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ESTIMATION OF VARIANCE AND STANDARD DEVIATION FOR KNOWN 

HURST COEFFICIENT 

To demonstrate the consequences of using the inappropriate classic estimators of variance and 

standard deviation, a Monte Carlo experiment has been performed. A long series of SSS with 

H = 0.8, µ = 2 and σ = 0.5 was generated. From this series, an ensemble of 100 samples each 

with length n = 100 or 50 was constructed and the sample standard deviations using both 

estimators were obtained. The same was done for aggregation levels k = 1 to 10 when n = 100 

and k = 1 to 5 when n = 50 (so that in any aggregation level the number of items n / k is at 

least 10).  
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Figure A.1 Comparison of theoretical and empirical standard deviation of the aggregated processes Z
(k)
i  versus 

timescale k (logarithmic plots) for a Monte Carlo experiment with theoretical H = 0.8 and σ = 0.5.  

 The results are shown graphically in Figure A.1 in a logarithmic plot of standard deviation 

versus scale. The true standard deviation for each aggregation level k is obtained from (4). Its 

empirical values are obtained as the averages of the 100 samples. It is observed that, at the 

basic scale (k = 1), the classic estimators underestimate the true standard deviation by about 
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6% and 9% for n = 100 and 50, respectively (which is not a serious underestimation). The 

percentage of underestimation increases to about 20% at the largest scale used, i.e., k = n / 10. 

The SSS estimates agree perfectly with the theoretical ones (the two curves are practically 

indistinguishable). In addition, the classic statistics underestimate the variance of the standard 

deviation (not shown in Figure A.1) by 63% and 43% for n = 100 and 50, respectively. 

SIMULTANEOUS ESTIMATION OF VARIANCE AND HURST COEFFICIENT 

The following algorithm can be set up to determine the standard deviation σ and the Hurst 

exponent H that minimize the error e2(σ, H) in (15). Taking the derivatives of e2 with respect 

to ln σ and H end equating to zero one obtains 

 
 1 
2  

∂e2(σ, H)
∂ ln σ  = a11 ln σ + a12 H – b1(H) = 0 (A.1) 

 
 1 
2  

∂e2(σ, H)
∂H  = a21(H) ln σ  + a22(H)H – b2(H)  = 0 (A.2) 

where 

 a11 := ∑
k = 1

k΄
  1 
kp , a12 := ∑

k = 1

k΄
 ln k

kp ,  b1(H) := ∑
k = 1

k΄
 ln s(k)

kp  – ∑
k = 1

k΄
 ln ck(H)

kp  (A.3) 

 a21(H) := ∑
k = 1

k΄
 dk(H)

kp , a22(H) := ∑
k = 1

k΄
 dk(H) ln k

kp , b2(H) := ∑
k = 1

k΄
 dk(H) ln s(k)

kp  – ∑
k = 1

k΄
 dk(H) ln ck(H)

kp  (A.4) 

 dk(H) := ln k + 
∂ ln ck(H)

∂H  = ln k + 
ln(n/k)

1 – (n/k) 2 – 2H  (A.5) 

 Eliminating ln σ it is obtained that 

 H = 
 a11 b2(H) – a21(H) b1(H)
 a11 a22(H) – a21(H) a12

  (A.6) 

In this equation H appears in both sides. However, it can be easily solved in an iterative 

manner. Assuming an initial value H = 0.5 and substituting it in the right-hand side one 

calculates (on the left-hand side) an improved estimate and continues this way until 

convergence. Having found H, σ is obtained directly from (A.1). Alternatively, it can be 

estimated from (11) using the standard deviation of the finest time scale only. 

 It can be observed that when H tends to 1, ck(H) tends to zero and most a and b terms tend 

to infinity, whereas for H > 1, ck(H) is not defined. Therefore, the method will never result in 

values of H > 1. Also, from (A.1) it becomes clear that when H tends to 1, σ tends to infinity, 

which is expected (from (10)). Although this behaviour is theoretically consistent, it may 

result in unreasonably high variables when the estimated H is higher than, say 0.98.  Such 
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high values are not met in hydrological time series, but to ensure avoiding them, a penalty 

factor Hq + 1/(q + 1) could be added to e2 in (15) for a high q, say 50. This will result in an 

additional term equal to –Hq in b2(H) in (A.4). 

 Some information on the behaviour of the proposed algorithm, additional to that of Figure 

4 is provided in Figure A.2, where the estimated standard deviation is plotted against the 

estimated Hurst exponent. The figure indicates that for H < 0.85 the two statistics are 

practically uncorrelated but for higher H they become positively correlated. 
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Figure A.2 Estimated Hurst coefficients versus estimated standard deviations from the ensembles of synthetic 
series of the Monte Carlo experiment of Figure 4 and for the proposed estimation method. 

