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Abstract. A methodology for spatial-temporal disaggregation of rainfall is proposed. The 

methodology involves the combination of several univariate and multivariate rainfall models 

operating at different time scales, in a disaggregation framework that can appropriately 

modify outputs of finer time scale models so as to become consistent with given coarser time 

scale series. Potential hydrologic applications include enhancement of historical data series 

and generation of simulated data series. Specifically, the methodology can be applied to 

derive spatially consistent hourly rainfall series in raingages where only daily data are 

available. In addition, in a simulation framework, the methodology provides a way to take 

simulations of multivariate daily rainfall (incorporating spatial and temporal non-stationarity) 

and generate multivariate fields at fine temporal resolution. The methodology is tested via a 

case study dealing with the disaggregation of daily historical data of five raingages into 

hourly series. Comparisons show that the methodology results in good preservation of 

important properties of the hourly rainfall process such as marginal moments, temporal and 

spatial correlations, and proportions and lengths of dry intervals, and in addition, a good 

reproduction of the actual hyetographs.  
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1 Introduction 

A common problem in hydrological studies is the limited availability of data at appropriately 

fine temporal and/or spatial resolution. In addition, in hydrologic simulation studies a model 

may provide as output a synthetic series of a process (such as rainfall and runoff) at a coarse 

scale while another model may require as input a series of the same process at a finer scale. 

Disaggregation techniques therefore have considerable appeal due to their ability to increase 

the time or space resolution of hydrologic processes while simultaneously providing a 

multiple scale preservation of the stochastic structure of hydrologic processes. 

 The linear disaggregation model introduced by Valencia and Schaake [1972, 1973] along 

with the contributions of Mejia and Rousselle [1976], Tao and Delleur [1976], Hoshi and 

Burges [1979], Lane [1979, 1982], Salas et al. [1980], Todini [1980], Stedinger and Vogel 

[1984], Pereira et al. [1984], Stedinger et al. [1985], Oliveira et al. [1988], Grygier and 

Stedinger [1988, 1990], Lane and Frevert [1990], Santos and Salas [1992], and Salas [1993, 

p. 19.34] has been the most important and widely used scheme for stochastic disaggregation 

problems in hydrological applications. Such linear modeling schemes have been used, among 

other applications, for univariate or multivariate disaggregation of annual to monthly rainfall. 

However, as first pointed out by Valencia and Schaake [1972], modeling schemes of this kind 

are not suitable for the disaggregation of rainfall for time scales finer than monthly, due to the 

skewed distributions and the intermittent nature of the rainfall process at fine time scales. 

Other disaggregation models have been proposed and used, particularly for the disaggregation 

of rainfall, but do not exhibit the generality of these linear schemes.  

The particular problem of rainfall disaggregation at a fine time scale was first studied in a 

systematic manner by Woolhiser and Osborn [1985]. They presented a scheme for the 

disaggregation of individual storm depths into shorter periods, each corresponding to one 
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tenth of the storm's duration; their scheme was based on a nondimensionalized Markov 

process, resulting from successive transformations of the actual rainfall process.  

 Since then, several studies (for example the works of Marien and Vandewiele [1986], 

Hershenhorn and Woolhiser [1987], Koutsoyiannis and Xanthopoulos [1990], Koutsoyiannis 

and Foufoula-Georgiou [1993], Koutsoyiannis [1994], Glasbey et al. [1995], Olsson and 

Berdtsson [1997], Connolly et al. [1998], Gyasi-Agyei [1999], and Koutsoyiannis and Onof 

[2000, 2001]) have been conducted on the problem of fine time scale rainfall disaggregation. 

Some of the methods aimed at the disaggregation of daily rainfall into hourly or finer time 

scale. A common characteristic of all is their univariate aspect, as they perform temporal 

disaggregation at one location only. Koutsoyiannis [1992] generalized the method by 

Koutsoyiannis and Xanthopoulos [1990] for multiple dimensions but this generalization was 

never used in fine-time-scale rainfall disaggregation.  

 The problem of multiple site rainfall disaggregation, as a means for simultaneous spatial 

and temporal disaggregation, has not been studied so far at a fine time scale. It presents 

significant differences from that of single-site disaggregation, including increased 

mathematical complexity. The spatial correlation (cross-correlation among different sites) 

must be maintained in the multivariate problem, whereas it does not appear at all in univariate 

problems.  

 The multivariate approach to rainfall disaggregation is of significant practical interest even 

in problems that are traditionally regarded as univariate. Let us consider, for instance, the 

disaggregation of historical daily raingage data into hourly rainfall. This is a common 

situation since detailed hydrological models often require inputs at the hourly time scale. 

However, historical hourly records are not as widely available as daily records. An 

appropriate univariate disaggregation model would generate a synthetic hourly series, fully 

consistent with the known daily series and, simultaneously, statistically consistent with the 

actual hourly rainfall series. Obviously, however, a synthetic series obtained by such a 
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disaggregation model could not coincide with the actual one, but would be only a likely 

realization. Now, let us assume that there exist hourly rainfall data at a neighboring raingage. 

If this is the case and, in addition, the cross-correlation among the two raingages is significant 

(a case met very frequently in practice), then we could utilize the available hourly rainfall 

information at the neighboring station to generate spatially and temporally consistent hourly 

rainfall series at the raingage of interest. In other words, the spatial correlation is turned to 

advantage since, in combination with the available single-site hourly rainfall information, it 

enables more realistic generation of the synthesized hyetographs. Thus, for example, the 

location of a rainfall event within a day and the maximum intensity would not be arbitrary, as 

in the case of univariate disaggregation, but resemble their actual values. 

 This can be considered as a particular case of a general multivariate spatial-temporal 

rainfall disaggregation problem. This general problem, the simultaneous rainfall 

disaggregation at several sites, is the subject of this paper. The problem involves the 

combination of several univariate and multivariate rainfall models operating at different time 

scales. The problem is formulated in section 2 and the modeling approach is described in 

section 3. A detailed case study is given in section 4 and conclusions are drawn in section 5. 

Some mathematical derivations and additional information on a spatial-temporal cluster based 

rainfall model that is used here to infer parameters for the proposed modeling approach are 

contained in two appendices. 

2 Problem formulation 

 We standardize the problem studied in this paper in the following manner. We assume that 

we are given: 

1. an hourly point rainfall series at point 1, as a result of either: 

 measurement by an autographic device (pluviograph) or digital sensor, 
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 simulation with a fine time scale point rainfall model such as a point process 

model, or  

 simulation with a temporal point rainfall disaggregation model applied to a series 

of known daily rainfall; and 

2. several daily point rainfall series at neighboring points 2, 3, 4, 5, … as a result of 

either: 

  measurement by conventional raingages (pluviometers with daily observations), or 

  simulation with a multivariate daily rainfall model. 

We wish to produce series of hourly rainfall at points 2, 3, 4, 5, …, so that: 

1. their daily totals equal the given daily values; and 

2. their stochastic structure resembles that implied by the available historical data.  

 We emphasize that in this problem formulation we always have an hourly rainfall series at 

one location, which guides the generation of hourly rainfall series at other locations. If this 

hourly series is not available from measurements, it can be generated using appropriate 

univariate simulation models (see section 3.1). If hourly rainfall is available at several (more 

than one) locations, the same modeling strategy described below can be used without any 

difficulty with some generalizations of the computational algorithm. In fact, having more than 

one point with known hourly information would be advantageous for two reasons. First, it 

allows a more accurate estimation of the spatial correlation of hourly rainfall depths (see 

discussion below) or their transformations (see section 3.6). Second, it might reduce the 

residual variance of the rainfall process at each site, thus allowing for generated hyetographs 

closer to the real ones. 

 The essential statistics that we wish to preserve in the generated hourly series are:  

1. the means, variances and coefficients of skewness;  

2. the temporal correlation structure (autocorrelations); 

3. the spatial correlation structure (lag zero cross-correlations); and 
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4. the proportions of dry intervals.  

 If the hourly data set at location 1 is available from measurement, then all these statistics 

apart from the cross-correlation coefficients can be estimated at the hourly time scale using 

this hourly record. To transfer these parameters to other locations, spatial stationarity of the 

process can be assumed. The stationarity hypothesis may seem an oversimplification at first 

glance. However, it is not a problem in practice since possible spatial nonstationarities 

manifest themselves in the available daily series; thus the final hourly series, which are forced 

to respect the observed daily totals, will reflect these nonstationarities.  

 If more than one rainfall series are available at the hourly level, at least one cross-

correlation coefficient of hourly rainfall can be estimated directly from these series. Then, by 

making plausible assumptions about the spatial dependence of the rainfall field an expression 

of the cross-correlation versus distance could be established. This would then be used to 

estimate cross-correlation between all pairs of raingages. 

 Otherwise, i.e., in those cases for which only one or no historical data set exists at the 

locations of interest, some or all the above categories of statistics must be inferred indirectly 

using a spatial-temporal stochastic model of the rainfall structure fitted on daily rainfall series, 

as described later (section 3.1). Obviously, in the latter case the accuracy of statistics at hourly 

level will be expected to be much poorer.  

3 Modeling approach 

3.1 Models involved 

 Several separate models are involved in the proposed disaggregation framework. These fall 

into three categories outlined below. 

 a. Models for the generation of multivariate fine-scale outputs. The first category 

includes two models that form the core of this framework in the sense that they provide the 

required output (the hourly series).  
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 The first model is a simplified multivariate model of hourly rainfall that can preserve the 

statistics of the multivariate rainfall process and, simultaneously, incorporate the available 

hourly information at site 1, without any reference to the known daily totals at the other sites. 

