European Geosciences Union 1st General Assembly Nice, France, 25-30 April 2004 NP3.01 Scaling and nonlinearity in the hydrological cycle

# Simple methods to generate time series with scaling behaviour

Demetris Koutsoyiannis Department of Water Resources, School of Civil Engineering, National Technical University, Athens, Greece

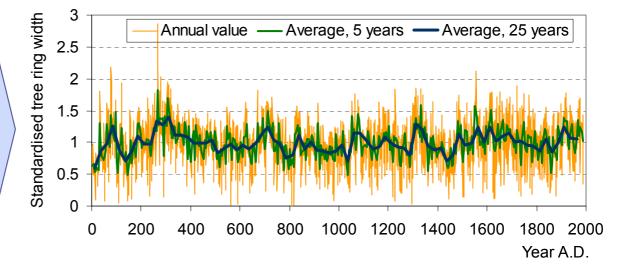
### Visual recognition of scaling

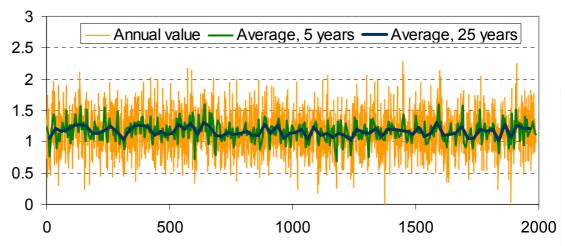
Standardised tree ring widths from a paleoclimatological study at Mammoth Creek, Utah, for the years 0-1989 (1990 years; from ftp:// ftp.ngdc.noaa.gov/paleo/) Irregular fluctuations at/

A synthetic series of independent random variates (white noise) with marginal statistics equal to those of the tree ring series (1990 values)

all time scales

#### Random fluctuations at the annual scale; tend to smooth out as time scales become larger





Scaling can be studied in terms of the behaviour of a time series aggregated on different time scales

### Original formulation of the scaling behaviour

- The scaling behaviour is equivalent to the Hurst phenomenon (or long-range dependence, or long-term persistence, or the Joseph effect) and has been found to be omnipresent in several hydroclimatic and other (long) time series
- The Hurst phenomenon is typically formulated in terms of the statistical properties of a quantity called "range", (Hurst, 1951) which describes the difference of accumulated inflows minus outflows from a hypothetical infinite reservoir

In this respect, it has been regarded that it affects the reservoir planning, design and operation, but only when the reservoir performs multi-year regulation (e.g. Klemeš et al., 1981)

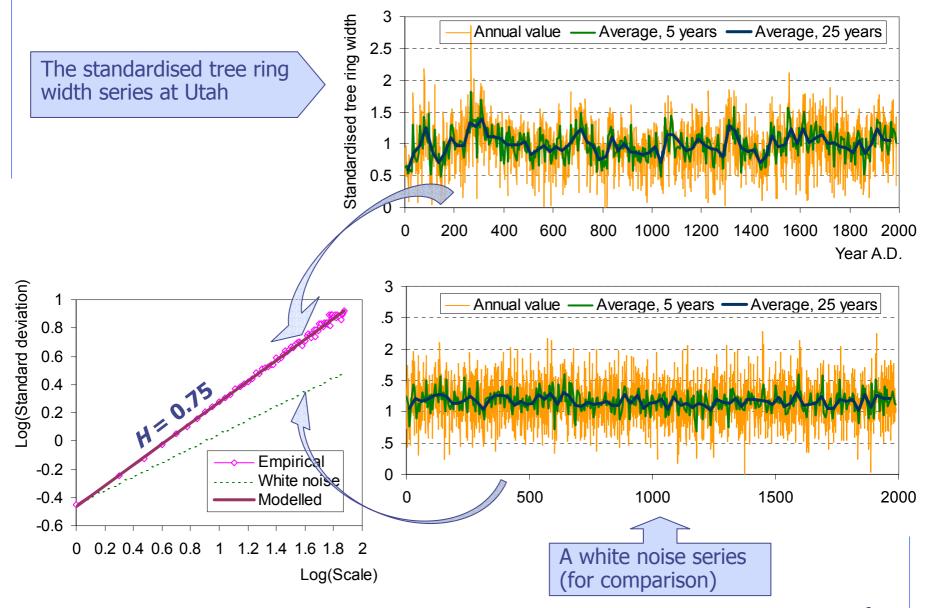
### Simpler formulation of the Hurst phenomenon

