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Introduction 

The reliability of a system is defined to be the probability that a system will perform the 

required function for a specified period of time under stated conditions  (Chow et al., 1988, p. 

434). Reliability is the complement of probability of failure (or risk), i.e. the probability that 

the “loading” will exceed the “capacity”. Denoting α the reliability, β the probability of failure 

and P[ω] the probability of an event ω, the mathematical expression of this definition is 

 a := P[L(t) < C(t); t ∈ Π] =: 1 – β (1) 

where L(t) and C(t) represent the loading and capacity, respectively, at time t, within a certain 

time period Π (e.g. a year). Failure of a system can be classified as structural failure and 

performance failure (Tung, 1996, p. 7.3). Structural failure involves damage of the structure 

or facility, hindering its ability to function as desired in the future, whereas performance 

failure does not necessarily involve structural damage but rather inability of the system to 

perform as desired at some time within the period of interest, which results in temporary 

unfavorable consequences. 

Reservoir dynamics 

A reservoir’s function is to regulate natural inflows, which vary irregularly, to provide 

outflows at a more regular rate that is determined by water demand for one or more uses 

(water supply, irrigation, hydropower), temporarily storing the surplus, when inflows exceed 

outflows. The reservoir dynamics are more conveniently expressed in discrete rather than 

continuous time. The quantities that are necessary to describe dynamics are the following: 
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 Storage St. More precisely known as active storage, it is the volume of water stored, at 

time t, above the minimum level, which is determined either technically (i.e. as the level of 

the lowest valve of off-take) or legally by a decree imposing rules for a reservoir’s operation. 

Active storage St ranges between zero and a maximum value c imposed by the reservoir size, 

which corresponds to the level of the spillway crest (or some specified level above it in case 

that sluice gates are constructed over the spillway). During floods, excess water is routed 

through the spillway, which causes temporary storage above the normal limit c. This is known 

as flood control storage. Water storage below the minimum level is known as dead or inactive 

storage and it serves two main purposes: It provides volume for sediment accumulation and 

environmental protection, as it protects the habitat of the reservoir during dry periods by 

hindering complete emptying. Associated to the last function is also the conservation of the 

quality of landscape. This article is focused on the design of the active storage of a reservoir; 

some notes on the additional storage zones are contained in the last section of the article. 

 Net inflow Xt. It is the algebraic sum of cumulative inflows to the reservoir from time t – 1 

to time t, minus the losses during the same time period. Inflows include runoff from the 

catchment upstream of the reservoir (typically, the main component of inflows), rainfall to the 

surface area of the reservoir and, possibly, water artificially conveyed from other sources (e.g. 

inter-basin transfers through tunnels or pipe-lines). Losses include evaporation from the 

surface area of the reservoir and possibly seepage to groundwater and leakage under or 

through the dam. 

 Water demand, δt. It is the sum of all water requirements for the different water uses 

served by the reservoir for the time period (t – 1, t). The demand may vary with time (e.g. due 

to seasonal agricultural demand or due to some rule, usually based on the quantity of water in 

the reservoir). 

 Release, Rt. Also known as draft, withdrawal or outflow, it is the actual amount of water 

taken from the reservoir in an attempt to satisfy water demand during the time period (t – 1, t). 

When there is a sufficient amount of water in the reservoir, Rt equals demand δt; otherwise 

Rt < δt.  
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 Spill, Wt. It is the excess water that, during times of floods and simultaneously high 

reservoir storage, cannot be stored in the reservoir due to the upper reservoir storage limit c.  

 The reservoir dynamics are easily expressed by means of the mass conservation, or 

equivalently, water balance equation. Considering that St is limited between 0 and c the water 

balance equation is easily formulated as  

 St = max[0, min(St – 1 + Xt – δt, c)] (2) 

In addition, the release is determined as 

 Rt = min(St – 1 + Xt, δt) (3) 

and the spill as  

 Wt = St – 1 – St  + Xt – Rt  = max[0, St – 1 + Xt – δt – c)] (4) 

Equations  (2)-(4) apply when the inflow and withdrawal occur at constant rates throughout 

the period (t, t – 1) – this could be called the “steady” model.  A simple modification to the 

equations allows for the case where the inflow (or withdrawal) is highly seasonal so can (in 

the limit) be modeled as a sudden occurrence; this could be called the “sudden” model.  These 

two models (called “simultaneous” and “staggered” by Pegram (1980)) bound all the behavior 

observed in real reservoirs. 