The statistics considered here are the means, variances and coefficients of skewness, the lag-

one autocorrelation coefficients and the lag-zero cross-correlation coefficients. All these 

represent statistical moments of the multivariate process. The proportion of dry intervals, 

although considered as one of the parameters to be preserved (section 2), is difficult to 

incorporate explicitly. However, it can be treated by an indirect manner, as discussed later 

(sections 3.3 and 3.6). 

 The second model is a transformation model that modifies the series generated by the first 

model, so that the daily totals are equal to the given ones. This uses a (multivariate) 

transformation, which does not affect the stochastic properties of the series. Both models are 

discussed further below (sections 3.4 and 3.5). 

 b. Models associated with inputs to a. above. The second category contains models 

which may optionally be used to provide the required input, should no observed series be 

available. These may include 

 a multivariate daily rainfall model for providing daily rainfall depths, such as the 

general linear model (GLM) [Chandler and Wheater, 1998a, b];  

 a single-site model for providing hourly depths at one location such as the Bartlett-

Lewis rectangular pulses model [Rodriguez-Iturbe et al., 1987, 1988; Onof and 

Wheater, 1993, 1994]; 

 a single-site disaggregation model to disaggregate daily depths of one location into 

hourly depths [e.g. Koutsoyiannis and Onof, 2000, 2001]. 

 Such models may be appropriate to operate the proposed disaggregation approach for 

future climate scenarios. 
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 c. Models associated with spatial-temporal parameters. The third category includes 

models which play an auxiliary role in the disaggregation framework by providing some of 

the required parameters of the spatial-temporal rainfall process given the statistical properties 

of the available data. For example, in this paper, we have adopted the Gaussian Displacement 

Spatial-Temporal rainfall Model (GDSTM) [Northrop, 1996, 1998] to provide the spatial 

stochastic structure at the hourly level. This model assumes that rainfall is realized as a 

sequence of storms that arrive following a Poisson process in space and time and each storm 

consists of a number of cells. Both storms and cells are characterized by their centers, 

durations and areal extents, and in addition cells have uniform rainfall intensity. Details of the 

model structure are given in Appendix 2 

 As explained above, if some statistics of hourly rainfall required for the disaggregation 

cannot be estimated directly from the data, they might be inferred using the spatial-temporal 

rainfall model in the following manner: 

1. The temporal and spatial correlations at the daily level are estimated using the daily data 

sets; in addition, if an hourly series is available, its marginal statistics are estimated. 

2. The parameters of the spatial-temporal rainfall model are estimated by fitting the spatial-

temporal rainfall model using the historical statistics estimated at point 1. 

3. The remaining statistics that are required for disaggregation (e.g. spatial correlations at the 

hourly level) are inferred from the spatial-temporal rainfall model. 

 This is further clarified in the case study of section 4. It should be noted that the spatial-

temporal rainfall model is used in parameter estimation only. To estimate the required 

statistics in the manner described above it suffices to calibrate the model and there is no need 

to run it. However, a model run may be necessary if statistics of transformations of rainfall 

depths are needed for subsequent modeling steps (see section 3.6). Such statistics can be 

estimated from synthetic hourly series generated by the spatial-temporal rainfall model. 
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3.2 The need for a simplified rainfall model  

 Among the different model categories described in section 3.1, the GDSTM (or another 

model of this type) is the most complete as it describes the rainfall process in continuous time 

and space in a multidimensional context. However, such a model cannot have the appropriate 

structure to utilize the given hourly information at site 1 and therefore it cannot be used in the 

generation phase. In other words, it is not possible to force (or condition) such a multivariate 

model to produce a given hourly rainfall depth (known for instance from measurement) at a 

certain point and a certain hour. For this reason, GDSTM is only used in the parameter 

estimation phase. 

 In generation phase, we must replace this model with a model that can utilize the known 

hourly time series explicitly. As already mentioned above, the strategy adopted in this paper is 

to develop a simplified multivariate model for this purpose. This model is capable of 

preserving only the statistics already listed in section 2. In principle, the adoption of a less 

simplified model, which could preserve additional statistics of the rainfall process, is not 

excluded. For example, it may be possible to design the multivariate model so as to maintain a 

large number of autocovariance coefficients (for any lags). However, we prefer to use a more 

parameter parsimonious approach, maintaining the autocovariances for lag one only to 

provide an efficient model which can be indirectly corrected. Normally, this simplification 

would have some implications for the structure of the multivariate hourly rainfall process. 

However, it is expected that the implications will be counterbalanced due to the additional 

source of information (apart from the statistics themselves), which is incorporated as model 

input: namely, the single site hourly information (see also section 3.6).  

 Specifically, assuming that all sites are close to each other and highly spatially correlated, 

the given hourly series at site 1 can be used, with the simplified multivariate model, to 

 “guide” the generation of the hourly series at the daily data sites and act indirectly to 

preserve properties not modeled explicitly; 



11 

 properly locate the rainfall events in time; and 

 produce initial hourly rainfall series at the daily sites, whose departures from the 

actual hourly depths at those sites are not large (even though these known daily totals 

are not considered at all by this simplified multivariate model). 

 At a later stage, i.e. when the transformation model is applied, another source of 

information is additionally incorporated, that is the multi-site daily information. This results 

in the preservation of other additional properties, which are not captured by the statistics used. 

For example, as noted above, nonstationarities of the rainfall field (both in space and time) are 

reproducible, even though the models used are stationary. 

3.3 A simplified univariate rainfall model 

 Before describing the simplified multivariate rainfall model, it will be informative to study 

it in a univariate form. It is well known that specific peculiarities of the rainfall process on a 

fine time scale, and mainly the intermittency and the highly skewed, J-shaped, probability 

density function, deterred from the use of typical stochastic models such as ARMA. Different 

types of models such as point process models [e.g. Waymire and Gupta, 1981; Rodriguez-

Iturbe et al., 1987, 1988; Onof and Wheater, 1993, 1994], scaling models [e.g. Koutsoyiannis 

and Foufoula-Georgiou, 1993], possibly combined with alternate renewal processes [e.g. as 

in Koutsoyiannis and Pachakis, 1996], and multifractal simulation techniques [e.g. Marshak 

et al., 1994, Olsson, 1996; Olsson and Berndtsson, 1997; Menabde et al., 1997] have been 

used instead. Most of these types of models consider in an explicit manner the two states of 

the rainfall process, i.e. the dry and the wet state. Nowadays, most of these model types have 

become widespread in typical applications concerning single site rainfall simulation. 

Extensions to many dimensions have been developed in a few cases. For example, GDSTM, 

described earlier, is an extension of a monodimensional point process into three dimensions 

(time dimension plus two spatial dimensions). But even in one dimension, such models are 
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difficult, if not impossible, to condition, e.g. to force to match a certain known value at a 

certain time interval. Therefore, they are not appropriate as generation tools for the problem 

under study. 

 In seeking a simplified model that can be easily conditioned, it is helpful to revisit the 

stochastic structure of rainfall on a fine time scale, such as hourly. As an example case, we 

use a 5-year time series of hourly rainfall during rainy days of January at gage 1 of the Brue 

catchment (South-Western England; see also section 4). This time series refers to 95 rainy 

days in total, so it contains 2280 data values. As shown in Table 1, most of these values (1679 

values or 73.6%) are zeros. The second most frequently occurring value is 0.2 mm (280 

values or 12.3%). In total, 2191 values or 96.1% are smaller than or equal to 1 mm. This 

signifies the highly skewed, J-shaped probability density function of hourly rainfall. 

 The value x = 0.2 mm is typically the lowest possible measured value in devices like 

tipping bucket pluviographs. Higher measured values (0.4 mm, 0.6 mm, etc.) are multiples of 

this threshold. In fact each measured value xi represents a continuous interval of actual rainfall 

depth ci ≤ x < ci + 1. For example, it can be assumed that the measurement outcome x = 0.2 mm 

represents an actual rainfall depth in the interval 0.1 mm ≤ x < 0.3 mm. This means that in this 

most frequently occurring range of rainfall depth, the measurement (relative) error is very 

high: from –100% to +33%. The error becomes progressively lower for higher values of x.  

 Extending this discussion, we must recognize that there is a significant percentage of small 

rainfall depths in the interval 0 < x < 0.1 mm which are measured as x = 0, although they are 

positive values. This fact is known to people involved in rainfall measurement (who at times 

observe rainfall but see their devices recording zero) and also to researchers that have 

analyzed the rainfall structure. For example, it has been a common practice, when forming 

sequences of storm events, to incorporate periods of zero rainfall within events. The lengths 

of such periods range from 2-3 hours [Grace and Eagleson, 1966; Eagleson, 1970] through 5-
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7 hours [Huff, 1967; Koutsoyiannis and Xanthopoulos, 1990, Koutsoyiannis and Foufoula-

Georgiou, 1993] to as high as 3 days or more [Restrepo-Posada and Eagleson, 1982]. 