| A process at the annual scale                                                                                 | $X_i$                                                                                                                                    |  |
|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| The mean of $X_i$                                                                                             | $\mu := E[X_i]$                                                                                                                          |  |
| The standard deviation of $X_i$                                                                               | $\sigma := \sqrt{\operatorname{Var}[X_i]}$                                                                                               |  |
| The aggregated process at a multi-year scale $k \ge 1$                                                        | $Z_{1}^{(k)} := X_{1} + \dots + X_{k}$ $Z_{2}^{(k)} := X_{k+1} + \dots + X_{2k}$ $\vdots$ $Z_{i}^{(k)} := X_{(i-1)k+1} + \dots + X_{ik}$ |  |
| The mean of $Z_i^{(k)}$                                                                                       | $E[Z_{i}^{(k)}] = k \mu$                                                                                                                 |  |
| The standard deviation of $Z_i^{(k)}$                                                                         | $o^{(k)} := \sqrt{\operatorname{Var}\left[Z_i^{(k)}\right]}$                                                                             |  |
| if consecutive $X_i$ are independent                                                                          | $\sigma^{(k)} = \sqrt{k}\sigma$                                                                                                          |  |
| if consecutive X <sub>i</sub> are positively correlated                                                       | $\sigma^{(k)} > \sqrt{k}\sigma$                                                                                                          |  |
| if $X_i$ follows the Hurst phenomenon                                                                         | $\sigma^{(k)} = k^{\mathcal{H}} \sigma  (0.5 < \mathcal{H} < 1)$                                                                         |  |
| Extension of the standard deviation scaling<br>and definition of a simple scaling stochastic<br>process (SSS) | $(Z_{i}^{(k)} - k\mu) \stackrel{d}{=} \left(\frac{k}{l}\right)^{H} (Z_{j}^{(l)} - l\mu)$<br>for any scales <i>k</i> and <i>l</i>         |  |

### The power-laws of the second-order properties of an SSS process

| The standard deviation of $Z_i^{(k)}$<br>(a power law of scale <i>k</i> )                                          | $\sigma^{(k)} = k^{H} \sigma$                                               |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| The lag- <i>j</i> autocorrelation of $Z_i^{(k)}$<br>(a power law of lag <i>j</i> ; independent of scale <i>k</i> ) | $\rho_{j}^{(k)} = \rho_{j} \approx H(2H-1) j ^{2H-2}$                       |
| The lag- $j$ autocovariance of $Z_i^{(k)}$<br>(a power law of scale $k$ and lag $j$ )                              | $\gamma_{j}^{(k)} \approx H(2H-1) \gamma_{0} k^{2H}  j ^{2H-2}$             |
| The power spectrum of $Z_i^{(k)}$<br>(a power law of scale <i>k</i> and frequency $\omega$ )                       | $s_{\gamma}^{(k)}(\omega) \approx 4(1-H) \gamma_0 k^{2H} (2 \omega)^{1-2H}$ |

### Tracing and quantification of the Hurst phenomenon



D. Koutsoyiannis, Simple methods to generate time series with scaling behaviour 6

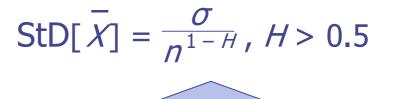
# Why the Hurst phenomenon is important in statistics and engineering applications

 Fundamental law of classical statistics  $\operatorname{StD}[\overline{X}] = \frac{\sigma}{\sqrt{n}}$ 

 $\overline{X}$  = sample mean  $\sigma$  = standard deviation n = sample size

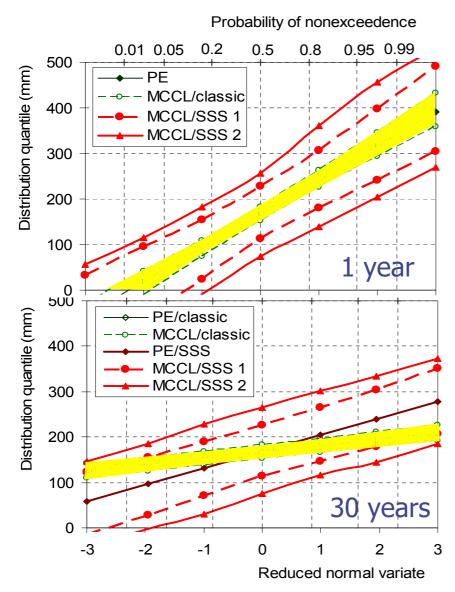
- Modified law for SSS
- Example \_ \_ To obtain StD[X] /  $\sigma$  = 10%
  - n = 100 for classical statistics
  - *n* = 10 000 for SSS
     with *H* = 0.75 (as in the example)

See additional discussion in Koutsoyiannis (2003b)



The scaling behaviour increases uncertainty dramatically

#### Comparisons of runoff uncertainty: 1- and 30-year scales



| Depend-<br>ence<br>structure       |                 | Total<br>uncertainty,<br>% of mean |     |  |
|------------------------------------|-----------------|------------------------------------|-----|--|
|                                    | Annual<br>scale | 30-year<br>scale                   |     |  |
| IID                                | m*, s*          | 174                                | 32  |  |
| IID                                | <i>m, s</i>     | 206                                | 50  |  |
| SSS                                | m*, s*, H*      | 174                                | 87  |  |
| SSS                                | m, s, H*        | 236                                | 165 |  |
| SSS                                | т, s, H         | 268                                | 199 |  |
| Parameters marked with * are fixed |                 |                                    |     |  |

