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Visual recognition of scaling 
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Irregular fluctuations at 
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Scaling can be studied in terms of the behaviour of a time series aggregated on different 
time scales
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Original formulation of the scaling behaviour

The scaling behaviour is equivalent to the Hurst 
phenomenon (or long-range dependence, or long-term 
persistence, or the Joseph effect) and has been found 
to be omnipresent in several hydroclimatic and other 
(long) time series  
The Hurst phenomenon is typically formulated in terms 
of the statistical properties of a quantity called “range”, 
(Hurst, 1951) which describes the difference of 
accumulated inflows minus outflows from a 
hypothetical infinite reservoir
In this respect, it has been regarded that it affects the 
reservoir planning, design and operation, but only 
when the reservoir performs multi-year regulation 
(e.g. Klemeš et al., 1981)
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Simpler formulation of the Hurst phenomenon
A process at the annual scale Xi 

The mean of Xi µ := E[Xi] 

The standard deviation of Xi σ := Var[Xi] 

The aggregated process at a multi-year 
scale k ≥ 1 

Z (k)
1  := X1 + … + Xk  

Z (k)
2  := Xk + 1 + … + X2k  

M 
Z (k)

i  := X(i – 1)k + 1 + … + Xik  

The mean of Z (k)
i  E[Z (k)

i ] = k µ 

The standard deviation of Z (k)
i  σ(k) := Var [Z (k)

i ] 

 if consecutive Xi are independent σ(k) = k σ  

 if consecutive Xi are positively correlated σ(k) > k σ  

 if Xi follows the Hurst phenomenon  σ(k) = kH σ    (0.5 < H <1) 

Extension of the standard deviation scaling 
and definition of a simple scaling stochastic 
process (SSS) 

(Z (k)
i  – kµ) =

d
 

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




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 l 

H

 (Z (l)
j  – lµ) 

for any scales k and l  
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The standard deviation of Z (k)
i   

(a power law of scale k) 
σ(k) = kH σ 

The lag-j autocorrelation of Z (k)
i   

(a power law of lag j ; independent of 
scale k) 

ρ
 (k)
j  = ρj ≈ H (2H – 1)|j| 2H–2 

The lag-j autocovariance of Z (k)
i   

(a power law of scale k and lag j) γ
 (k)
j  ≈ H (2H – 1) γ0 k 2H |j| 2H–2 

The power spectrum of Z (k)
i   

(a power law of scale k and frequency ω) s
 (k)
γ (ω) ≈ 4 (1 – H) γ0 k 2H (2 ω)1 – 2H 

 

The power-laws of the second-order properties of an 
SSS process
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Tracing and quantification of the Hurst phenomenon
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Why the Hurst phenomenon is important in 
statistics and engineering applications

Fundamental law of 
classical statistics

Modified law for SSS
Example 
To obtain  

n = 100 for classical statistics
n = 10 000 for SSS 
with H = 0.75 (as in the example)

StD[X
 –

] = 
σ
n 

X
 –

 = sample mean 
σ = standard deviation 
n = sample size 

StD[X
 –

] = 
σ

n 1 – H , H > 0.5 

StD[X
–
] / σ = 10% 

The scaling behaviour 
increases uncertainty 
dramatically

See additional discussion in Koutsoyiannis (2003b)
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Comparisons of runoff uncertainty: 1- and 30-year scales
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Source: Koutsoyiannis and Efstratiadis (2004)

Case study: Runoff of the 
Boeoticos Kephisos river, Greece
Record length: n = 96
Mean: µ = 167.7 mm
Standard deviation: σ = 74.5 mm
Hurst coefficient: H = 0.79
Normal distribution
Confidence: a = α = 95%
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Why generation of  time series with scaling 
behaviour is important

Theoretical solutions in prediction and estimation 
problems may be infeasible  
Stochastic simulation is the method of choice for such 
problems in hydrosystems modelling and 
management and in climatic studies
However, common stochastic models do not respect 
the scaling behaviour at present, thus ignoring a 
significant source of uncertainty of hydrosystems 
One of the reasons is related to the difficult handling 
of SSS processes 
With this motivation, four simple methods, utilising 
and simultaneously highlighting different aspects of 
SSS processes, are discussed
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Algorithm 1: Deterministic with simplified dynamics
The first method emphasises 
the fact that simple nonlinear 
dynamics may produce time 
series with erratic yet simple 
scaling behaviour
Starting point: 
The generalised tent map

xi = g (xi – 1; α) =

(2 – α) min (xi – 1, 1 – xi – 1)= ––––––––––––––––––––––
1 – α min (xi – 1, 1 – xi – 1)

with 0 ≤ xi ≤ 1,  α < 2
Example uses: 