 Given this, what is regarded as a dry period (identified from the measurements of a 

pluviograph) is not necessarily a dry period from a physical point of view. Distinguishing the 

(false dry) periods with positive rainfall depth in the interval (0, 0.1 mm) from the periods 

with exactly zero rainfall (true dry) is not an easy task. Intuitively, given the number of 

occurrences of small values (0.2-1.0 mm) in the example of Table 1, we expect to have a large 

number, N0, of rainfall depths in the interval (0, 0.1 mm), at least comparable to N1, the 

number of the values 0.2 mm. To get a quantitative estimate of N0, we can perform 

extrapolation assuming that the actual rainfall depths vary in the continuous set of positive 

real numbers, rather than taking the discrete values 0.2 mm, 0.4 mm, etc. Let F(x) := 

Prob(X ≤ x|X > 0) be the probability distribution function of hourly depth conditional on being 

positive (not dry). Then, N0 = F(c1) N, Ν1 = [F(c2) –F(c1)] N, or more generally 

 Νi = [F(ci + 1) – F(ci)] N (1) 

where N = N0 + N1 + N2 + ..., c0 = 0, and ci = 0.1 mm + (i – 1) × 0.2 mm (for i > 0). To 

estimate N0, we tried three alternative types of F(x), the single-parameter exponential and the 

two-parameter Weibull and Gamma, all having the ability to yield a J-shaped density, as 

described in more detail in Appendix 1. The best local fit (for rain depths ≤ 1 mm) was 

attained by the Gamma distribution, which resulted in N0 as high as 2657, which is higher 

than the historical total number of zero values (1679). The Weibull distribution resulted in N0 

= 1110 whereas the exponential distribution, which had the worst fit, resulted in N0 = 291. 

This exercise shows that the estimation of the number of the very small values of hourly 

rainfall depths during rainy days cannot be precise. Apparently, however this is a large 

number, which in our example must be in the range 291 to 1679, with the higher values being 

more likely. It also shows that if we regard all historical zero hourly depths during rainy days 



14 

(1679 values) as very small depths (< 0.1 mm rather than exactly zero), we will not make a 

vital error. This assumption is in fact very convenient: there is no need to model rainfall 

during rainy days as a two-state process but it suffices to handle it as a typical stochastic 

process whose smallest values (< 0.1 mm) are rounded off to zero. One may argue that this 

approach may be not precisely consistent with the natural rainfall process as there must be 

some true dry periods during rainy days. The answer is that this is merely a model and no 

model can be fully consistent with reality. As shown above, even a two-state approach is 

inconsistent with reality as far as it regards all periods with measurements rounded off to zero 

as dry periods.  

 Let us now study the consequences of the proposed simplified univariate single-state 

model. In Figure 1 we depict the empirical distribution function of hourly rainfall depth 

during rainy days of the same example time series, now considering all data values and 

assuming a single-state model (e.g., F(0.1 mm) = N0 / (N + 1), F(0.3 mm) = (N0 + N1) / 

(N + 1), etc., with N0 = 1679). To this empirical distribution we fitted the Gamma distribution 

(now for the entire domain of hourly depth) and also plotted it on Figure 1 (upper panel) 

along with the corresponding curves of the Kolmogorov-Smirnof test for significance level 

10%. The plot indicates that the Gamma distribution is an acceptable marginal distribution for 

the single-state hourly rainfall process. In particular, the probability of a dry hour, 

conventionally defined as F(0.1 mm), is estimated from the Gamma distribution to 74.8%, 

very close to the empirical value (73.6%).  

 Given that hourly depths are autocorrelated, a candidate stochastic process to model them 

is the Gamma autoregressive (GAR) process [Lawrance and Lewis, 1981; Fernandez and 

Salas, 1990] which behaves like the typical autoregressive AR(1) process but, in addition, it 

preserves exactly the Gamma distribution. As demonstrated in the lower panel of Figure 1, a 

synthetic series generated from the GAR model with length, mean, standard deviation and lag 

one autocorrelation equal to those of the historical sample (2280, 0.17 mm, 0.48 mm and 
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0.43, respectively), when rounded off to intervals of 0.2 mm, gives a distribution function plot 

very close to the historical distribution. 

 For the same example, we have plotted on Figure 2 the empirical distribution of the lengths 

of historical “dry” periods, defined as the periods with consecutive zero measurements of 

hourly depth. In addition, we have plotted similar distributions for two synthetic series of 

hourly rainfall. In the first series independence of consecutive hourly depths was assumed, 

whereas the second is the (already mentioned) one generated with the GAR model with lag 

one autocorrelation 0.43. In the case of independent hourly depths, the resulting lengths are 

clearly too small in comparison to the historical ones. When the lag one autocorrelation is 

considered, the distribution of the synthetic dry intervals approaches that of the historical ones 

with the exception of the very low values, where a departure is observed.  

 Thus, the simple single-state GAR model, applied on rainy days, could be a satisfactory 

simplified model for a single-site rainfall model. However, its extension to a multivariate 

space is not possible, and thus even this model is not appropriate for our purpose. The next 

candidate is the AR(1) model (i.e. Xs = a Xs – 1 + b Vs) with three-parameter Gamma 

distributed residuals Vs. If these parameters are estimated so that Xs are two-parameter 

Gamma distributed, then AR(1) approaches GAR. This is demonstrated in the lower panel of 

Figure 1, where, in addition to the GAR series, the distribution function of a synthetic series 

generated from the AR(1) model (again with length, mean, standard deviation and lag one 

autocorrelation equal to those of the historical sample) was also plotted. In this case the plot 

was drawn for the series as generated, without rounding off its values. What is not 

distinguished in the graph is that a high percentage, 50.1% of the generated values, is negative 

with values in the interval (–0.045 mm, 0). Another percentage 20.1% is small positive values 

smaller than 0.1 mm. Of course, both these groups of values will be rounded off to zero, so 

that we will get a probability dry 70.1%. In addition, if we round off values smaller than a 

threshold 0.13 mm, instead of 0.10 mm, we get exactly the historical probability dry (73.6%). 
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Thus, the AR(1) model, although theoretically is apparently unsuitable for rainfall (especially 

for the generation of negative values), in practice behaves like the more consistent GAR 

model and, in addition, can be directly extended to many dimensions. 

 The above observations have been based on a single real world example for demonstration 

purposes. A wide range of similar examples was investigated, referring to hourly rainfall 

series from different climates, and resulted in similar conclusions.  

3.4 The simplified multivariate rainfall model 

 If, after the discussion of the section 3.3, a univariate single-state AR(1) model seems to 

behave relatively well in reproducing the stochastic structure of rainfall, a multivariate AR(1) 

model, in which at least one component is the actual (rather than modeled) rainfall process at 

one location, will behave even better. Thus, for n locations, we may assume that the 

simplified multivariate rainfall model is an AR(1) process, expressed by  

 Xs = a Xs – 1 + b Vs (2) 

where Xs := [Xs 
 1, Xs 

 2, …, Xs 
 n]T represents the hourly rainfall at time (hour) s at n locations, a 

and b are (n × n) matrices of parameters and Vs (s = …, 0, 1, 2, …) is an independent 

identically distributed (iid) sequence of size n vectors of innovation random variables (so that 

the innovations are both spatially and temporally independent). The time index s can take any 

integer value. Xs are not necessarily standardized to have zero mean and unit standard 

deviation, and obviously they are not normally distributed. On the contrary, their distributions 

are very skewed. The distributions of Vs are assumed three-parameter Gamma. 

 Equations to estimate the model parameters a and b and the moments of Vs directly from 

the statistics to be preserved are given for instance by Koutsoyiannis [1999] for the most 

general case. In the special case examined here, for convenience, the parameter matrix a is 

assumed diagonal, which suffices to preserve the statistics listed in section 2, and is given by 
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 a = diag(Cov[X
 l
s , X l

s–1] / Var[X l
s–1], l = 1, …, n)   (3) 

The parameter matrix b is determined from 

 b bT = Cov[Xs, Xs] – as Cov[Xs– 1, Xs–1] as (4) 

If b is assumed lower triangular, which facilitates handling of the known hourly rainfall at site 

1, then it can be determined from b bT using Cholesky decomposition.  

 Another group of model parameters are the moments of the auxiliary variables Vs. The first 

moments (means) are obtained by  

 E[Vs] =b–1 ( I – a) E[Xs] (5) 

where I is the identity matrix. The variances are by definition 1, i.e., Var[Vs] = [1, …, 1]T and 

the third moments are obtained in terms of µ3[Xs], the third moments of Xs, by  

 µ3[Vs] = ⎝⎜
⎛

⎠⎟
⎞b(3)

 

 –1

 ( I – a(3)) µ3[Xs] (6) 

where a(3) and b(3) denote the matrices whose elements are the cubes of a and b, respectively. 

 At the generation phase, Vs 
 1, the first component of Vs, is calculated from the series of Xs 

 1 

rather than generated. Given that b is lower triangular, its first row will have only one nonzero 

item, call it b1, so that from (2) 

 Xs 
 1 = a1 Xs – 1

 1  + b1 Vs 
 1 (7) 

which can be utilized to determine Vs 
 1. This can be directly expanded to the case where 

several gages of hourly information are available provided that b is lower triangular. 

 Alternatively, the model can be expressed in terms of some nonlinear transformations Xs
΄ of 

the hourly depths Xs (e.g., a power transformation, see section 3.6), in which case (2) is 

replaced by 
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 Xs
΄ = a Xs – 1

΄  + b Vs (8) 

All above equations (3)-(7)are still valid if Xs
΄ is substituted for Xs. 