Case study: Runoff of the Boeoticos Kephisos river, Greece Record length: n = 96Mean:  $\mu = 167.7$  mm Standard deviation:  $\sigma = 74.5$  mm Hurst coefficient: H = 0.79Normal distribution Confidence: a = a = 95%

Source: Koutsoyiannis and Efstratiadis (2004)

## Why generation of time series with scaling behaviour is important

- Theoretical solutions in prediction and estimation problems may be infeasible
- Stochastic simulation is the method of choice for such problems in hydrosystems modelling and management and in climatic studies
- However, common stochastic models do not respect the scaling behaviour at present, thus ignoring a significant source of uncertainty of hydrosystems
- One of the reasons is related to the difficult handling of SSS processes
- With this motivation, four simple methods, utilising and simultaneously highlighting different aspects of SSS processes, are discussed

### Algorithm 1: Deterministic with simplified dynamics

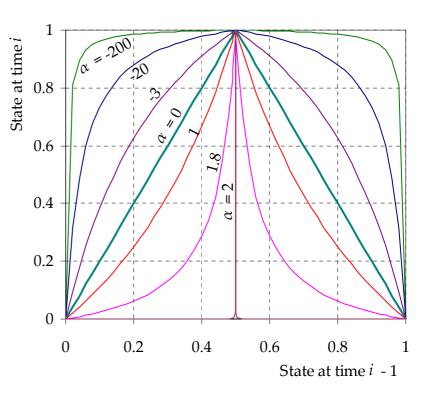
- The first method emphasises the fact that simple nonlinear dynamics may produce time series with erratic yet simple scaling behaviour
- Starting point: The generalised tent map
  - $x_{i} = g(x_{i-1}; a) =$   $= \frac{(2-a)\min(x_{i-1}, 1-x_{i-1})}{1-a\min(x_{i-1}, 1-x_{i-1})}$ where the end of the second second

with  $0 \le x_i \le 1$ , a < 2

Example uses:

- 1. Approximates the relation between successive maxima simplified climatic dynamics described by the Lorenz equations (Lasota and Mackey, 1994)
- 2. Can describe the compound effect of positive and negative feedbacks in the climate system (Koutsoyiannis, 2003b)





#### Algorithm 1: The double tent map

 Make parameter of the tent map time dependent using the same (tent) map, and obtain the double tent map

 $u_i = G(u_{i-1}, a_{i-1}; \kappa, \lambda) = g(u_{i-1}; \kappa a_{i-1})$  with  $a_i = g(a_{i-1}; \lambda)$ 

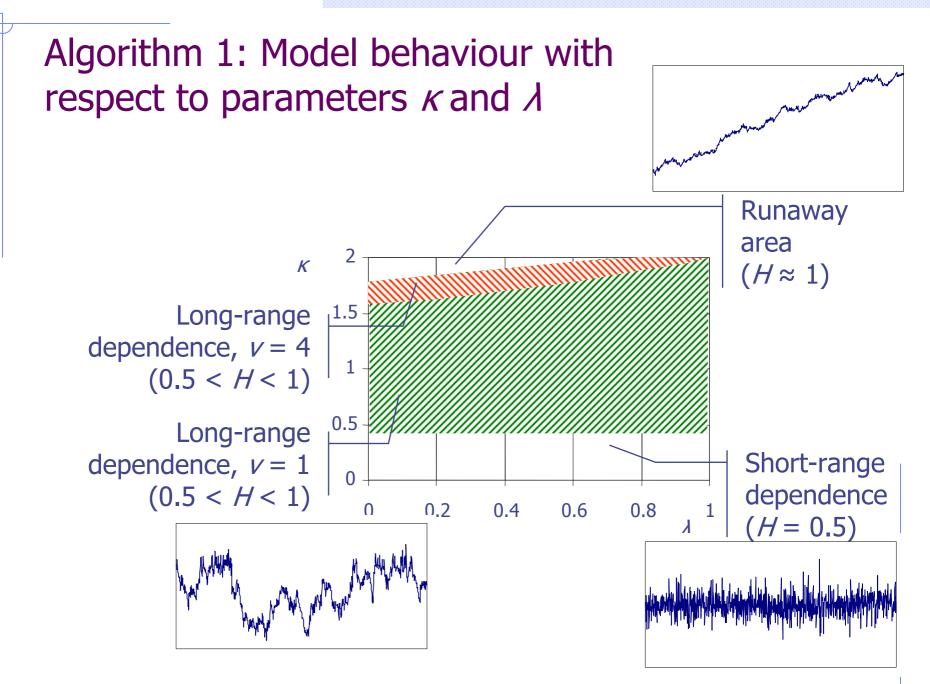
• Extend the double tent map by adding  $\nu - 1$  hidden terms

 $u_i = y_{v_i}$  with  $y_{v_i} = G(y_{v_{i-1}}, a_{v_{i-1}}; \kappa, \lambda), y_0 = u_0, i = 0, 1, 2, ...$ 

 Apply an additional transformation to shift from [0, 1] to [0, ∞) or to (-∞, ∞), e.g.