Definition of reliability applied to reservoir 

Now, the above stated general definition of reliability (also known as dependability; e.g. 

Raudkivi, 1979, p. 312) can be applied to a reservoir. It is observed that the failure of a 

reservoir’s function is a performance failure, i.e., a failure to meet the water demand. At time t 

the loading is the water demand δt and the capacity is the sum of St – 1 (storage at time t – 1) 

and Xt (inflow from time t – 1 to t). Thus, application of (1) yields 

 a = 1 – β = P[δt < St – 1 + Xt] (5) 

Considering (2) and (3), the following equivalent and more convenient expressions are found 

 a = P[St > 0],   β = P[St = 0] (6) 
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and 

 a = P[Rt = δt],   β  = P[Rt < δt] (7) 

 In this context, the demand δt is regarded as a known quantity at any time instant t. All 

other involved quantities, namely St, Xt, Rt, and Wt, are regarded as random variables. Given 

the storage capacity c, the demand δt and the probability distribution and autocorrelation 

functions of the input Xt, in theory, the probability distributions of output variables St, Rt, and 

Wt can be determined in terms of that of Xt; this, however, is not an easy task due to the 

nonlinearity of the dynamics expressed in equations (2)-(4). Theoretically, once the 

distribution function of St or Rt has been determined, the reliability α is directly obtained from 

(6) or (7), respectively. However, although the theoretically based calculations unavoidably 

involve the complete knowledge of the distribution function of St and Rt, the reliability α can 

be determined in an alternative, much simpler, manner. That is, under the assumptions of 

stationarity and ergodicity, a can be estimated from a historical (for an existing reservoir) or 

synthesized (via simulation) time series of storage st or release rt with adequate length n. 

(Here lower case symbols were used for values of the random variables St and Rt.) 

Specifically, the estimate of a based on (6) is 

 α = 
1
n ∑

t = 1

n

 [1 – U(–st)]  (8) 

where U(x) is the Heaviside’s unit step function, with U(x) = 1 for x ≥ 0 and U(x) = 0 for 

x < 0. Correspondingly, the estimate of a based on (7) is  

 α = 
1
n ∑

t = 1

n

 U(rt – δt)]  (9) 

The purpose of the sum in (8) (or (9)) is to count the periods where storage is not zero (or 

release rt equals the demand δt). Thus, reliability is expressed as the proportion of time steps 

in which the system performs as desired. For this reason, α has also been termed time-based 

reliability.  Here it must be observed that although (5)-(7) are all mathematically equivalent to 

each other, as are (8) and (9), when applied to historical time series they may result in 
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different estimates. For example, a city’s water supply may not be allowed to empty, as 

restrictions on releases are applied before this situation is reached. In such a case, (8) may 

result in the erroneous estimation α = 1, whereas (9) will estimate the reliability correctly if 

the desired demand, before restrictions, is entered into the calculations. Thus, (9) is preferable 

when dealing with historical time series but in mathematical simulations both are equivalent; 

moreover, application of (8) is faster as it does not require simulation of releases at all (only 

(2) needs to be applied).  

 The stationarity assumption that was inherent in the above analysis is satisfactory when the 

time step is a year (either calendar or hydrological). However, the annual time step is usually 

too large and hides the variation of both inflows and demand within a year, which may result 

in a failure some time within the year that is recovered in the end of the year. Therefore, a 

smaller time step (e.g. monthly) is usually chosen, so that one year corresponds to k > 1 (e.g. 

