall datasets from the UK 
and elsewhere. It has been found to be extremely useful for interpreting historical records,
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particularly when we want to study changes in the climate of an area. Moreover, 
providing models have been specified carefully, GLM simulations can reproduce a 
variety of features (including extreme behaviour) of observed rainfall sequences. Chapter 
4 of Wheater et at. (2000) contains technical details and a selection of results. Other 
applications include: a flooding study in Ireland, where GLM outputs were downscaled to 
hourly resolution for input to continuous flow simulations (OPW 1998); and an 
investigation into drought in the Yangtze River in China (Yang, 2001).

Spatial-temporal rainfall disaggregation

The GDSTM can provide stationary sequences in continuous space and time, whereas the 
GLM can provide non-stationary sequences at a daily timescale. It is natural to try and 
combine these two techniques, so as to obtain the advantages of both. Various methods of 
doing this have been explored. Perhaps the most promising to date uses a method due to 
Koutsoyiannis (2001); this is described in Section 5.3 of Wheater etal. (2000). The method 
is appropriate for use when one or more sub-daily time series are available, along with 
several daily time series at a network of sites. The sub-daily time series may be either 
observations, or simulated data from a single-site version of the GDSTM, or data produced 
by disaggregating a simulated daily series. The daily series may be observational, or may 
have been generated by simulating a GLM. The basic idea is to generate hourly rainfall 
sequences at the sites with daily data, that respect both the fixed daily totals and the spatial 
structure of sub-daily rainfall fields. This spatial structure can be deduced from a simplified 
version of the GDSTM, fitted to the available data. The procedure produces hourly 
sequences with the correct means, variances, coefficients of skewness and proportions of 
dry intervals. Promising preliminary results are reported in Wheater et al. (2000).

SUMMARY

Continuous simulation of rainfall fields, incorporating fine-scale spatial and temporal 
structure, can only be achieved if supported by adequate radar data. Models such as the 
GDSTM appear to offer the potential for generating realistic scenarios, once adequate data 
become available (although further work is required to address issues of non-stationarity). 
In the meantime, other methods using downscaled daily sequences may be more feasible. 
Such daily sequences may be generated using GLMs. Although these methods cannot 
describe the full spatial structure of rainfall fields (they are essentially multi-site models), 
they are extremely powerful and have a lot of potential for hydrological application. An 
ongoing research project, sponsored by DEFRA, is carrying out a detailed investigation of 
some of the methods reported here, with a view towards making recommendations for 
practitioners. A report, using case studies to illustrate the techniques, is at an advanced 
stage of preparation.
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