 $x_i = b + c \tan (\pi z_i / 2)^d$   $x_i = b + c \ln[u_i / (1 - u_i)]$ 

- The final model for  $x_i$ 
  - is two dimensional (involves two degrees of freedom corresponding to the initial conditions a<sub>0</sub> and z<sub>0</sub>)
  - contains up to five real-valued parameters (κ, λ, b, c, d) and an integral one (ν)



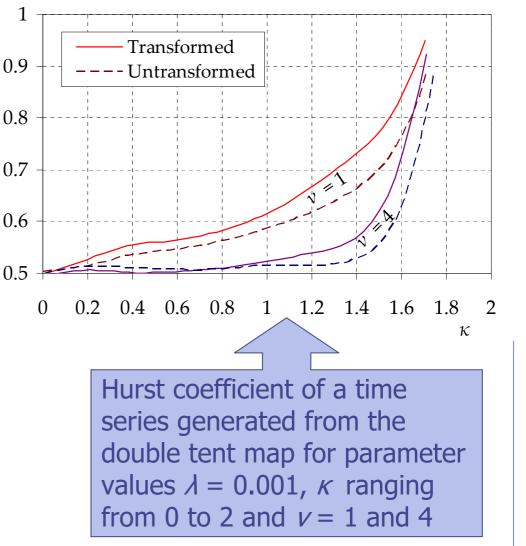
D. Koutsoyiannis, Simple methods to generate time series with scaling behaviour 12

## Algorithm 1: Parameter estimation and generation procedure

Η

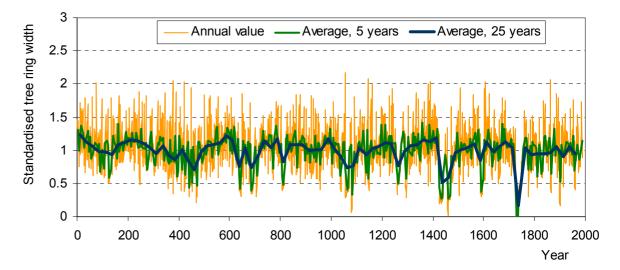
- Assume fixed values of parameters  $\lambda = 0.001$  and  $\nu = 4$
- From the known *H* estimate parameter κ from the figure (constructed by simulation)
- Generate a series u<sub>i</sub>
   from the double tent map
- Transform the series by  $z_i = \ln[u_i / (1 u_i)]$
- Estimate parameters *b* and *c* so that the final series  $x_i = b + c z_i$

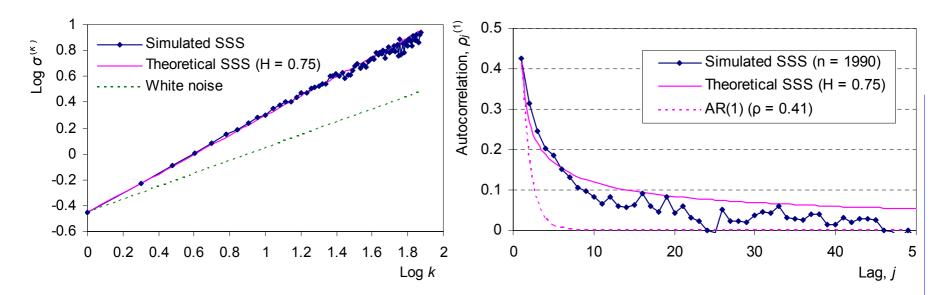
has the desired mean and standard deviation