12) time steps. At this finer time scale all processes depend on the time step in a periodic 

manner, that is, they are cyclostationary. Yet the reliability and failure probability are usually 

expressed at the annual scale, in which stationarity is redeemed. To shift from the finer scale 

to the annual scale, the rule adopted is that a failure occurring in one or more finer-scale time 

steps is regarded as a failure for the year. With this rule, (6) becomes 

 a΄ = P 
 
 I

i = 1

k
 (St – i > 0)

 
 , β΄ = P 

 
 U

i = 1

k
 St – i = 0

 
  (10)  

where to distinguish from the time-based reliability the symbols a΄ and β΄ were used instead 

of α and β, whereas the symbol ‘I’ indicates that all of the following events should occur 

simultaneously and ‘U’ indicates that any of the following events should occur. In a similar 

manner, (7) becomes  

 a΄ = P 
 
 I

i = 1

k
 (Rt – i = δt – i)

 
 , β΄ = P 

 
 U

i = 1

k
 Rt – i < δt – i

 
  (11)  

or alternatively 

 a΄ = P 
 
 ∑

i = 1

k
  Rt – i = ∑

i = 1

k
 δt – i

 
 , β΄  = P 

 
 ∑

i = 1

k
  Rt – i < ∑

i = 1

k
 δt – i

 
  (12) 

Likewise, (8) and (9) become 
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 a΄ = 
k
n ∑

p = 1

n / k

 min{[1 – U(–st)]; t = k (p – 1) + 1, …, k p}  (13) 

 a΄ = 
k
n ∑

p = 1

n / k

 min{U(rt – δt) ; t = k (p – 1) + 1, …, k p}  (14) 

respectively. The sums in (13) and (14) count the number of years in which no failure has 

occurred. Apparently, a΄ and β΄ provide information on the occurrence of a failure within a 

year and not on the time period the failure lasted. Therefore, they have been known as 

occurrence-based reliability and failure probability, respectively. An overall indication of the 

time period that failures last within an average year can be obtained by applying equation (8) 

or (9) and estimating β, the time-based probability of failure.  

 Apart from the occurrence-based and time-based reliability, an additional reliability 

measure has been often used, which is not expressed in terms of probability (and thus, 

literally does not comply with the general definition of reliability). This is the so-called 

volumetric or quantity-based reliability, expressed as the ratio of the average release to 

demand, i.e., 

 aV = 1 – βV = E 
 

 ∑
i = 1

k
 Rt
 
  / ∑

i = 1

k
 δt (15) 

 Given that a failure occurring in a year does not extend over the whole year, and, in 

addition, the release during the failure is not necessarily zero but some positive quantity 

smaller than demand, it is easily concluded that 

 a΄ ≤ α ≤ aV (16) 

 Among the three measures of reliability, the most important and most frequently used is 

the severest, i.e., the occurrence-based reliability a΄. Another means for expressing virtually 

the same concept is the return period or recurrence interval of emptiness, T. This is the mean 

time between two consecutive empty states of the reservoir and it is none other than the 

reciprocal of the probability of failure β΄ (Pegram, 1980), i.e., 

 T := 1 / β΄ = 1 / (1 – a΄) (17) 
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which is expressed in years (given that a΄ and β΄ are expressed on annual time scale). The 

concept of return period of emptiness of a reservoir is similar to that typically used for design 

floods. The difference is that in design floods, failure is the exceedance of the magnitude of 

design flood, whereas in a reservoir failure is the emptying of the reservoir. Typical design 

values of reliability and return period for reservoir design are a΄ = 99% (T = 100 years) for 

municipal water supply reservoirs, a΄ = 70-85% (T = 3.3-6.7 years) for irrigation reservoirs in 

subhumid climates and a΄ = 80-95% (T = 5-20 years) for irrigation reservoirs in arid climates 

(Raudkivi, 1979. p. 313). 