3.5 The transformation model 

 Transformations that can modify a series generated by any stochastic process to satisfy 

some additive property (i.e. the sum of the values of a number of consecutive variables be 

equal to a given amount), without affecting the first and second order properties of the 

process, have been studied previously by Koutsoyiannis [1994] and Koutsoyiannis and 

Manetas [1996]. These transformations, more commonly known as adjusting procedures, are 

appropriate for univariate problems, although they can be applied to multivariate problems as 

well, but in a repetition framework. More recently, Koutsoyiannis [2001] has studied a true 

multivariate transformation of this type and also proposed a generalized framework for 

coupling stochastic models at different time scales.  

 This framework, adapted to the problem examined here, is depicted in Figure 3 where Xs 

and Zp represent the “actual” hourly- and daily-level processes, related by  

 ∑
s = (p – 1) k + 1

p k

  Xs = Zp (9) 

where k is the number of fine-scale time steps within each coarse-scale time step (24 for the 

current application). X
~

s and Z
~

p in Figure 3 denote some auxiliary processes, represented by 

the simplified rainfall model in our case, which also satisfy a relationship identical to (9).  

 The problem is: Given a time series zp of the actual process Zp, generate a series xs of the 

actual process Xs. To this aim, we first generate another (auxiliary) time series x~s using the 

simplified rainfall process X
~

s. The latter time series is generated independently of zp and, 

therefore, x~s do not add up to the corresponding zp, as required by the additive property (9), 

but to some other quantities, denoted as z~p. Thus, in a subsequent step, we modify the series 

x~s thus producing the series xs consistent with zp (in the sense that xs and zp obey (9)) without 
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affecting the stochastic structure of x~s. For this modification we use a so-called coupling 

transformation, i.e., a linear transformation, f(X
~

s, Z
~

p, Zp)  whose outcome is a process 

identical to Xs and consistent to Zp. 

 Let X*
p := [XT

(p – 1)k + 1, …, XT
p k ]

T
 the vector containing the hourly values of the 24 hours of 

any day p for all examined locations (i.e., the 24 vectors Xs for all hours of the day; for 5 

locations, X*
p contains 24 × 5 = 120 variables). Let also Z*

p := [ZT
p, ZT

p + 1, XT
(p – 1)k]

T
 the vector 

containing the daily values Zp for all examined locations, the daily values Zp + 1 of the next 

day for all locations, and the hourly values X(p – 1)k of the last hour of the previous day p – 1 

for all locations. For instance, for 5 locations Z*
p contains 3 × 5 = 15 variables in total. Items 

(b) and (c) of the vector Z*
p were included to assure that the transformation will preserve not 

only the covariance properties among the hourly values of each day, but the covariances with 

the previous and next days as well. Note that at the stage of the generation at day p the hourly 

values of day p – 1 are known (therefore, in Z*
p we enter hourly values of the previous day) 

but the hourly values of day p + 1 are not known (therefore, in Z*
p we enter daily values of the 

next day, which are known). In an identical manner, we construct the vectors X
~*

p and Z
~*

p from 

variables X
~

s and Z
~

p. 

 Koutsoyiannis [2001] showed that the coupling transformation sought is given by  

 X*
p = X

~*
p + h (Z*

p – Z
~*

p) (10)  

where 

 h = Cov[X*
p, Z*

p] {Cov[Z*
p, Z*

p]}
–1

 (11) 

 The quantity h (Z*
p – Z

~*
p) in (10) represents the correction applied to X

~
 to obtain X. 

Whatever the value of this correction is, the coupling transformation will ensure preservation 

of first and second order properties of variables (means and variance-covariance matrix) and 

linear relationships among them (in our case the additive property (9)). However, it is 

desirable to have this correction as small as possible in order for the transformation not to 
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affect seriously other properties of the simulated processes (e.g., the skewness). It is possible 

to make the correction small enough, if we keep repeating the generation process for the 

variables of each period (rather than performing a single generation only) until a measure of 

the correction becomes lower that an accepted limit. This measure can be defined as 

 ∆ = ||h (Z*
p – Z

~*
p)|| / (m σX) (12) 

where m is the common size of X*
p and X

~*
p, σX is standard deviation of hourly depth (common 

for all locations due to stationarity assumption) and ||.|| denotes the Euclidian norm..  

 Given the daily process Zp and the matrix h, which determines completely the 

transformation, the steps followed to generate the hourly process Xs are the following: 

1. Use the simplified rainfall model (2) or (8) to produce a series X
~

s for all hours of the 

current day p and the next day p + 1, without reference to Zp. (The series at location 1 will 

be identical to the given one). 

2. At day p evaluate the vectors Z*
p and Z

~*
p using the values of Zp and X

~
s of the current and 

next day, and Xs of the previous day.  

3. Determine the quantity h (Z*
p – Z

~*
p) and the measure of correction ∆. If ∆ is greater than an 

accepted limit ∆m, repeat steps 1-3 (provided that the number of repetitions up to the 

current repetition has not exceeded a maximum allowed number rm, which is set to avoid 

unending loops).  

4. Apply the coupling transformation to derive X*
p of the current day. 

5. Repeat steps 1 to 4 for all days. 

3.6 Specific difficulties 

 The peculiarities of the rainfall process at a fine time scale were already studied in section 

3.3 for the univariate case demonstrated. Here we describe how these are handled in the 

multivariate modeling scheme.  



21 

 Negative values. As demonstrated in section 3.3, the negative values, unavoidably 

generated by any linear stochastic model when the coefficient of variation is high (possibly in 

a high proportion but with low values), is not a major problem in our case. They are simply 

truncated to zero, thus having a beneficial effect in preserving the proportion of dry intervals 

(as also shown in next paragraph). A negative effect is the fact that truncation may be a 

potential source of bias to statistical properties that are to be preserved. Specifically, it is 

anticipated to result in overprediction of cross-correlations as it is very probable that negative 

values are contemporary.  

 Dry intervals. As already mentioned in section 3.1, the proportion of dry intervals cannot 

be preserved by linear stochastic models in an explicit manner. However, as demonstrated in 

section 3.3, after rounding off the generated values, a significant number of zero values 

emerge, which are added to the significant number of zero values resulting from the 

truncation of negative values. The total percentage of zero values resulting in this way may be 

comparable to (usually somewhat smaller than) the historical probability dry. It was 

demonstrated in section 3.3 that we can match exactly the historical probability dry by 

slightly modifying the rounding-off rule. For the multivariate case, the following technique 

was found effective: A proportion π0 of the very small positive values, chosen at random 

among the generated values that are smaller than a threshold l0 (e.g., 0.1-0.3 mm), are set to 

zero.  

 An alternative technique, based on a two-state (wet-dry) representation of hourly rainfall 

within a rainy day, was also studied. According to this technique, at periods when the known 

hourly time series (location 1) indicates dry condition (zero depth) the unknown hourly time 

series are forced, with a specified probability φ0, to take zero depth as well.  

 Preservation of skewness. Although the coupling transformation preserves the first and 

second order statistics of the processes, it does not ensure the preservation of third order 

statistics. Thus, it is anticipated that it will result in underprediction of skewness. However, 
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the repetition technique described in section 3.5 can result in a good approximation of 

skewness.  

 Homoscedasticity of innovations. By definition, the innovations Vs in the simplified 

multivariate rainfall model are homoscedastic, in the sense that their variances are constant, 

independent of the values of rainfall depths Xs. Therefore, if, for instance, we estimate (or 

generate) the value at location 2, given that at location 1, we assume that the conditional 

variance is constant and independent of the value at location 1. This, however, does not 

comply with reality: by examining simultaneous hyetographs at two locations we can observe 

that the variance is larger during the periods of high rainfall (peaks) and smaller in periods of 

low rainfall (heteroscedasticity). As a result of this inconsistency, synthesized hyetographs 

will tend to have unrealistically similar peaks. One way to mitigate this problem is to apply a 

nonlinear transformation to rainfall depths.  

 The first candidate for nonlinear transformation is the logarithmic one,  

 Xs
΄ := ln(Xs + ζ) (13) 

with constant vector ζ > 0, where the logarithmic transformation should be read as an item to 

item one. The stationarity assumption allows considering all items of vector ζ equal to a 

constant ζ. This transformation would be an appropriate selection if ζ were estimated so that 

the transformed series of known hourly depths have zero skewness, in which case the 

transformed variables could be assumed to be normally distributed. Then, preservation of first 

and second order properties of the untransformed variables is equivalent to preservation of 

first- and second-order properties of the transformed variables [Koutsoyiannis, 2001]. 

However, evidence from the examined data sets shows that the skewness of the transformed 

variables increases with increasing ζ and it still remains positive even if very small ζ are 

chosen. This means that the lognormal assumption is not appropriate for hourly rainfall.  

 A second candidate is the power transformation  
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 Xs
΄ := Xs

(m)  (14) 

where the symbol (m) means that all items of the vector Xs are raised to the power m (item to 

item) where 0 < m < 1. The stationarity assumption complies with the assumption that m is the 

same for all items. The preservation of the statistics of the untransformed variables does not 

necessarily lead to the preservation of the corresponding statistics of the transformed 

variables. However, the discrepancies are expected to be insignificant if m is not too low (e.g., 

for m ≥ 0.5).  

 An alternative approach to remedy heteroscedasticity would be to classify different wet 

days in a month into different categories, defining different means, variances, etc., for each 

category. Such a classification could be based either on additional meteorological information 

(e.g. convective activity) for each day, or on merely the rainfall depths of each day (e.g. low, 

intermediate and high daily depths). This, however, was not studied further.  