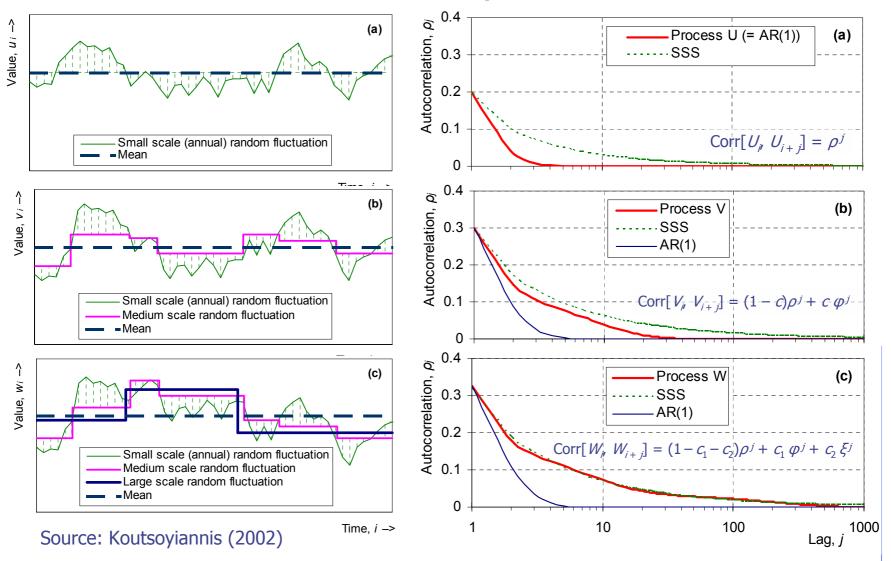
### Algorithm 1: Results

A synthetic time series with length and statistics equal to those of the tree rings at Utah, generated by the double tent map algorithm





### Algorithm 2: An SSS process as the result of random fluctuations at many time scales



#### Algorithm 2: The weighted sum of three Markovian processes

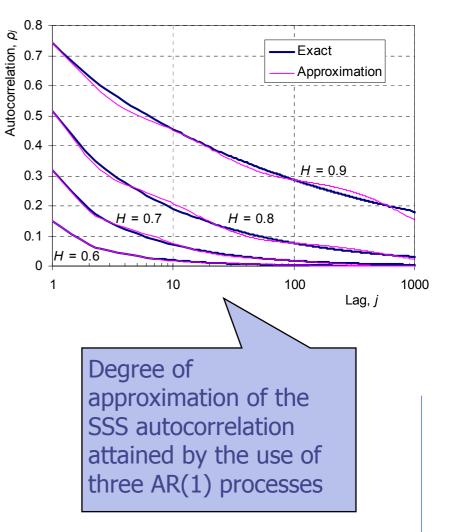
An SSS process  $X_i$  can be approximated by the sum of three AR(1) processes:

$$X_{i} = A_{i} + B_{i} + C_{i}$$
  
with lag one autocorrelations respectively  
$$\rho = 1.52 \ (H - 0.5)^{1.32} ,$$
  
$$\varphi = 0.953 - 7.69 \ (1 - H)^{3.85} ,$$
  
$$\xi = \begin{cases} 0.932 + 0.087 \ H, & H \le 0.76, \\ 0.993 + 0.007 \ H, & H \ge 0.76 \end{cases}$$

and variances respectively,

 $(1 - c_1 - c_2) \gamma_0$ ,  $c_1 \gamma_0$ ,  $c_2 \gamma_0$ where  $c_1$  and  $c_2$  are estimated so that the autocorrelation of the sum of the three processes

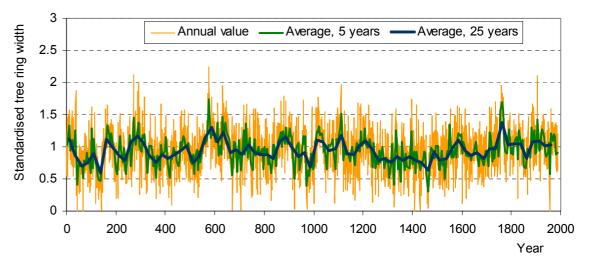
 $\rho_j = (1 - c_1 - c_2)\rho^j + c_1 \varphi^j + c_2 \xi^j$ match the theoretical SSS autocorrelation for lags 1 and 100

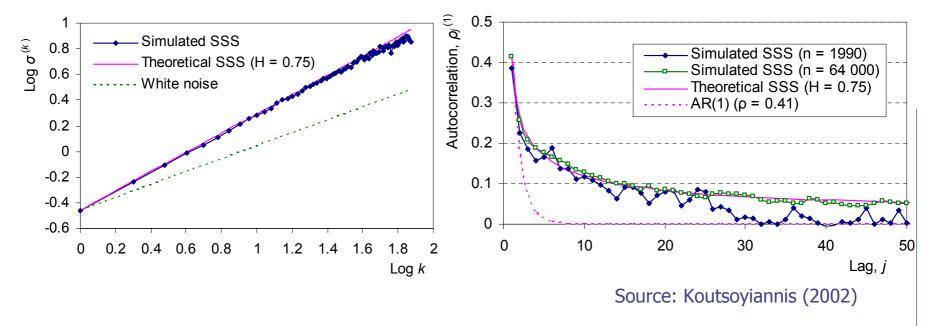


Source: Koutsoyiannis (2002)