Traditional reservoir design procedures 

Most hydraulic structures, e.g. flood protection works, drainage networks, etc., whose load is 

randomly varying, have been designed on a probabilistic basis, adopting a certain reliability 

level or, equivalently, a certain return period for the design flood. Traditionally, however, this 

has not been the case in reservoir design, which has rarely been based on a sound probabilistic 

basis. This is witnessed even from the terminology traditionally used. For example, the use of 

the term firm yield implies a non-probabilistic, or failure-free concept.  Specifically, firm 

yield of a reservoir has been defined to be the draft or withdrawal that lowers the water 

content in a reservoir from a full condition to its minimum allowable level just once during 

the critical historical drought. (McMahon, 1993, p. 27.8; Chow et al., 1988, p. 534). It has 

been characterized as essentially the no-failure yield (McMahon, 1993, p. 27.8). In a 

probabilistic context, however, any draft has a non zero probability of failure (unless the 

demand is less than a hypothetical lower bound of the inflow distribution, which can be 

plausible only for perennial streams; this is unusual).  

 Several procedures have been widely used in reservoir design, which are rather 

deterministic and not consistent with the reliability concept. The most common has been mass 

curve analysis and its variations. A mass curve is a plot of cumulative inflow volumes 

(typically based on historical discharge records) as a function of time. Using this plot the firm 

yield, as well as the required reservoir storage to attain this firm yield, can be determined 

graphically. In addition, the method can determine the required storage for a smaller target 
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release. This graphical method was developed one hundred and twenty years ago (Rippl, 

1883) and has been widely used until now, although criticized (e.g. Schultz, 1976) for 

providing no information on the probability of failure and for the fact that the reservoir 

capacity determined by this method increases with the arbitrary length of available observed 

inflow data. As shown by Feller (1951) this increase is asymptotically proportional to the 

square root of the length of record.  

 A first variation of the method is its application with synthetic, rather than observed, data 

(e.g. Schultz, 1976). This eliminates the drawback of the arbitrary length of record and also 

provides some measure of uncertainty by applying the same procedure with different 

generated synthetic series. However, this kind of description of uncertainty is not consistent 

with a rational definition of reliability (e.g. that of the previous section).   

 A more theoretical flavor for the method has been given by the so-called range analysis, 

commenced with the work of Hurst (1951; see also Kottegoda, 1980, p. 184). Range is 

essentially the algebraic difference of the maximum and minimum departures of the mass 

curve from the straight line that joins its starting and ending points. The range concept has 

greatly contributed to the understanding and description of the so-called Hurst phenomenon 

(see the entry SW-434 – Hydrologic Persistence and the Hurst Phenomenon) in hydrology, 

climatology and other geophysical sciences. Applied to a reservoir, the range represents the 

required storage of a reservoir operating without any spill or other loss and providing a 

constant outflow equal to the mean flow. Obviously, this is an oversimplification of a real 

reservoir. On the other hand, the range concept involves complexity in estimation, and 

simpler and more efficient methods have been proposed which can be used instead of range 

analysis (Koutsoyiannis, 2002).  

 An additional design method is the so-called sequent-peak analysis (Mays and Tung, 1992, 

p. 274; Mays, 2001, p. 400). Essentially, it is a tabulated version of mass-curve analysis and 

can also incorporate in the calculations, apart from runoff, the effect of precipitation, 

evaporation and leakage. The method does not involve the reliability concept, nor does it 

consider spills from the reservoir.   
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Simplified reliability-based procedures for reservoir design 

As already mentioned, analytical determination of reliability in the general case of a reservoir 

fed by inflows with seasonality and arbitrary probability distribution and autocorrelation 

functions, is a very difficult, if not impossible, task (Pegram et al., 1980). Therefore, existing 

analyses have been based on several simplifications. However, the results of such analyses are 

very useful, at least for the initial stage of reservoir design. The typical simplifying 

assumptions are to: 

� neglect secondary inflows (precipitation) and losses (evaporation, leakage); 

� neglect seasonality by the adoption of an annual time step; 

� neglect autocorrelation and assume that inflows are independent in time; 

� use a specific distribution function for inflows, typically two-parameter such as 

normal, lognormal or gamma. 

 The objective of such probability-based theoretical analyses is to determine the relation of 

the following three quantities:  

� reservoir size c; it is usually standardized as κ := c / σ, where σ is the standard 

deviation of annual net inflow Xt; 

� demand δ, which is assumed constant for all years; it is usually standardized as ε := 

(µ – δ) / σ, where µ is the mean of annual net inflow Xt; ε has been termed the 

standardized inflow (Hurst, 1951; McMahon, 1993, p. 27.7) or the drift (Pegram, 

1980);  

� probability, expressed either as reliability α, probability of failure β, or return period T; 

because of the annual time step used, the time-based reliability (equations  (6)-(7)) is 

identical to the occurrence-based reliability (equations (10)-(12)). 

