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Abstract 

A hydrological simulation model was developed for conjunctive representation of surface and 

groundwater processes. It comprises a conceptual soil moisture accounting module, based on an 

enhanced version of the Thornthwaite model for the soil moisture reservoir, a Darcian multi-cell 

groundwater flow module and a module for partitioning water abstractions among water resources. 

The resulting integrated scheme is highly flexible in the choice of time (i.e. monthly to daily) and 

space scales (catchment scale, aquifer scale). Model calibration involved successive phases of manual 

and automatic sessions. For the latter, an innovative optimization method called evolutionary 

annealing-simplex algorithm is devised. The objective function involves weighted goodness-of-fit 

criteria for multiple variables with different observation periods, as well as penalty terms for 

restricting unrealistic water storage trends and deviations from observed intermittency of spring flows. 

Checks of the unmeasured catchment responses through manually changing parameter bounds guided 

choosing final parameter sets. The model is applied to the particularly complex Boeoticos Kephisos 

basin, Greece, where it accurately reproduced the main basin response, i.e. the runoff at its outlet, and 

also other important components. Emphasis on the principle of parsimony is put which resulted in a 

computationally effective modeling. This is crucial since the model is to be integrated within a 

stochastic simulation framework. 

Key words: conjunctive surface and groundwater use; Thornthwaite model; multi-cell model; global 

optimization; evolutionary annealing-simplex algorithm; hydrological simulation. 

Résumé 

Un modèle de simulation hydrologique a été développé pour la représentation conjointe de processus 

superficiels et souterrains. Ceci comprend un module conceptuel pour le bilan hydrique du sol, basé 

sur une version renforcée du réservoir Thornthwaite, un module multi-cellule de flux souterrain 

Darcien et un module qui distribue les prélèvements d`eau parmi ses différentes ressources. Le schéma 

integré qui en résulte est très flexible pour ce qui est du choix de l`échelle de temps (mois, jour) et d’ 

espace (bassin versant, aquifère). La calibration du modèle comprend des phases alternantes de 

sessions manuelles et automatiques. En ce qui concerne les dernières, une méthode originale 
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d`optimisation est inventée qui s`appèle algorithme évolutionnaire de recuit simulé-simplèxe. Ceci 

emploie une fonction objectif originale qui comprend des critères d’ ajustément pondérés pour des 

variables multiples et des périodes d`observation variables. La fonction comprend aussi des termes de 

peine qui imposent des restrictions aux tendances irréalistes du stock d`eau et aux déviations de 

l`intermittence entre observée et modélisée du débit de sources. Le choix des valeurs finales des 

paramètres est guidé par des contrôles des sorties non mesurées en faisant varier manuellement les 

limites des paramètres. Le modèle est appliqué à un bassin versant grec complexe, ceci de Boeoticos 

Képhisos. Il a reproduit avec précision la réponse principale du bassin, qui est le débit à son exutoire, 

mais aussi d`autres composantes importantes. On focalise sur le principe de parcimonie ce qui conduit 

à une modélisation très efficace. Cela est crucial puisque le modèle est destiné à être integré dans un 

système de simulation stochastique. 

Mots-clefs: usage conjointe de flux superficielles et souterraines; modèle Thornthwaite; modèle multi-

cellule; optimisation globale; algorithme évolutionnaire de recuit simulé-simplèxe; simulation 

hydrologique. 

INTRODUCTION 

Integrated management of water resource systems requires a conjunctive representation of 

surface and groundwater dynamics, especially when combined uses are involved. This stands as one of 

the most challenging issues in hydrological modeling. Traditionally, to simulate water fluxes, a 

hydrosystem is represented by storage and conveyance components for which inflow time series, 

whether they originate from surface or groundwater resources, are pre-computed and entered 

externally. However, this may be insufficient due to decision-related interactions between surface and 

groundwater flows. A typical example is when inflows to a reservoir are significantly reduced due to 

upstream groundwater abstractions. In that case, conjunctive simulation of both surface and 

groundwater processes is needed, to assess the impacts of the abstractions to the reservoir yield. 