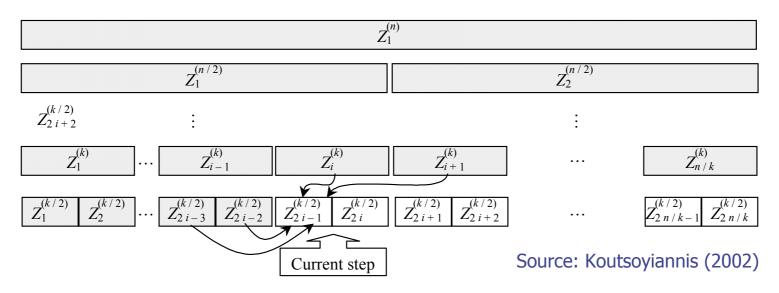
### Algorithm 2: Results

A synthetic time series with length and statistics equal to those of the tree rings at Utah, generated by the three Markovian processes algorithm





## Algorithm 3: Disaggregation based on the invariant properties of an SSS process at different time scales



The process  $X_i$  (i = 1, ..., *n*, where *n* is assumed a power of 2) is generated in consecutive steps. In step one, the sum  $Z_1^{(n)}$  for the total period *n* is generated. In the second step, this is disaggregated in two components  $Z_1^{(n/2)}$  and  $Z_2^{(n/2)}$  etc. In each disaggregation step,

$$Z_{2\,i-1}^{(k/2)} + Z_{2\,i}^{(k/2)} = Z_{i}^{(k)}$$

whereas the autocorrelations with earlier lower-level variables (scale k / 2) and later higher-lever variables (scale k) are preserved.

### Algorithm 3: Parameter estimation and generation procedure

In each disaggregation step the first lower-level variable,  $Z_{2 i-1}^{(k/2)}$ , is generated from

 $Z_{2\,i-1}^{(k/2)} = a_2 Z_{2\,i-3}^{(k/2)} + a_1 Z_{2\,i-2}^{(k/2)} + b_0 Z_i^{(k)} + b_1 Z_{i+1}^{(k)} + V$ 

and the second one,  $Z_{2i}^{(k/2)}$ , from

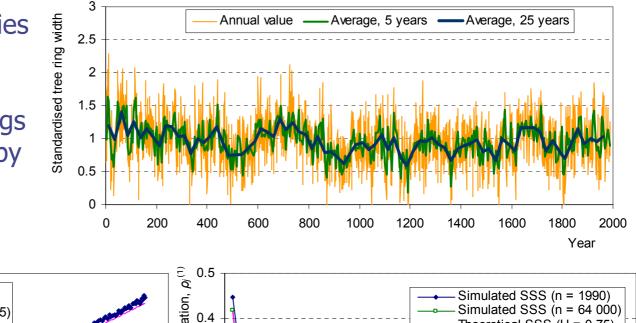
$$Z_{2\,i-1}^{(k/2)} + Z_{2\,i}^{(k/2)} = Z_{i}^{(k)}$$

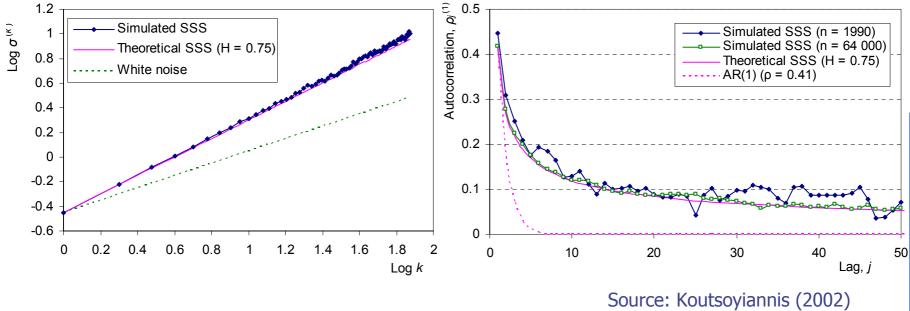
where parameters  $a_2$ ,  $a_1$ ,  $b_0$  kor  $b_1$  and the variance of the random variable V are estimated in terms of correlations  $\text{Corr}[Z_{2\,i-1}^{(k/2)}, Z_{2\,i-1+j}^{(k/2)}] = \rho_j$  and the variance  $\gamma_0^{(k/2)}$  according to

$$\begin{bmatrix} a_{2} \\ a_{1} \\ b_{0} \\ b_{1} \end{bmatrix} = \begin{bmatrix} 1 & \rho_{1} & \rho_{2} + \rho_{3} & \rho_{4} + \rho_{5} \\ \rho_{1} & 1 & \rho_{1} + \rho_{2} & \rho_{3} + \rho_{4} \\ \rho_{2} + \rho_{3} & \rho_{1} + \rho_{2} & 2(1 + \rho_{1}) & \rho_{1} + 2\rho_{2} + \rho_{3} \\ \rho_{4} + \rho_{5} & \rho_{3} + \rho_{4} & \rho_{1} + 2\rho_{2} + \rho_{3} & 2(1 + \rho_{1}) \end{bmatrix}^{-1} \begin{bmatrix} \rho_{2} \\ \rho_{1} \\ 1 + \rho_{1} \\ \rho_{2} + \rho_{3} \end{bmatrix}$$
$$Var[V] = \gamma_{0}^{(k/2)}(1 - [\rho_{2}, \rho_{1}, 1 + \rho_{1}, \rho_{2} + \rho_{3}] [a_{2}, a_{1}, b_{0}, b_{1}]^{T})$$