 The first among the probabilistic approaches used in such analyses is the discretization of 

reservoir storage into several zones, each representing a certain state, and the use of a Markov 

chain model to represent transitions from state to state (Moran; 1959; Zsuffa and Gálai, 1987; 

see also Kottegoda, 1980, p. 264).  
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 A second method is stochastic (Monte Carlo) simulation, in which a long synthetic series 

of inflows is generated from the appropriate distribution function and then transformed into a 

series of storage values using equation (2); reliability is then easily determined from the 

storage time series using (8). Gould (1960) using this method was able to propose a reservoir 

size-yield-reliability formula, fitted to 240 sets of Monte Carlo simulations for various 

combinations of demand, reservoir size and skewness of gamma distributed inflows. This is   

  (ε + 0.15) [κ + d1(α, γ)] = d2(α, γ) (18) 

where d1 and d2 are coefficients depending on reliability α and skewness γ, and are given by 

nomographs (see also Raudkivi, 1979. p. 323). McMahon and Mein (1986) adapted this 

formula to more explicitly indicate the reliability; this can be estimated from the standardized 

normal variate zα corresponding to α, using equation 

 zα = 2 ε (κ + d(α) σ/µ) (19) 

where d is a coefficient depending on reliability α, and is given by a table (see also McMahon, 

1993, p. 27.14).  

 A more accurate and rigorous theoretical methodology to estimate the reservoir size-yield-

reliability relationship has been developed by Pegram (1980). This has been based on finite-

difference and integral equations, which employ the reservoir dynamics equation (2) in a 

probabilistic context to determine the return period of emptiness. Pegram applied his 

methodology, for normal, lognormal and discrete inputs both independent and serially 

correlated. His results, when compared to those of the Gould method (equations (18)-(19)) 

indicate that the latter underestimates the reservoir size required to attain a certain reliability 

level. Using Pegram’s results for normally distributed inflows, which were verified and 

expanded here with extended simulations, the following approximate relationship has been 

established:  

 ln(T – 1) = 2 (ε + 0.25) (κ + 0.5)0.8 (20)  

This is valid for T > 2 (α > 0.5) and can be alternatively written as 

 ln(T – 1) = –ln(1/α – 1) = (2/σ1.8) (µ + 0.25σ – δ) (c + 0.5σ)0.8 (21)  
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For known mean µ and standard deviation σ of inflows, (21) can directly yield either the 

reliability α for known reservoir size and demand, or the reservoir size (c) for given demand 

and reliability, or the demand (δ) that can be met with a given reliability for known reservoir 

size. Equation (20) is graphically depicted in Figure 1 in comparison with Pegram’s exact 

results. This equation can be suggested for preliminary estimations, but it should be applied 

with caution for the reasons explained in the next section. 
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Figure 1 A simple representation of reservoir size-yield-reliability: Standardized reservoir size (κ = Κ / σ) 

required to achieve a certain drift (ε = (µ – δ)/σ) with a certain reliability level, for independent inputs normally 

distributed. Lines are constructed from equation (20) whereas plotted points are theoretical results by Pegram 

(1980) for ε = 0.2 (triangles), 0.4 (diamonds), 0.6 (squares), 0.8 (circles) and 1.0 (stars). 

Effects of inflow characteristics to reservoir size 

As explained earlier, simplified design procedures such as the one using equation (20), are 

based on a number of abridging assumptions about the inflows. Significant differences may 

appear if these assumptions are not valid. More specifically, what may cause significant 

departures from (20) are the hydrologic persistence, especially the long-term one, and the 
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seasonal distribution of inflow and demand. Less significant differences are caused by the 

skewness of inflows and secondary inflows and losses.   