A mathematical framework for conjunctive modeling of surface and groundwater flows is 

presented. This hydrological simulator consists of three components: (a) a semi-distributed soil 

moisture accounting module for surface processes, (b) a multi-cell groundwater module, and (c) a 
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demand-partitioning module. The synthetic model is established for the Boeoticos Kephisos river 

basin, the most important characteristic of which is the existence of an extended karstic aquifer that 

contributes significantly to the total basin streamflow. Both surface and groundwater resources supply 

irrigation water locally as well as drinking water to Athens. Furthermore, the basin’s surface outflows 

account for most of the inflow of Lake Yliki, which is the second largest reservoir of the Athens water 

supply system. Hence, the interactions between surface and groundwater flows and abstractions, in 

addition to the need for a rational water management, impose the adoption of a conjunctive simulation 

scheme. The hydrological simulator is designed as part of an integrated decision support tool (DSS) 

for the management of the water resource system of Athens (Koutsoyiannis et al., 2002). The DSS 

yields the optimal operation of the hydrosystem, employing stochastic simulation within an 

optimization scheme. Inflow series, including those of Lake Yliki, are synthetically generated through 

a stochastic module of the DSS. Until now, several attempts were made to integrate a hydrological 

model within the DSS, in order to estimate the impacts of water supply and irrigation abstractions to 

Yliki inflows (Nalbantis et al., 2002). Among these were a lumped simulation scheme and a 

distributed model, implemented within the MODFLOW package (Nalbantis & Rozos, 2000). While 

the lumped model performed relatively well regarding its prediction accuracy, it was not able to 

represent the basin processes at the desired spatial scale, and especially the spring flow dynamics that 

are directly affected by the water supply abstractions. On the other hand, the MODFLOW model, 

although useful for better spatial information treatment, was ineffective regarding its ability to run in 

stochastic simulation mode. Hence, the requirement was to build a model that provides a satisfactory 

prediction of the hydrological processes, while remaining at the same time computationally effective. 

In addition to the model formulation, the paper is focused on the parameter estimation 

procedure. A hybrid approach that combines manual and automatic calibration is presented, aiming at 

restricting the uncertainties due to the complexity of the physical system and the lack of reliable and 

systematic spatially distributed data. The objective function attempts to incorporate all information 

concerning the watershed response, by means of measured hydrographs and, to a lesser extent, 

groundwater level observations. Finally, for the automatic calibration procedure, a new heuristic 
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evolutionary optimization algorithm is introduced, where a generalized downhill simplex scheme is 

effectively coupled with a simulated annealing strategy. 

The paper is organized in five sections. Section 2 describes the mathematical structure, the 

assumptions and the integration of the three components of the model. Section 3 deals with the 

optimization algorithm. In Section 4 we present the application of the model to the Boeoticos 

Kephisos river basin and discuss the calibration procedure and the results. Finally, Section 5 

summarizes the conclusions and provides some proposals for further research. 

MATHEMATICAL FRAMEWORK 

Hydrological simulation through conceptual water balance models 

Simulation models help understand mechanisms regarding water fluxes; moreover, they serve to 

predict the behavior of the physical system, under a given set of naturally occurring circumstances 

(Beven, 1989). Typically, such models are applied at the watershed or the aquifer scale; but 

conjunctive simulations are relatively rare. This is due to the different physical characteristics of the 

surface and groundwater processes. For example, in the usual case of porous aquifers, groundwater 

velocities are some orders of magnitude smaller than the surface ones thus imposing proper adaptation 

of temporal and spatial scales. Another typical example is when spring runoff to streamflow is 

negligible, as compared to flood runoff. 

In typical practical applications, conceptual models, with an a priori specified mathematical 

structure based on empirical hypotheses, are preferable to physics-based ones, which are restrained by 

the large amount of spatially distributed data required to represent the heterogeneity of physical 

processes. It is widely recognized that the reliability of conceptual models is strongly dependent on the 

adequacy of the calibration procedure employed (e.g., Sorooshian and Gupta, 1983; Yapo et al., 

1998). Hence, the confidence to these models depends on the predictive uncertainty remaining after 

the calibration. Other sources of uncertainty are the structural complexity of the model and the level of 

information contained within the observations used as inputs. Therefore, when formulating and 

calibrating a hydrological model, the key point is to find a good equilibrium between model 

complexity and predictive uncertainty, given the available data (Wagener et al., 2001). A successful 
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calibration should involve sufficient predictive capacity of the model, in addition to a realistic 

parameter set. The former ensures the reproduction of catchment behavior with satisfactory accuracy, 

while the latter ensures that the model parameters, albeit conceptual, are representative of the average 

characteristics of the basin. 

Surface water simulation model 

Water balance models for surface hydrology processes have been developed at various scales 

and to varying degrees of complexity (Xu & Singh, 1998), ranging from relatively complex models 

with 10 to 15 parameters for arid regions to very simple ones, for humid regions in temperate zones 

(Makhlouf and Michel, 1994). Most of them represent the transformation of rainfall to runoff through 

one or more conceptual reservoirs, based on the pioneer work of Thornthwaite (1948) and 

Thornthwaite & Mather (1955). Specifically, the Thornthwaite model was initially developed to 

estimate monthly actual evapotranspiration Et, using monthly values of precipitation, Pt, and potential 

evapotranspiration, EPt (a schematic illustration of the model is given in Figure 1, left). The whole 

basin is represented by a conceptual soil moisture reservoir of capacity K, which is the only parameter 

of the model. When the soil is saturated, i.e. the storage exceeds the capacity K, the reservoir spills; 

this spill corresponds to the basin runoff, Qt. The evapotranspiration demand is first satisfied through 

precipitation and, at a second stage, if necessary, through the available soil moisture. In that case, it is 

assumed that the soil evaporation rate, symbolized ESt, is proportional to the deficit EPt – Pt and the 

storage ratio St / K.  