### Algorithm 3: Results

A synthetic time series with length and statistics equal to those of the tree rings at Utah, generated by the disaggregation algorithm





## Algorithm 4: Filtering white noise through a symmetric moving average filter

The symmetric moving average (SMA) generating scheme (Koutsoyiannis, 2000) transforms a white noise sequence  $V_i$  into a process  $X_i$  with given autocorrelation function by

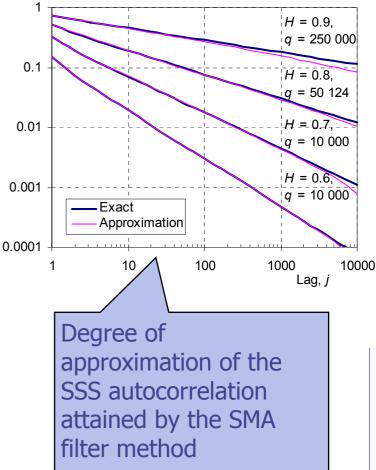
$$X_i = \sum_{j=-q}^{q} a_{|j|} V_{i+j}$$

where  $a_j$  are weighting factors whose number q is theoretically infinite but in practice can take a finite value. For an SSS process:

$$a_{j} \approx \frac{\sqrt{(2-2 H) \gamma_{0}}}{3-2H} \times (|j+1|^{H+0.5} + |j-1|^{H+0.5} - 2 |j|^{H+0.5})$$

The method can also preserve the skewness  $\xi_{\chi}$  of  $\chi_i$  assuming that the white noise has skewness  $\xi_{\nu}$  determined from

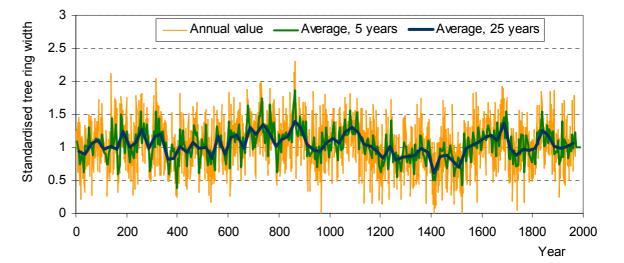
$$\left(a_{0}^{3}+2\sum_{j=1}^{q}a_{j}^{3}\right)\xi_{V}=\xi_{X}\gamma_{0}^{3/2}$$

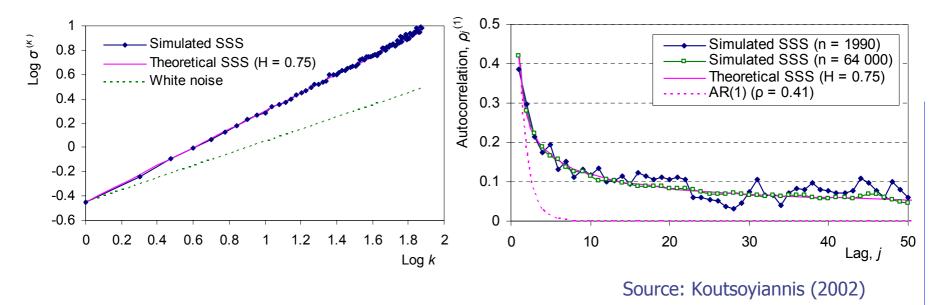


Source: Koutsoyiannis (2002)

### Algorithm 4: Results

A synthetic time series with length and statistics equal to those of the tree rings at Utah, generated by the disaggregation algorithm





## Generalisation of the SMA method and the **Castalia** software package

The SMA method has been generalised so that

It can perform with any autocorrelation function γ<sub>j</sub> of the process X<sub>j</sub>; in this case the weights a<sub>j</sub> are determined from

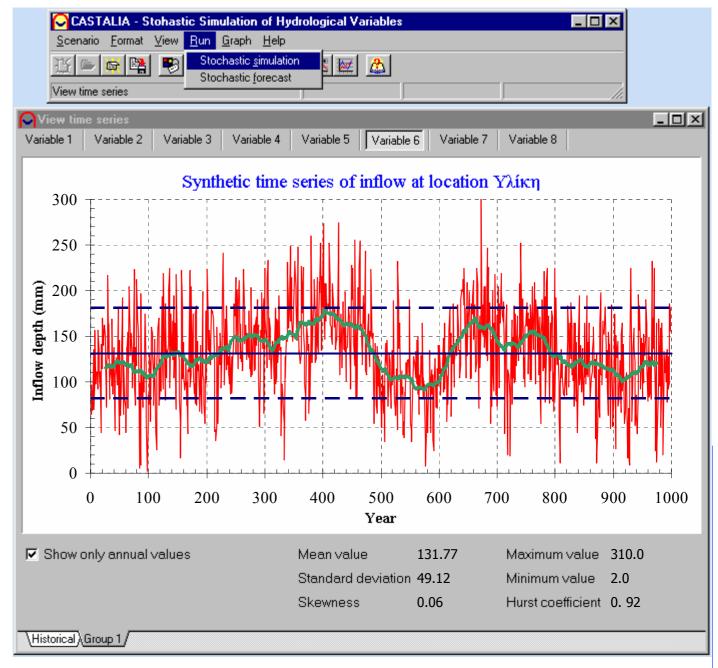
 $S_{\partial}(\omega) = [2 S_{\mu}(\omega)]^{1/2}$ 

