

Methodology 5: Preservation of skewness in multivariate problems via appropriate decomposition of covariance matrices

Consider any linear multivariate stochastic model of the form

Y = a Z + b V

where **Y**: vector of variables to be generated, **Z**: vector of variables with known values, **V**: vector of innovations, and **a** and **b**: matrices of parameters.

The parameter matrix b is related to a covariance matrix c by

$\mathbf{b} \mathbf{b}^T = \mathbf{c}$

- This equation may have infinite solutions or no solution.
- \blacklozenge The skewness coefficients $\pmb{\xi}$ of innovations \pmb{V} depend on $\pmb{b}.$
- The smaller the values of ξ , the more attainable the preservation of the skewness coefficients of the actual variables **Y**.
- Therefore, the problem of determination of **b** can be solved in an optimisation framework, that combines
 - minimisation of skewness $\boldsymbol{\xi}$, and
 - minimisation of the error $||\mathbf{b} \mathbf{b}^T \mathbf{c}||$.
- A fast optimisation algorithm has been developed for this problem.

See details in: Koutsoyiannis, D., Optimal decomposition of covariance matrices for multivariate stochastic models in hydrology, *Water Resources Research* 35(4), 1219-1229, 1999. Koutsoyiannis & Efstratiadis, A stochastic hydrology framework for the management of multiple reservoir systems 9

	Q	CASTALI	A Sloha	stic Simu	lation of	Hydrolog	ical Varia	ables				. 🗆 🗡	
	<u>S</u> c	enario <u>F</u> o	mat <u>V</u> iev	v <u>R</u> un <u>G</u>	<u>à</u> raoh <u>H</u> e	lp							
	臣		E St	atistics		. • 🖬		3					
	Tin	e series	Ar M	onthly mode	el parameie el parameti	ers							
				me series									
A	1												
Variabe	T Varial	⊧s nle2 Va	ariable 3	Variable (4 Vara	ble 5	/ariable 6	Variable	7 Vari	iable 8	_	_	
Histori	ooltimo	oorioo	of rainfr			láouan	(Hudro	logical		050 - 2	0003	ł	e e
Year		Nov			Eab	Mar	(Tyuro			100 - 2	100) Aug	Son	
1958	74.2	86.1	117.1	257.5	68	71.6	52.2	41.5	42.6	31.8	64.5	76.8	922.7
1959	64.1	J 117.8	193.5	186.6	63.4	80.0	115.5	75.6	£8.1	0.0	23.2	86.9	1100.8
1960	29.1	61.9	263.1	80.7	87.9	69.5	57.E	24.4	17.3	236	11.8	0.0	726.9
1961	42.4	105.3	226.1	56.4	155.9	149.3	42.5	30.7	17.6	9.7	10.9	26.8	873.6
1962	130.1	273.0	334.0	210.4	231.1	56.1	59.5	93.4	71.6	53.2	0.3	41.0	1604.1
1963	201.5	42.9	279.J	51.0	63.8	95.4	75.4	66.4	£1.5	422	27.2	39.5	1051.8
1964	56.6	173.4	157.3	135.9	136.1	62.5	91.9	47.5	24.2	5.9	0.4	0.0	922.2
1965	28.4	291.9	185.3	331.3	93.8	99.3	15.9	31.6	39.2	0.0	1.8	77.2	1201.3
1966	46.9	269.7	188.3	152.9	23.1	26.1	61.8	32.1	12.4	621	3.9	85.3	971.2
1967	61.4	41.0	258.4	334.2	71.7	64.6	9.6	56.1	53.2	0.8	16.8	43.8	1011.6
1968	88.6	88.9	298.3	140.1	156.3	100.0	24.U	12.6	11.8	139	3.9	9.7	948.6
1969	6.8	108.5	336.5	164.6	145.4	99.8	34.4	24.9	18.2	0.5	22./	79.0	1041.1
1970	89.2	142.9	123.0	128.9	179.9	235.4	32.1	14.1	2.5	10.3	9.8	62.7	1030.8
1971	55.3	185.9	125.3	146.3	122.0	47.2	88.1	47.1	18.9	65.8	25.4	18.9	946.2
1972	209.0	70.4	12.0	135.3	236.9	116.4	62.E	59.8	40.6	25.2	8.0	15.6	961.8
1973	100.1	149.3	171.0	42.9	235.1	51.3	128.6	81.0	15.4	10.6	3.8	69.8	1028.9
1974	157.8	162.0	67.7	33.7	104.6	119.8	17.5	56.2	65.7	2.4	46.0	0.0	833.4