3.7 Methodology implementation 

The methodology was implemented in a computer program with the name MuDRain 

(abbreviating Multivariate Disaggregation of Rainfall). The program automates most tasks of 

parameter estimation, performs the disaggregation and provides tabulated and graphical 

comparisons of historical and simulated statistics of hourly rainfall. In the parameter 

estimation phase, the program estimates all statistics to be preserved that are listed in section 

2, apart from hourly cross-correlation coefficients whose estimation, as explained earlier, 

requires the GDSTM. The program offers three categories of options that must be specified by 

the user: (a) the use or not of repetition in the generation phase, (b) the use or not of one of the 

transformations mentioned in section 3.6, and (c) the use or not of the two-state representation 

of hourly rainfall. In case of the adoption of each of these options, the user must specify some 

additional parameters for the generation, which are: for (a) the maximum allowed distance ∆m 

and the maximum allowed number of repetitions rm (as defined in point 3 of section 3.5); for 
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(b) the transformation constant ζ or m (as defined in equation (13) or (14), respectively); and 

for (c) the probability φ0, to force a dry state in each of the locations. Two additional 

parameters are used, which are related to the rounding off rule of generated hourly depths, i.e. 

the proportion π0 and the threshold l0.  

 In the current program configuration, the options and the additional parameters are 

specified by the user in a trial-and-error manner, i.e., starting with different trial values until 

the resulting statistics in the synthetic series match the actual ones. This can be seen as a fine-

tuning of the model, which is manual. An automatic fine-tuning procedure, based on 

stochastic optimization, seems to be possible but has not been studied so far.  

4 Case study 

 The methodology described above has been applied to the Brue catchment located in 

South-Western England. The catchment is equipped with 49 raingages of which only 5 were 

used in this case study. Five years of data were available, covering the period September 1993 

to August 1998 (in fact the data of September 1993 was suspect for most of the raingages and 

was excluded from the analyses). Specifically, the simulation with the proposed 

disaggregation framework was performed using hourly data of one raingage only (raingage 1) 

and daily data from another four raingages (raingages 2-5) shown in Figure 4. The hourly data 

of raingages 2-5 was later used for tests and comparisons with simulated data. As usual, 

simulations were performed for each month separately. Of the different months, January and 

July are those with the wettest and driest regime, respectively, and, simultaneously, the 

strongest and the weakest cross-correlation between the different raingages. Therefore, the 

case study presented here is concerned with these two months. 

 The statistics estimated from the single-site hourly rainfall data (gage 1) are shown in 

Table 2 for January and Table 3 for July (interestingly, the maximum observed hourly rainfall 

is higher in July than in wetter January, which can be attributed to more convective weather 
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during summer). For comparison and verification, in both tables we have included the 

corresponding statistics of the four raingages 2-5 estimated from the hourly data of the same 

period, although the latter were not used in any phase of simulation. Using the statistics of 

gage 1 at the hourly level, as well as the corresponding statistics at the daily level together 

with the cross-correlations at daily level we fitted the GDSTM in a manner described in 

Appendix 2. From this model we inferred the cross-correlation coefficients at hourly level, 

which are shown in Table 4 (for January and July). For comparison, the historical cross-

correlation coefficients among the five gages are also shown in this table, although again 

these were not used at all in any phase of the modeling. The differences between the two 

groups of values are less than ±0.15 for January but much higher for July (up to ±0.30). 

Notably, the differences in the cross-correlation coefficients, estimated by the spatial-

temporal rainfall model in this case study, from the values estimated again by the same model 

but using a more complete set of statistics to fit, including the hourly cross-correlations 

between all gages, are less than ±0.05 for January and ±0.10 for July. These figures indicate 

that the fit of the GDSTM is very good for January and somewhat poorer for July. However, 

we proceeded with the hourly cross-correlations estimated by this model for both months. 

 In both simulations (January and July) the single-state approach was adopted, so the option 

of forcing a dry condition and the related parameter φ0 were deactivated. For January, the 

simplified multivariate model was used in its form (8) along with the power transformation 

(14). The exponent m was chosen equal to 0.5, a value that was found (after trials) to prevent 

discrepancies in the statistics to be preserved (see section 3.6). The statistics of the 

transformed variables are shown in Table 5 in a format similar to that of Table 2. These 

statistics were used in the simplified rainfall model but the cross-correlations were unchanged 

as given in Table 4. This assumption was checked to be realistic for m = 0.5 or higher. For 

July, no transformation was assumed and the simplified multivariate model was used in its 

form (2).  



26 

 Repetition was not necessary for January where the cross-correlation coefficients were 

very high, but was adopted for July. In this case, ∆m was set 1% and rm was set 1000. For the 

control of the proportion of dry intervals the technique described in section 3.6 was used with 

l0 = 0.2 mm and π0 = 0.40 for January and l0 = 0.3 mm and π0 = 0.50 for July.  

 Applying the disaggregation framework, synthetic hourly rainfall series were produced for 

the five gages, that of gage 1 being identical to the historical series. The statistics of the 

synthetic series are compared to the historical and model statistics in Table 2 through Table 4. 

It can be observed that the statistics of the synthetic series are in good agreement with 

historical and model statistics. A graphical comparison of the entire distribution function of 

historical and simulated hourly rainfall depth during wet days is given in Figure 5 for gage 3 

and for the month of July; wet days have been defined here as those with areal average daily 

rainfall greater than 1 mm. The historical and simulated distribution functions in general, and 

the corresponding probabilities dry in particular, emerging as the values of the distribution 

functions for hourly rain depth 0.1 mm, are in good agreement to each other as shown in 

Figure 5. 

 The lag-zero cross-correlation coefficients for the five gages at hourly level, calculated 

both for the entire period of the data set and for merely wet days, are shown in Table 4. For 

the month of July, where, as discussed above, the cross-correlations modeled by GDSTM 

depart significantly from historical ones, we observe that the deviations of simulated cross-

correlations from either the modeled or the historical ones are generally less that the deviation 

of the modeled cross-correlations from the historical ones. This indicates that the 

disaggregation reduces the discrepancies due to inappropriateness or misspecification of 

modeled parameters. For the month of January we have also calculated the lag-one cross-

correlation coefficients, shown in Table 6. These statistics (apart for the diagonal values 

which in fact are autocorrelations) have not been entered in the calculations and therefore 

their preservation could not be assured. Nevertheless, the figures in Table 6 indicate that 
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acceptable approximations of these statistics have been attained, with the modeled values 

being somewhat below the historical ones. The differences must be attributed to the fact that 

the autocorrelation coefficients of each site that have been entered to the model as input are in 

all cases somewhat smaller that the historical ones. 

 A further comparison is given in Figure 6 for January (upper panel) and July (lower panel) 

in terms of the autocorrelation function for higher lags, up to lag 10 (again, not explicitly 

modeled apart from lag 1) for two of the examined gages. Clearly, the autocorrelation 

function that corresponds to the AR(1) model departs significantly from the historical one 

(e.g. for January and for lag 3, the model autocorrelation  is virtually zero whereas the 

historical one is 0.15-0.20). The autocorrelation function of the GDSTM agrees better with 

the historical one. One would expect that the synthetic autocorrelations would agree with 

those of the AR(1) model that was used to generate them. However, they agree much better 

with the historical autocorrelations. As discussed earlier, what forced the synthetic 

autocorrelations to agree with the historical ones was the given hourly rainfall series at gage 1 

along with the significant cross-correlations among the different gages. This indicates that in 

cross-correlated sites there is no need for a higher order AR or ARMA model, since in the 

multivariate framework studied (with one data series known), even the AR(1) model can 

reproduce historical autocorrelations (for lags > 1) adequately.   

 The length of dry intervals is another variable that has not been explicitly modeled in this 

approach. Nevertheless, a comparison of historical and simulated probability distribution 

functions of this variable during wet days, depicted in Figure 7 for gage 3 and for the month 

of July, indicates an encouraging performance of the model, with a slight overprediction of 

the very low values of the length of dry intervals (similar to that discussed in section 3.3 with 

reference to Figure 2).  

 As an additional means of comparison, two hyetographs are given in Figure 8. It can be 

seen that, generally, the disaggregation model, by virtue of its multivariate character, the high 
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cross-correlation coefficients and the conditioning on an observed hourly series at one gage, 

reproduced well the actual hyetographs at the other gages (two of which are shown in Figure 

8). Two kinds of discrepancies worth mentioning that appear in some hyetographs (not shown 

in Figure 8) are (a) the generation of low intensity tails at hours where the actual intensity was 

zero during days with high rainfall; and (b) the generation of hyetographs that, even though 

they have a realistic shape, may depart from historical ones during days with low rainfall. The 

first kind appeared mostly in January and is most probably the effect of allocating a 

significant correction at the stage of applying the coupling transformation. Therefore, it could 

be avoided by using repetition so as to decrease the quantity of correction. The second kind 

appears mostly in July and may be unavoidable because of the relatively lower cross-

correlations of hourly rainfall in summer months. 

5 Conclusions and discussion 

A new methodology for spatial-temporal disaggregation of rainfall, with wide potential 

hydrological applicability, has been proposed. The methodology involves the combination of 

several univariate and multivariate rainfall models operating at different time scales, in a 

disaggregation framework that can appropriately modify outputs of finer time scale series so 

as to become consistent with given coarser time scale series. 