1. Approximates the relation between successive maxima simplified climatic 
dynamics described by the Lorenz equations (Lasota and Mackey, 1994)

2. Can describe the compound effect of positive and negative feedbacks in 
the climate system (Koutsoyiannis, 2003b)
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Algorithm 1: The double tent map

Make parameter of the tent map time dependent using the same 
(tent) map, and obtain the double tent map

ui = G (ui – 1, αi – 1; κ, λ) = g (ui – 1; κ αi – 1) with αi = g (αi – 1; λ)

Extend the double tent map by adding ν – 1 hidden terms

ui = yν i with yν i = G (yν i – 1, αν i – 1; κ, λ), y0 = u0, i = 0, 1, 2, …

Apply an additional transformation to shift from [0, 1] to [0, ∞) or 
to (–∞, ∞), e.g.

xi = b + c tan (π zi / 2)d xi = b + c ln[ui / (1 – ui)]

The final model for xι
is two dimensional (involves two degrees of freedom 
corresponding to the initial conditions α0 and z0)
contains up to five real-valued parameters (κ, λ, b, c, d) and an 
integral one (ν)
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Algorithm 1: Model behaviour with 
respect to parameters κ and λ
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Algorithm 1: Parameter estimation and 
generation procedure  

ν = 1

ν 
= 4
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Hurst coefficient of a time 
series generated from the 
double tent map for parameter 
values λ = 0.001, κ ranging 
from 0 to 2 and ν = 1 and 4

Assume fixed values of 
parameters λ = 0.001
and ν = 4
From the known H
estimate parameter κ
from the figure 
(constructed by simulation)
Generate a series ui
from the double tent map
Transform the series by
zi = ln[ui / (1 – ui)]
Estimate parameters b and 
c so that the final series 
xi = b + c zi

has the desired mean and 
standard deviation 
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Algorithm 1: Results

A synthetic time series 
with length and 
statistics equal to 
those of the tree rings 
at Utah, generated by 
the double tent map 
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Algorithm 2: An SSS process as the result of 
random fluctuations at many time scales

Time, i  –>

V
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, 
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Time, i  –>

V
al

ue
, 

w  
i 

–>

Small scale (annual) random fluctuation
Medium scale random fluctuation
Large scale random fluctuation
Mean

(c)

0

0.1

0.2

0.3

0.4

1 10 100 1000
Lag, j

A
ut

oc
or

re
la

tio
n,

 ρ
j

Process W
SSS
AR(1)

(c)

Corr[Wi, Wi + j] = (1 – c1 – c2)ρ j + c1φ j + c2 ξ j

Source: Koutsoyiannis (2002)
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Algorithm 2: The weighted sum of three Markovian processes

An SSS process Xi can be approximated by 
the sum of three AR(1) processes: 

Xi = Ai + Bi + Ci

with lag one autocorrelations respectively
ρ = 1.52 (H – 0.5)1.32 ,  

φ = 0.953 – 7.69 (1 – H)3.85,
0.932 + 0.087 H, H ≤ 0.76,

ξ = 
0.993 + 0.007 H, H > 0.76

and variances respectively, 

(1 – c1 – c2) γ0, c1 γ0, c2 γ0

where c1 and c2 are estimated so that the 
autocorrelation of the sum of the three 
processes

ρj = (1 – c1 – c2)ρ j + c1φ j + c2 ξ j

match the theoretical SSS autocorrelation 
for lags 1 and 100
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Algorithm 2: Results
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Algorithm 3: Disaggregation based on the invariant 
properties of an SSS process at different time scales

The process Xi (i = 1, …, n, where n is assumed a power of 2) is generated in 
consecutive steps. In step one, the sum Z (n)

1  for the total period n is generated. 
In the second step, this is disaggregated in two components Z (n / 2)

1  and Z (n / 2)
2  

etc. In each disaggregation step,  

  Z (k / 2)
2 i – 1  + Z (k / 2)

2 i  = Z (k)
i  

whereas the autocorrelations with earlier lower-level variables (scale k / 2) and 
later higher-lever variables (scale k) are preserved.  