 The effect of hydrologic persistence is demonstrated in Figure 2, which depicts the 

standardized reservoir size (κ) required to achieve two combinations of drift and reliability (ε 

= 0.8, α = 98% and ε = 0.2, α = 90%) versus the lag-one autocorrelation coefficient, ρ. Two 

cases of hydrologic persistence have been examined, short-term and long-term. In the case of 

short-term persistence the inflows were assumed to follow the autoregressive process of order 

1 (AR(1) or Markov), whereas in the case of long-term persistence they were assumed to 

follow the fractional Gaussian noise (FGN) process with Hurst exponent H = ln(2 + 2ρ) / ln 4. 

Obviously, the effect of persistence is very significant, especially in the case of long-term 

persistence and high demand (low drift ε). Thus, the required reservoir size for ε = 0.2 and α = 

90% is c = 2.4 σ when ρ = 0 (H = 0.5) and becomes 4 times larger (c = 9.6 σ) when ρ = 0.4 (H 

= 0.74). 
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Figure 2 Effect of short-term and long-term hydrologic persistence of inflows to the standardized reservoir size 

(κ) required to achieve a drift ε = 0.8 with a reliability level α = 98% (continuous lines) and a drift ε = 0.2 with a 

reliability level α = 90% (dashed lines). Results are obtained by simulation. 

 To quantify the effect of seasonal variation of inflow and demand, it is observed that in the 

worst case, the total annual inflow comes before the beginning of withdrawal (the “sudden” 
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model). The reservoir dynamics in (2) assume that inflow and withdrawal are distributed 

evenly during a year (the “steady” model). If inflow precedes withdrawal, (2) should be 

modified to read St = max[0, min(St – 1 + Xt, c) – δt]. It is then easily determined that an extra 

storage equal to δ is required in addition to that estimated from (21). This worst case however 

is not very realistic, except in arid regions. In real world cases, the extra storage capacity 

required (in addition to that estimated from (21)) is a percentage of δ. This can be as high as 

50% for water supply reservoirs and 80% for irrigation reservoirs in semiarid regions.  

 The effect of the skewness of inflows is demonstrated in Figure 3, which depicts the 

standardized reservoir size (κ) required to achieve three combinations of drift and reliability (ε 

= 0.8, α = 98%; ε = 0.2, α = 90%; and ε = 0.2, α = 98%) versus the coefficient of skewness, 

Cs. It can be observed that the effect of skewness is not significant; for low draft (high drift ε) 

this effect can be beneficial (lowering of required storage) but for high draft the required 

storage is practically insensitive to skewness. 
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Figure 3 Effect of the skewness of inflows to the standardized reservoir size (κ) required to achieve a drift ε = 

0.8 with a reliability level α = 98% (continuous line), a drift ε = 0.2 with a reliability level α = 90% (dashed line), 

and a drift ε = 0.2 with a reliability level α = 98% (dotted line). Results are obtained by simulation using 

independent two-parameter gamma distributed inflows. 
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Generalized simulation procedure for reliability-based reservoir design 

The simplest general procedure to estimate the reservoir size-yield-reliability relationship in 

an accurate and detailed manner, and for any arbitrary inflow characteristics is stochastic 

(Monte Carlo) simulation. A simplified simulation procedure is outlined as follows: 

1. Generate a series of inflows Xt at an appropriate timescale (e.g. monthly) using an 

appropriate stochastic model (e.g. Koutsoyiannis, 2000, 2001; see also the entry SW-

913 – Stochastic Simulation in Water Resources). 

2. Assume a reservoir size c. 

3. Calculate a series of reservoir storages using (2). 

4. Estimate the reliability using (13). 

5. Repeat steps 3-4 for different reservoir sizes.  

This procedure is very simple to execute even in a tabulated form on a spreadsheet. 