where  $s_a(\omega)$  and  $s_{\nu}(\omega)$  the DFTs of the series  $a_j$  and  $\gamma_{jr}$  respectively

- It can simulate several hydrological variables at multiple sites preserving joint second order statistics (cross-correlations)
- It can preserve essential marginal statistics up to third order (skewness)
- It is combined with a disaggregation model so that it generates processes at sub-annual scales
- The generalised method has been coded into the Castalia software, written in Delphi and utilising the Oracle data base

See additional information in Koutsoyiannis (2000); Koutsoyiannis and Efstratiadis (2001); Langousis and Koutsoyiannis (2003)

**Castalia:** Stochastic simulation with longterm persistence



#### Conclusion

- The scaling behaviour seems to be an omnipresent characteristic of hydroclimatic time series
- This behaviour manifests the great uncertainty and unpredictability of the hydroclimatic processes
- In simulations of hydrosystems it is important to preserve the scaling behaviour (the Hurst phenomenon should not be regarded as "a ghost to be conjured away"; Klemeš, 1974)
- This is not a difficult task and can be achieved with simple algorithms even in a spreadsheet environment
- Even a simple two-dimensional deterministic toy model can generate series respecting the scaling behaviour of hydroclimatic processes
- In a stochastic context, the scaling behaviour can be represented by the weighted sum of three Markovian processes
- Stepwise disaggregation can yield another simple method to generate time series with scaling behaviour
- Symmetric moving average filtering of white noise yields another simple method to generate simple scaling time series

# This presentation is available on line at http://www.itia.ntua.gr/e/docinfo/607/

#### References

Hurst, H. E. (1951), Long term storage capacities of reservoirs. Trans. ASCE 116, 776-808

Klemeš, V. (1974), The Hurst phenomenon: a puzzle? Wat. Resour. Res. 10(4), 675–688.

- Klemeš, V., Sricanthan, R. and McMahon T. A. (1981), Long-memory flow models in reservoir analysis: What is their practical value? *Water Resources Research*, 17(3), 737-751
- Koutsoyiannis, D. (2000), A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series, *Water Resources Research*, 36(6), 1519-1533
- Koutsoyiannis, D. (2002), The Hurst phenomenon and fractional Gaussian noise made easy, *Hydrological Sciences Journal*, 47(4), 573-595
- Koutsoyiannis, D. (2003a), Climate change, the Hurst phenomenon, and hydrological statistics, *Hydrological Sciences Journal*, 48(1), 3-24
- Koutsoyiannis, D. (2003b), A toy model of climatic variability with scaling behaviour, *Hydrofractals '03, An international conference on fractals in hydrosciences*, Monte Verita, Ascona, Switzerland, August 2003, ETH Zurich, MIT, Université Pierre et Marie Curie (http://www.itia.ntua.gr/g/docinfo/585/)
- Koutsoyiannis, D., and Efstratiadis, A. (2001), A stochastic hydrology framework for the management of multiple reservoir systems, *26th General Assembly of the European Geophysical Society, Geophysical Research Abstracts*, Vol. 3, Nice, March 2001, European Geophysical Society, (http://www.itia.ntua.gr/e/docinfo/54/).
- Koutsoyiannis, D., and Efstratiadis, A. (2004), Climate change certainty versus climate uncertainty and inferences in hydrological studies and water resources management, *1st General Assembly of the European Geosciences Union, Geophysical Research Abstracts, Vol. 6*, Nice, April 2004 (http://www.itia.ntua.gr/g/docinfo/606/)
- Langousis, A., and Koutsoyiannis, D. (2003), A stochastic methodology for generation of seasonal time series reproducing overyear scaling, *Hydrofractals '03, An international conference on fractals in hydrosciences*, Monte Verita, Ascona, Switzerland, August 2003, ETH Zurich, MIT, Université Pierre et Marie Curie (http://www.itia.ntua.gr/g/docinfo/586/)

Lasota, A., and Mackey, M.C. (1994), Chaos, Fractals and Noise, Stochastic Aspects of Dynamics, Springer-Verlag