ESTIMATION OF CROSS-COVARIANCES AND CROSS-CORRELATIONS 

Assuming that two processes Xi and Yi are both SSS with common H and mutually correlated, 

the typical covariance estimator 

 SXY := 
1

n – 1 ∑
i = 1

n
 (Xi – X–)(Yi – Y–) (A.7) 

is a biased estimator. To show this, (A.7) is rewritten as  

 SXY = 
1

n – 1 ∑
i = 1

n
 [(Xi – µX) – (X– – µX)] [(Yi – µY) – (Y– – µY)] (A.8) 

and, after algebraic manipulations, also considering (9), it is obtained that 

 SXY = 
1

n – 1 ∑
i = 1

n
 (Xi – µX) (Yi – µY) – 

n
n – 1 (X– – µX) (Y– – µY) (A.10) 

Taking expected values in (A.10) and also assuming, by analogy to (11), that the aggregated 

covariance is  
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 Cov[X1 + … + Xn, Y1 + … + Yn] = n2H Cov[Xi, Yi] (A.12) 

one obtains 

 E[SXY] = 
n – n2H – 1

n – 1  Cov[Xi, Yi] (A.13) 

which proves that (A.7) is unbiased only when H = 0.5. Consequently, the SSS unbiased 

covariance estimator for any known H is 

 S~XY := 
n – 1

n – n2H – 1 SXY = 
1

n – n2H – 1 ∑
i = 1

n
 (Xi – X–)(Yi – Y–) (A.14) 

 Here, it is observed that the correlation coefficient is 

 RXY := 
S XY

S X S Y

 = 
S~XY

S~X S~Y

 (A.15) 

Thus, the classic estimator of the cross-correlation coefficient remains valid also for SSS. 
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Figure A.3 Comparison of theoretical and empirical cross-correlation coefficients of a bivariate aggregated 

process Z
(k)
i  versus timescale k for a Monte Carlo experiment with theoretical Hurst coefficient 0.8 for both 

variates, standard deviations 0.5 and 1.2 for the first and second variate, respectively, and theoretical cross-
correlation coefficient 0.85. 

 This is demonstrated in Figure A.3. A Monte Carlo experiment was performed here by 

generating bivariate synthetic samples with common H = 0.8 and length n = 100 or 50. The 

other characteristic parameters were µ = 2 and 3, and σ = 0.5 and 1.2 for the first and second 

variable, respectively. The theoretical cross-correlation coefficient was 0.85. To generate the 

bivariate synthetic samples the multivariate method by Koutsoyiannis (2000) was followed. 

From the ensembles of 100 series, the empirical cross-correlations for several timescales were 

estimated, which, as shown in Figure A.3, agree well with the theoretical expectation.  
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ESTIMATION OF AUTO-COVARIANCES AND AUTO-CORRELATIONS 

The typical estimator of the lag l autocovariance (Equation (20)) can be written as 

 Gl = 
1
n ∑

i = 1

n – l
 [(Xi – µ) – (X– – µ)] [(Xi + l – µ) – (X– – µ)] (A.16) 

After algebraic manipulations, also considering (17), one obtains 

 Gl = 
1
n ∑

i = 1

n – l
 (Xi – µ) (Xi + l – µ) – 

1
n (X– – µ) ∑

i = 1

n – l
 [(Xi – µ) + (Xi + l – µ)] + (X– – µ)2 (A.18) 

Assuming that l is small in comparison with n so that n – l and n can be interchanged, and 

also the second sum of (A.18) can be extended over all i, one obtains 

 Gl ≈ 
1
n ∑

i = 1

n – l
 (Xi – µ) (Xi + l – µ) – (X– – µ)2 (A.19) 

For the SSS case, taking expected values (and again ignoring the difference of n – l and n), it 

is found that  

 E[Gl] ≈ γl – 
σ2

n2 – 2H (A.20) 

This means that an approximately unbiased estimator of γl is given by (21) and an 

approximately unbiased of the autocorrelation coefficient ρl is given by (22). 

CASE STUDIES 

Figure A.4 depicts the autocorrelation coefficients versus scale (panel (a)) and versus lag 

(panel (b)) Similarly to Figure 8, this figure verifies the presence of long-term persistence, the 

appropriateness of the proposed SSS estimator of autocorrelation, and the large departure of 

the classic estimations from SSS estimators. 
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Figure A.4 Autocorrelation coefficients of the time series of mean annual temperature at Paris/Le Bourget: (a) 
lag 1 and lag 2 autocorrelations of the aggregated process versus timescale, k; (b) autocorrelation versus lag for 
the basic (annual) timescale, k = 1. 

 