 
 
 
 
Z

(k / 2)
2 i + 2 

Z
(k / 2)
1  Z

(k / 2)
2  

Z
(k)
1  

Z
(k / 2)
2 i – 3 Z

(k / 2)
2 i – 2 Z

(k / 2)
2 i – 1 Z

(k / 2)
2 i  Z

(k / 2)
2 i + 1 Z

(k / 2)
2 i + 2 

Z
(k)
i – 1 Z

(k)
i  Z

(k)
i + 1 

Z
(k / 2)
2 n / k – 1 Z
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2 n / k 

Z
(k)
n / k 

Z
(n / 2)
1  Z
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2  

Z
(n)
1  
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L

M M 

Current step Source: Koutsoyiannis (2002)
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Algorithm 3: Parameter estimation and generation 
procedure 

In each disaggregation step the first lower-level variable, Z (k / 2)
2 i – 1 , is generated from 

 Z (k / 2)
2 i – 1  = a2Z

 (k / 2)
2 i – 3  + a1Z

 (k / 2)
2 i – 2  + b0 Z

 (k)
i  + b1 Z

 (k)
i + 1 + V  

and the second one, Z (k / 2)
2 i , from 

 Z (k / 2)
2 i – 1  + Z (k / 2)

2 i  = Z (k)
i   

where parameters a2, a1, b0 και b1 and the variance of the random variable V are 
estimated in terms of correlations Corr[Z (k / 2)

2 i – 1 , Z (k / 2)
2 i – 1 + j] = ρj and the variance 

γ
 (k / 2)
0  according to 

 











a2

a1

b0

b1

 = 











1 ρ1 ρ2 + ρ3 ρ4 + ρ5

ρ1 1 ρ1 + ρ2 ρ3 + ρ4

ρ2 + ρ3 ρ1 + ρ2 2(1 + ρ1) ρ1 + 2ρ2 + ρ3

ρ4 + ρ5 ρ3 + ρ4 ρ1 + 2ρ2 + ρ3 2(1 + ρ1)

–1

  











ρ2

ρ1

1 + ρ1

ρ2 + ρ3

  

 Var[V] = γ
 (k / 2)
0 (1 – [ρ2, ρ1, 1 + ρ1, ρ2 + ρ3] [a2, a1, b0, b1]T )  
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Algorithm 3: Results
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Algorithm 4: Filtering white noise through a 
symmetric moving average filter

The symmetric moving average (SMA) generating 
scheme (Koutsoyiannis, 2000) transforms a white 
noise sequence Vi into a process Χi with given 
autocorrelation function by 

Xi = ∑
j = –q

q
 a|j| Vi + j  

where aj are weighting factors whose number q is 
theoretically infinite but in practice can take a finite 
value. For an SSS process:  

 aj ≈ 
(2 – 2 H) γ0

3 – 2H   × 

  (|j + 1|H + 0.5 + |j – 1|H + 0.5 – 2 |j| H + 0.5)     

The method can also preserve the skewness ξΧ of
Χi assuming that the white noise has skewness ξV
determined from  





a0

 3+ 2 ∑
j = 1

q
 a j

 3  ξV = ξΧ γ 0  
 3/2 

Degree of 
approximation of the 
SSS autocorrelation 
attained by the SMA 
filter method

Source: Koutsoyiannis (2002)
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Algorithm 4: Results
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Generalisation of the SMA method and the 
Castalia software package

The SMA method has been generalised so that
It can perform with any autocorrelation function γj of the process Xi; in 
this case the weights ai are determined from 

sa(ω) = [2 sγ(ω)]1/2

where sa(ω) and sγ(ω) the DFTs of the series aj and γj, respectively
It can simulate several hydrological variables at multiple sites preserving 
joint second order statistics (cross-correlations)
It can preserve essential marginal statistics up to third order (skewness)
It is combined with a disaggregation model so that it generates 
processes at sub-annual scales

The generalised method has been coded into the Castalia software, 
written in Delphi and utilising the Oracle data base

See additional information in Koutsoyiannis (2000); Koutsoyiannis and Efstratiadis (2001); 
Langousis and Koutsoyiannis (2003)
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Castalia:
Stochastic 
simulation
with long-
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Conclusion
The scaling behaviour seems to be an omnipresent characteristic of 
hydroclimatic time series
This behaviour manifests the great uncertainty and unpredictability 
of the hydroclimatic processes
In simulations of hydrosystems it is important to preserve the 
scaling behaviour (the Hurst phenomenon should not be regarded as 
“a ghost to be conjured away”; Klemeš, 1974) 
This is not a difficult task and can be achieved with simple 
algorithms even in a spreadsheet environment
Even a simple two-dimensional deterministic toy model can generate 
series respecting the scaling behaviour of hydroclimatic processes
In a stochastic context, the scaling behaviour can be represented by 
the weighted sum of three Markovian processes
Stepwise disaggregation can yield another simple method to 
generate time series with scaling behaviour
Symmetric moving average filtering of white noise yields another
simple method to generate simple scaling time series 
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This presentation is available on line at
http://www.itia.ntua.gr/e/docinfo/607/
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