 The drawback of stochastic simulation is that it requires a vast simulation length to find 

accurate results. It can be shown that the required number of simulated time steps (e.g. 

months) to estimate the occurrence-based failure probability β΄ with an acceptable error ±ε β΄ 

and confidence γ is  

 n = k (z(1 + γ) / 2 / ε)2 (1 / β΄ – 1)  (22) 

where k is the number of time steps per year and zp is the p-quantile of the standard normal 

distribution. For instance, for k = 12, γ = 95% ( z(1 + γ) / 2 = 1.96), ε = 10% and β΄ = 0.01 this 

yields n = 456 000 months (38 000 years). Today, this is not a major problem as the required 

computer time for such a simulation length can be less than one second in a common PC (but 

not in a spreadsheet environment, which requires much more time).  

 The above-described simplified procedure can be extended to a detailed simulation 

procedure, which includes, in addition to runoff, the precipitation, evaporation and leakage of 

the reservoir. In this case, the level-area-volume and the level-leakage relationships are 

required to establish the functions a(S) and l(S) which yield the reservoir area a and the 

leakage l for any storage S (usually using interpolation from arrays of tabulated values). In 
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this case, the runoff Q, has to be expressed in equivalent depth units, as are precipitation P 

and evaporation E. If f is the catchment area, the net inflow becomes 

 Xt = Qt [f – a(St – 1)] + (Pt – Et) a(St – 1) – l(St – 1) (23) 

where it was implicitly assumed that variations of the reservoir area and leakage within a time 

step are not large, so that a(St – 1) and l(St – 1) can be assumed as representative for the entire 

period within a time step. When the detailed simulation procedure is employed, three time 

series, instead of one, have to be synthesized. Obviously, Qt and Pt are cross-correlated and 

therefore they cannot be generated independently of each other; a bivariate stochastic model is 

needed in this case. On the other hand, Et can be generated independently of the other two 

series. 

 Obviously, the simulation procedure, either the simplified or the detailed one, can be 

directly applied with historical, rather than synthesized inputs. However, due to small record 

length, the accuracy of results in this case will not be satisfactory.  

 Extension of the simulation method, combined with optimization, for a multiple reservoir 

system has been discussed by Nalbantis and Koutsoyiannis (1997). 

Design of additional storage zones of a reservoir 

The design of the flood control storage is typically reliability-based but on a very different 

context from that described above for the active storage. A failure of the flood routing 

function of a reservoir is not a performance failure but a structural one: an overtopping of the 

dam due to a severe flood can result in collapse of the dam. Therefore much lower levels of 

probability of failure are adopted, of the order of 10–3-10–6. The typical steps here are (a) 

estimation of a design storm, based on statistical analysis of rainfall, for an appropriate return 

period (103-106 years); (b) estimation of the inflow hydrograph using an appropriate rainfall-

runoff model; and (c) routing of this hydrograph through the spillway and estimation of the 

outflow hydrograph and the maximum water level. Implicit assumptions in the entire 

procedure, like the assumption that the reservoir is full at the beginning of the flood, decrease 

the risk further. It must be noted that several procedures have been proposed that are 
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supposedly risk-free. These are based on the so-called probable maximum precipitation 

concept. However, it has been argued that a risk-free procedure is an illusion and the value of 

probable maximum precipitation can be exceeded with a certain probability (e.g. of the order 

of 10–5; Koutsoyiannis, 1999). 

 The sizing of the dead storage has been typically based on the expected sediment 

accumulation in the reservoir for a certain design period (e.g. of the order of 102 years). 

Because of the large design period and the accumulation character of this process, the 

approach to this problem is very different. Expected values, rather than probabilities are 

involved in the calculations. The additional objectives that the dead storage serves, i.e. 

environmental protection (protection of the habitat of the reservoir during dry periods) and 

conservation of the quality of landscape, have not been given special attention, until now, and 

have not been considered in the design procedure. One would expect that, some years after 

construction, these additional objectives would not be served adequately because the water in 

the dead volume would be reduced due to sediment accumulation. Fortunately, however, this 

has not been the case: the implicit assumption that sediments will reach the bottom of 

reservoir near the dam is not verified. Thus, in large reservoirs, sediment accumulation occurs 

mainly in the active zone of reservoir (near the entrance of the river to the reservoir) and 

much less in the dead storage. The unfavorable consequence is the reduction of the active 

storage. These problems need to be further investigated in future reservoir designs. 
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