Potential hydrologic applications include enhancement of historical data series and 

generation of simulated data series. Specifically, the methodology can be applied to derive 

spatially consistent hourly rainfall series in raingages where only daily data are available. In 

addition, in a simulation framework, the methodology provides a way to take simulations of 

multivariate daily rainfall (incorporating spatial and temporal non-stationarity) and generate 

multivariate fields at fine temporal resolution. A minimum requirement for the methodology 

is a single-site fine-scale time series. As indicated in section 3.1, if this is not available from 
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measurements, it may be obtained from a single-site point process model or from an existing 

single-site disaggregation scheme.  

The method is general enough and its application is not restricted by the geographical 

location of the sites that are to be disaggregated, which can be arbitrary. That is, the method 

can preserve the modeled statistics of the rainfall process no matter how close or far to each 

other the sites are. However, if the distances among sites are high (of the order of 102 km or 

more) it may be not necessary to use a multivariate method like this, as the different sites will 

be not correlated. Conversely, if the distances are small (of the order of 10 km or less) the 

multivariate approach becomes necessary and, in addition, the performance of the method is 

improved as the cross-correlations among different sites become higher. In the latter case, 

apart from preserving the modeled statistics, the method is able to reproduce or approach a 

wider category of statistics (e.g. autocorrelations for high lags, lagged cross-correlations) and 

also mimic the actual hyetographs. The beneficial effect of high cross-correlations in the 

proposed multivariate method can be also utilized in applications to large catchments, where 

one may think of daisy-chaining clusters of gages together so as to disaggregate rainfall over a 

domain that is larger than the spatial correlation length of the rain fields.  

The results presented here are extremely encouraging. Specifically, the case study 

presented, regarding the disaggregation of daily historical data of five raingages into hourly 

series, showed that the methodology results in good preservation of important properties of 

the rainfall process such as marginal moments, temporal and spatial correlations, as well as 

proportions and lengths of dry intervals. In addition, it provides a good reproduction of the 

actual hyetographs.  

Among the weaknesses of the current configuration of method, as experienced in the case 

study presented, are the slight overprediction of the very low values of the length of dry 

intervals and some long tails with low intensity emerging in certain rainfall events during 

periods where the intensity was actually zero. There is considerable flexibility in the proposed 
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scheme, and hence potential for further refinement and remediation of these weaknesses. A 

list of possible further investigations and improvements could include: the validation of the 

method with rainfall time series from different climates; the use of different simplified rainfall 

models, in the place of the AR(1) model, such as AR models with parameters dependent on 

the rainfall magnitude; the use of different types of parameter matrices a and b (for example 

to avoid problems associated with the lower triangular form of matrix b, which makes results 

depend on the order on which different locations are entered into the vector of hourly depths; 

see Koutsoyiannis [1999]); the automatic estimation of fine-tuning parameters by means of 

stochastic optimization; and the development of a methodology to infer the hourly cross-

correlations from daily ones and other indicators, so as to avoid using the complex (and not 

necessarily accurate in case of limited data availability) GDSTM and make the method more 

convenient for every day applications. In particular, the study of simple sub-daily correlation 

structures (e.g. based on a power relationship of daily cross-correlations), which could be 

used instead of fitting GDSTM, is under way with encouraging results so far [Fytilas, 2002].  
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Appendix 1:  Estimation of the number of ‘false dry’ periods in section 3.3 

 With reference to the discussion of section 3.3, we observe that the number of ‘false dry’ 

hours N0 is unknown and, therefore, the total number of wet hours N is unknown, too. First, 

let us estimate the unknown N0 extrapolating from the values N1 and N2 and assuming that the 

hourly depth follows an exponential distribution with parameter λ, i.e. F(x) = 1 – e–λx. From 

(1) we obtain 

 Ν1 = (e–λc1 – e–λc2)N,     Ν2 = (e–λc2 – e–λc3)N (A.1) 

and solving for the unknowns λ and N we find 

 λ = ln(N1 / N2) / (c2 – c1),    N = 
eλc1

1 – e–λ(c2 – c1)  N1 (A.2) 

Besides 

 Ν0 = (1 – e–λc1)N (A.3) 

so that 

 Ν0 = 
eλc1 – 1

1 – e–λ(c2 – c1)  N1 (A.4) 

and given that eλ(c2 – c1) = N1 / N2 (from (A.2)) we obtain 

 Ν0 = 
(N1/N2)c1/(c2 – c1) – 1

1 – N2/N1
 N1 (A.5) 

In our example, c1/(c2 – c1) = 1/2 and finally, after algebraic manipulations 

  Ν0 = 
N1

N2+ N1N2
 N1 (A.6) 

The values of our example data set shown in Table 1 result in N0 = 291. 
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 In a similar manner, it can shown that for equidistant ci with  ∆c = ci + 1 – ci, the ratio 

Ni / Ni + 1 is constant, independent of i and equal to eλ ∆c. In our example data set we can 

observe that this property is not verified by the data (N1 / N2 = 2.77, N2 / N3 = 1.66, N3 / N4 = 

1.36, etc.). This means that the exponential distribution will not fit well the data beyond c2. 

This is shown in Figure A1 (upper panel), where we have plotted Ni versus xi and we observe 

that the theoretical values of Ni assuming a (single-parameter) exponential distribution, depart 

significantly from the empirical ones for x > 0.3. 

 It is expected that the two-parameter Weibull and Gamma distributions, both having the 

ability to yield a J-shaped density, will give a better fit to a wider range of data values, and 

consequently, they will give a better estimate of N0. With these distributions it is no longer 

possible to derive a closed solution for N0. Therefore, we developed a different method that 

initially fits the distribution parameters based on some Ni (i = 1, …, k with k ≥ 3) and then 

extrapolates to find N0.  

 Let M := N1 + … + Nk. Analogously to  (1) we write 

 M = [F(ck + 1) – F(c1)] N (A.7) 

which combined with (1) yields  

 Ni = 
F(ci + 1) – F(ci)
F(ck + 1) – F(c1) M (A8) 

where the fraction of the right-hand side is a function of the distribution function parameters 

(call them α and β). This, however, cannot be satisfied precisely for all Ni, so we try to 

estimate α and β on the basis of the minimum fitting square error. That is, we try to 

 minimize g(α, β) := ∑
i = 1

k
 ⎝⎜
⎛

⎠⎟
⎞Ni – 

F(ci + 1) – F(ci)
F(ck + 1) – F(c1) M

2

 (A9) 
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Although a closed solution is not possible for this nonlinear optimization problem, it is trivial 

to solve it numerically using widely available software tools (e.g. in spreadsheets). Having 

determined the distribution parameters, we can then estimate N0 from 

 N0 = 
F(c1)

F(ck + 1) – F(c1) M (A10) 

 In our example we performed a local fitting for the Weibull and the Gamma distribution to 

x values from 0.2 to 1.0 mm (i.e. using N1 to N5). Using the optimized parameters in each case 

we estimated all Ni from (A8) which we plotted on Figure A1 (upper panel) in comparison 

with the historical values of Table 1. Both distributions gave good fits, almost 

indistinguishable from each other in Figure A1 (upper panel), with the Gamma distribution 

resulting in slightly smaller square error. The resulting N0 for the Weibull distribution is 1110 

and for the Gamma distribution 2657, which is higher than the historical total number of zero 

values (1679). For additional comparison, the density functions of the three distributions used 

have been plotted in Figure A1 (lower panel). 
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Appendix 2 – Brief description of the Gaussian displacement spatial-

temporal rainfall model  

The Gaussian displacement spatial-temporal rainfall model used in this study is a spatial 

analogue of a point process model used for the rainfall process at a single site. More 

specifically, it has a temporal structure similar to that of the Bartlett-Lewis rectangular pulses 

model [Rodriguez-Iturbe et al., 1987, 1988] and, in addition, it has a spatial structure known 

as the Gaussian displacement structure, as introduced by Cox and Isham [1988] and further 

developed by Northrop [1996, 1998]. In the following paragraphs there is a synopsis of the 

model for the purposes of this paper; the interested reader is referred to Northrop [1996, 

1998]. Some adaptations and simplifications of the original model, developed for radar data, 

were necessary in order to make it appropriate for raingage input data. 

 The model, known as Gaussian displacement spatial-temporal rainfall model (GDSTM) 

assumes that rainfall is realized as a sequence of storms, each consisting of a number of cells. 

Both storms and cells are characterized by their centers, durations and areal extends, and in 

addition cells have certain uniform rainfall intensity. Specifically, the following assumptions 

characterize storms and cells. 

Storms. Storm centers arrive in a homogeneous Poisson process of rate λ in two-

dimensional space (denoted by x, y) and time (denoted by t) and are moving with a uniform 

velocity (Vx, Vy). Thus, if t0 is the time that a storm is generated and (x0, y0) is the location of 

the center at that time, then the location of the center at any time t > t0 is 

 x = x0 + Vx (t – t0),   y = y0 + Vy (t – t0) (A11) 

Each storm has a finite duration L, which is assumed exponentially distributed with parameter 

β = 1 / µL.  
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 Each storm has an infinite areal extent, represented by an elliptical geometry with 

eccentricity ε and orientation θ, and incorporates a certain number of rainfall cells. However, 

a storm can be assigned a finite “storm area”, the area that contains a certain percentage of 

rainfall cells. The storm area varies randomly and in each storm is determined in terms of the 

realization of a random variable w, which determines uniquely (for the specific storm) a set of 

parameters σx
2, σy

2 and ρ that determine the (dispersion of the) displacement of cell centers 

from the storm center. Specifically, w is a Gamma-distributed random variable (whose value 

remains constant for one storm) with shape and scale parameters determined in terms of the 

eccentricity ε and the mean storm area µs. At the same time, parameter ρ is determined in 

terms of the eccentricity ε and the storm orientation, θ. Following the generation of w, 

parameters σx
2 and σy

2 are determined in terms of the eccentricity ε, the storm orientation θ, 

and the value of w. 

Cells. Each rainfall cell is assigned a center (xc, yc, tc). The time origin tc follows a Poisson 

process starting at the time ordinate of the storm origin t0 (with the first cell being located at 

this point) and ending at t0 + L. The expected number of cells within that time interval is µc = 

1 + β / γ where γ is the cell generation Poisson process parameter, i.e., γ = (µc – 1) / µL. The 

spatial displacements from storm center, i.e., 

 ∆x = xc – x0 – Vx (tc – t0),  ∆y = yc – y0 – Vy (tc – t0) (A12) 

are random variables jointly normally distributed with zero means, variances σx
2 and σy

2, and 

correlation ρ. Given these parameters, the displacement ∆x of each cell is generated as a 

normal variate (0, σx) and the displacement ∆y as a normal variate (µy|x, σy|x). 

 Each cell has a finite duration D, which is assumed exponentially distributed with 

parameter 1 / µD. Also, it has an elliptical area with major axis a, forming an angle θ with the 

x axis (west-east), and minor axis b = 1 – ε2 a. It is assumed that a is a random variable 
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Gamma distributed with shape and scale parameters depending on the mean storm area µΑ and 

the eccentricity ε, respectively. 

 Each cell has an intensity X independent of any other variable, exponentially distributed 

with parameter 1 / µX. 

 Model parameters and rainfall statistics. The model is defined in terms of 11 

independent parameters, which have some physical or geometrical meaning, namely: 

Rate of storm arrivals, λ (number of storms per km2 per hour) 

Mean cell duration, µD (h) 

Mean storm duration, µL (h) 

Mean cell area, µA (km2) 

Mean storm area, µs (km2) 

Mean number of cells per storm, µc

Mean cell intensity, µX (mm/h) 

Component of cell/storm velocity in the x direction (east), Vx (km/h) 

Component of cell/storm velocity in the y direction (north), Vy (km/h) 

Cell/storm eccentricity, ε 

Cell/storm orientation (in radians from east), θ 

All other parameters are derived in terms of these 11 parameters. In its initial formulation, the 

model assumes that parameter values are constant during a rainfall event but vary among 

different events. However, in the application of this paper we assumed that the parameters 

have constant values within each month, as the parsimony of available data (raingage 

measurements) did not allow reliable parameter estimation for smaller time periods.  

 The parameters can be estimated in terms of the first and second order rainfall statistics. In 

the case of radar data, the rainfall statistics are calculated for spatially averaged rainfall instant 

intensity. On the contrary, in the case of raingage data the statistics can be calculated only in 



37 

terms of the temporally aggregated rainfall intensity process at point basis, that is, in terms of 

the discrete time process  

 Yi(x, y) = ⌡⌠
(i – 1) h

i h
  Y(x, y, t) dt (A13) 

where Yi(x, y) denotes the mean rainfall intensity at the discrete time interval i with a fixed 

length h, and Y(x, y, t) is the point instant rainfall intensity at the point (x, y) at time t.  

 The mean rainfall intensity is independent of the time scale of aggregation h and is given 

by 

 E[Yi(x, y)] = λ µD µA µc µX (A14) 

where E[ ] denotes expectation. The second order properties depend on the scale of 

aggregation and are determined in terms of the point-instant covariance function  

 c(ux, uy, τ) := Cov[Y(x, y, t), Y(x + ux, y + uy, t + τ) (A15) 

where ux, uy and τ are spatial and temporal displacements (lags). This is a complicated 

function of all model parameters that can be evaluated only numerically. Its expression in 

terms of Taylor series expansion is given by Northrop [1996]. Given that function, the second 

order properties of the temporally aggregated process Yi are given by 

 Var[Yi(x, y)] = 2⌡⌠
0

h

 (h – t) c(0, 0, t) dt (A16) 

 Cov[Yi(x, y), Yi + k(x + ux, y + uy)] = ⌡⌠
–h

h

 (h – |t|) c(ux, uy, k h + t) dt (A17) 

Apparently, these statistics can be evaluated only numerically (by numerical integration, apart 

from special simple cases).  
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Model fitting. For the case study of this paper the model was simplified by ignoring 

(setting to zero) four of its parameters, i.e., the storm eccentricity ε, the storm orientation θ 

and the two velocity components Vx and Vy. This simplification was justified by analyses 

using hourly data of raingages of the Brue catchment [Wheater et al., 2000]. For the 

estimation of the six parameters λ, µD, µL, µA, µs, µc we used an optimization technique based 

on second order properties of the process whereas the remaining parameter µX was estimated 

from the mean intensity (equation (A14)). 

Specifically, the estimation of the six parameters was based on the variance, lag-one and 

lag-two autocorrelation of both hourly and daily discrete time processes, and lag zero cross-

correlations of the daily process. The theoretical values are given in terms of the unknown 

parameters by equations (A15)-(A17). The objective function to be minimized has the form 

 f(λ, µD, µL, µA, µs, µc) = ∑
i

 wi ⎝⎜
⎛

⎠⎟
⎞mi – hi

hi

2

 (A18) 

where hi and mi denote historical and modeled (theoretical) statistics, respectively, and wi are 

weights, which were considered equal to one for all statistics except for lag-two 

autocorrelations, where a weight equal to 0.1 was assumed (these weights were found 

appropriate for the problem studied but, apparently, could be different in other application 

studies). The optimization was performed using a software tool based on the generalized 

reduced gradient method. 
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List of Figures 

Figure 1 Plots on Weibull probability paper of probability distribution function of hourly 

rainfall depth during rainy days at gage 1 for the month of January: (upper panel) comparison 

of empirical (historical) and theoretical (Gamma) distribution functions; (lower panel) 

comparison of historical and simulated distribution functions using the GAR model with 

rounding-off of resulting rainfall depths, and the AR(1) model without rounding-off of 

resulting rainfall depths. 

Figure 2 Plots on exponential probability paper of probability distribution function of the 

length of dry intervals (historical and simulated) during rainy days at gage 1 for the month of 

January. 

Figure 3 Schematic representation of actual and auxiliary processes, their links, and the steps 

followed to construct the actual hourly-level rainfall series from the actual daily-level rainfall 

series. 

Figure 4 Schematic of the case study area and the raingages used for the case study 

(coordinates in meters according to the UK National Ordnance Survey system that is based on 

a true origin at 49oN, 2oW). The details given for each raingage are the gage number used in 

this case study, the official gage number, and the altitude. Hourly data was used for gage 1 

only (circle) whereas only daily values were used for other gages (squares).  

Figure 5 Comparison of historical and simulated probability distribution functions of hourly 

rainfall depth during wet days at gage 3 for the month of July (plots on Weibull probability 

paper). 

Figure 6 Comparison of autocorrelation functions of hourly rainfall as determined from 

historical (H2, H5 for gages 2 and 5, respectively), or simulated (S2, S5 for gages 2 and 5, 
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respectively) series, or predicted from the AR(1) (Markov) and GDSTM models: (upper 

panel) January; (lower panel) July. 

Figure 7 Comparison of historical and simulated probability distribution functions of the 

length of dry intervals during wet days at gage 3 for the month of July (plots on exponential 

probability paper). 

Figure 8 Comparison of historical (H2, H5 for gages 2 and 5, respectively) and simulated 

(S2, S5 for gages 2 and 5, respectively) hyetographs at two days with high rainfall (average 

daily rainfall depths 14.3 mm at 17/01/95 and 16.2 mm at 12/07/98). 

Figure A1 (Upper panel) Comparison of historical number of occurrences of small hourly 

rainfall depths during rainy days at gage 1 for the month of January and modeled number of 

occurrences estimated from three distribution functions; and (lower panel) plots of the density 

functions of the three distributions in comparison with the empirical histogram whose first bar 

corresponds to observed zero values.  
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Tables 

Table 1 Number of occurrences of small hourly rainfall depths during rainy days at gage 1 for 

the month of January. 

Value, xi 

(mm) 

Corresponding 

interval (mm) 

Number of 

occurrences, Ni

0 0 ≤ x < 0.1 1679 

0.2 0.1 ≤ x < 0.3 280 

0.4 0.3 ≤ x < 0.5 101 

0.6 0.5 ≤ x < 0.7 61 

0.8 0.7 ≤ x < 0.9 45 

1 0.9 ≤ x < 1.1 25 

>1 1.1 ≤ x  89 

Total  2280 
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Table 2 Statistics of hourly rainfall depths at each gage for the month of January. 

Gage 1 2 3 4 5 

Proportion dry 0.84 0.85 0.84 0.85 0.84 

 0.84 0.84 0.84 0.84 0.84 

 0.84 0.82 0.80 0.82 0.80 

Mean (mm) 0.10 0.10 0.12 0.11 0.12 

 0.10 0.10 0.10 0.10 0.10 

 0.10 0.10 0.12 0.11 0.12 

8.0 7.6 5.8 4.8 4.8 Maximum value 

(mm) 8.0 8.0 8.0 8.0 8.0 

 8.0 6.7 7.1 6.9 7.2 

0.39 0.40 0.44 0.40 0.41 Standard deviation 

(mm) 0.39 0.39 0.39 0.39 0.39 

 0.39 0.37 0.41 0.39 0.42 

Skewness 7.6 7.2 5.8 6.0 5.3 

 7.6 7.6 7.6 7.6 7.6 

 7.6 6.9 6.9 7.9 7.2 

Lag 1 autocorrelation 0.46 0.48 0.50 0.53 0.55 

 0.46 0.46 0.46 0.46 0.46 

 0.46 0.44 0.44 0.47 0.43 

Key: For each gage three figures are given, which are: (top) the historical value, not used in 

the disaggregation model (apart from values of gage 1); (middle) the value used in the 

disaggregation model, which is the historical value of gage 1; (bottom) the synthetic value.  
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Table 3 Statistics of hourly rainfall depths at each gage for the month of July. 

Gage 1 2 3 4 5 

Proportion dry 0.95 0.95 0.95 0.94 0.95 

 0.95 0.95 0.95 0.95 0.95 

 0.95 0.95 0.95 0.94 0.95 

Mean (mm) 0.034 0.039 0.050 0.054 0.047 

 0.034 0.034 0.034 0.034 0.034 

 0.034 0.039 0.050 0.054 0.047 

14.0 8.2 12.4 11.2 8.6 Maximum value 

(mm) 14.0 14.0 14.0 14.0 14.0 

 14.0 8.2 8.5 7.6 9.8 

0.32 0.28 0.39 0.39 0.38 Standard deviation 

(mm) 0.32 0.32 0.32 0.32 0.32 

 0.32 0.29 0.35 0.34 0.34 

Skewness 26.8 13.6 16.6 14.8 14.5 

 26.8 26.8 26.8 26.8 26.8 

 26.8 15.6 13.2 11.6 15.9 

Lag 1 autocorrelation 0.37 0.36 0.42 0.34 0.37 

 0.37 0.37 0.37 0.37 0.37 

 0.37 0.34 0.39 0.33 0.34 

Key: For each gage three figures are given, which are: (top) the historical value, not used in 

the disaggregation model (apart from values of gage 1); (middle) the value used in the 

disaggregation model, which is the historical value of gage 1; (bottom) the synthetic value.  
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Table 4 Lag-zero cross-correlation coefficients for the five gages at hourly level for the 

months of January (upper triangle of the table) and July (lower triangle of the table).  

Gage 1 2 3 4 5 

1 1.00 0.84 (0.83) 0.80 (0.78) 0.72 (0.69) 0.83 (0.81) 

 1.00 0.89 0.89 0.87 0.88 

 1.00 0.93 (0.93) 0.92 (0.92) 0.84 (0.83) 0.86 (0.84) 

2 0.59 (0.57) 1.00 0.82 (0.80) 0.80 (0.79) 0.83 (0.81) 

 0.69 1.00 0.87 0.82 0.77 

 0.67 (0.67) 1.00 0.90 (0.90) 0.84 (0.84) 0.83 (0.82) 

3 0.51 (0.49) 0.58 (0.56) 1.00 0.79 (0.77) 0.86 (0.84) 

 0.70 0.64 1.00 0.77 0.82 

 0.56 (0.54) 0.54 (0.51) 1.00 0.81 (0.79) 0.83 (0.81) 

4 0.34 (0.31) 0.49 (0.48) 0.44 (0.41) 1.00 0.87 (0.86) 

 0.64 0.49 0.35 1.00 0.84 

 0.58 (0.58) 0.56 (0.56) 0.41 (0.38) 1.00 0.79 (0.77) 

5 0.58 (0.57) 0.57 (0.56) 0.48 (0.45) 0.53 (0.51) 1.00 

 0.67 0.36 0.48  0.55 1.00 

 0.70 (0.69) 0.57 (0.55) 0.48 (0.44) 0.61 (0.60) 1.00 

Key: For each pair of gages three rows of values are given, which are: (top) the historical 

value, not used in the disaggregation model; (middle) the value predicted by the spatial 

temporal model, which was used in the disaggregation model; (bottom) the synthetic value. 

The values without parentheses were calculated from the entire samples and the values in 

parentheses were calculated from the samples of wet days only. 
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Table 5 Statistics of the power transformation of hourly rainfall depths at each gage for the 

month of January. 

Gage 1 2 3 4 5 

Proportion dry 0.84 0.85 0.84 0.85 0.84 

 0.84 0.84 0.84 0.84 0.84 

 0.84 0.82 0.80 0.82 0.80 

Mean (mm0.5) 0.11 0.11 0.13 0.11 0.13 

 0.11 0.11 0.11 0.11 0.11 

 0.11 0.12 0.14 0.13 0.14 

2.83 2.76 2.41 2.19 2.19 Maximum value 

(mm0.5) 2.83 2.83 2.83 2.83 2.83 

 2.83 2.59 2.66 2.63 2.68 

0.30 0.30 0.33 0.31 0.32 Standard deviation  

(mm0.5) 0.30 0.30 0.30 0.30 0.30 

 0.30 0.30 0.32 0.30 0.32 

Skewness 3.13 3.18 3.00 3.13 2.90 

 3.13 3.13 3.13 3.13 3.13 

 3.13 2.90 2.73 2.88 2.85 

Lag 1 autocorrelation 0.60 0.60 0.60 0.60 0.63 

 0.60 0.60 0.60 0.60 0.60 

 0.60 0.62 0.64 0.66 0.64 

Key: For each gage three figures are given, which are: (top) the historical value, not used in 

the disaggregation model (apart from values of gage 1); (middle) the value used in the 

disaggregation model, which is the historical value of gage 1; (bottom) the synthetic value.  
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 Table 6 Lag one cross-correlation coefficients (Corr[Xs – 1
 i , Xs

 j]) for the five gages at hourly 

level for the month of January.  

Gage: i↓, j→ 1 2 3 4 5 

1 0.46 0.45 0.46 0.44 0.48 

 0.46     

 0.46 0.43 0.44 0.39 0.42 

2 0.49 0.48 0.47 0.48 0.48 

  0.46    

 0.44 0.44 0.43 0.40 0.41 

3 0.47 0.45 0.50 0.48 0.52 

   0.46   

 0.43 0.42 0.44 0.38 0.40 

4 0.48 0.47 0.48 0.53 0.52 

    0.46  

 0.42 0.41 0.41 0.47 0.41 

5 0.51 0.48 0.50 0.51 0.55 

     0.46 

 0.43 0.41 0.41 0.40 0.43 

Key: For each pair of gages two or three values are given, which are: (top) the historical 

value; (middle) the value used in the disaggregation model (i.e., the assumed lag one 

autocorrelation, applicable only to diagonal elements); (bottom) the synthetic value.  
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Figure 1 Plots on Weibull probability paper of probability distribution function of hourly 

rainfall depth during rainy days at gage 1 for the month of January: (upper panel) comparison 

of empirical (historical) and theoretical (Gamma) distribution functions; (lower panel) 

comparison of historical and simulated distribution functions using the GAR model with 

rounding-off of resulting rainfall depths, and the AR(1) model without rounding-off of 

resulting rainfall depths. 
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Figure 2 Plots on exponential probability paper of probability distribution function of the 

length of dry intervals (historical and simulated) during rainy days at gage 1 for the month of 

January. 
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Figure 3 Schematic representation of actual and auxiliary processes, their links, and the steps 

followed to construct the actual hourly-level rainfall series from the actual daily-level rainfall 

series. 
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Figure 4 Schematic of the case study area and the raingages used for the case study 

(coordinates in meters according to the UK National Ordnance Survey system that is based on 

a true origin at 49oN, 2oW). The details given for each raingage are the gage number used in 

this case study, the official gage number, and the altitude. Hourly data was used for gage 1 

only (circle) whereas only daily values were used for other gages (squares).  
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Figure 5 Comparison of historical and simulated probability distribution functions of hourly 

rainfall depth during wet days at gage 3 for the month of July (plots on Weibull probability 

paper). 
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Figure 6 Comparison of autocorrelation functions of hourly rainfall as determined from 

historical (H2, H5 for gages 2 and 5, respectively), or simulated (S2, S5 for gages 2 and 5, 

respectively) series, or predicted from the AR(1) (Markov) and GDSTM models: (upper 

panel) January; (lower panel) July. 
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Figure 7 Comparison of historical and simulated probability distribution functions of the 

length of dry intervals during wet days at gage 3 for the month of July (plots on exponential 

probability paper). 
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Figure 8 Comparison of historical (H2, H5 for gages 2 and 5, respectively) and simulated 

(S2, S5 for gages 2 and 5, respectively) hyetographs at two days with high rainfall (average 

daily rainfall depths 14.3 mm at 17/01/95 and 16.2 mm at 12/07/98). 
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Figure A1 (Upper panel) Comparison of historical number of occurrences of small hourly 

rainfall depths during rainy days at gage 1 for the month of January and modeled number of 

occurrences estimated from three distribution functions; and (lower panel) plots of the density 

functions of the three distributions in comparison with the empirical histogram whose first bar 

corresponds to observed zero values. 

 