The above approach is suitable only for catchments without significant groundwater 

contribution, since it cannot represent the deep percolation process, neither permanent flows. 

Moreover, when applying this model in arid or semi-arid regions, the assumption that the entire 

precipitation is transformed into evapotranspiration becomes unrealistic. This is because the monthly 

precipitation occurs through few storm events at much finer time scales (e.g. hourly, daily); in such 

scales, precipitation usually exceeds potential evapotranspiration, whereas on a monthly basis this may 

be not true. 
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To cope with the above drawbacks, several modifications were implemented to the original 

model, as shown in Figure 1, right. In the modified scheme, the total runoff, Qt, is divided into two 

parts: a direct component, Dt, occurring during storm events, and the quick subsurface flow 

(interflow), It. The former occurs when the actual soil moisture storage exceeds the reservoir capacity, 

now symbolized as K2 instead of K. The latter is represented by a horizontal orifice, lying at level 

K1 < K2, and its rate is assumed proportional to St – K1 and a recession coefficient λ, i.e. 

It  = λ (St – K1). Additionally, the modified soil moisture reservoir contains a bottom orifice, for 

percolation, Gt, to deeper zones. Similarly to the interflow, percolation rate is assumed proportional to 

the actual moisture storage St and a recession coefficient µ, i.e. Gt  = µ St. Finally, the modified model 

imposes a maximum fraction, ε, of precipitation that can be directly evaporated. Therefore, the soil 

evaporation rate is estimated by: 

 ESt = 
max (0, EPt – ε Pt)

K2
 St (1) 

For ε = 1, the above relationship is identical to that of the Thornthwaite model. At the beginning of 

each time step, the precipitation excess ∆Pt = Pt – min (ε Pt, EPt) is added to the actual soil moisture 

storage. To cope with typical time scale drawbacks, the calculation of water balance components is 

implemented analytically, by formulating a first order differential equation, based on the mass 

continuity principle. This equation is written as: 

 
1
∆ 

dS
dτ = λ K1 – ⎝

⎛
⎠
⎞λ + µ + 

max (0, EPt – ε Pt)
K2

 S (2) 

where ∆ is the time resolution (e.g. one month) and τ is dimensionless time, in the interval [0, 1]. By 

solving (2), assuming as initial storage the amount St – 1 + ∆Pt, we obtain the soil moisture storage at 

the end of the actual time step. An important assumption is that within the time interval the soil 

moisture is allowed to exceed the reservoir capacity. Practically, this excess represents water that 

cannot be absorbed by the saturated soil and is first let to pond and then evaporate or infiltrate. This 

assumption enables the generation of more realistic output series, the variability of which is consistent 

with the variability of precipitation. After the calculation of hydrological outflows given by (2), the 

soil moisture excess (if this still exists) is spilled and contributes to the streamflow as direct runoff. 
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In conclusion, the modified model, besides the direct runoff and the actual evapotranspiration, 

estimates also the interflow and the percolation, by using five parameters in total, namely the interflow 

threshold K1, the soil storage capacity K2, the recession rates λ and µ, and the fraction, ε (if the model 

is applied in a finer than monthly scale, one can set ε = 1). 

Groundwater simulation model 

The groundwater flow simulation is based on the concept of multi-cell models that stand 

between conceptual and physical-based models (Bear, 1979, pp. 447-454). They resemble the finite 

difference models with small number of cells, but they have some fundamental differences. The 

geometry and discretization of multi-cell models is very flexible and, although the cells are usually 

rectangular, they may correspond to aquifer regions with any shape. The discretization is mainly 

imposed by the available hydrological information and the water management plans. Moreover, model 

parameters are rather conceptual, thus needing calibration. The dynamics of multi-cell models arise 

from the application of water balance equations in all cells, in combination with Darcy’s law; on the 

other hand, although water levels do not correspond to physical magnitudes, their variability may only 

be used to estimate real groundwater level trends. 

In the proposed approach, which is suitable for phreatic conditions, a network is formulated 

consisting of storage elements (tanks) and conveyance elements (conduits). The properties of each 

tank i are its centroid coordinates, its base area, Fi, that equals the area of the corresponding aquifer 

multiplied by its specific yield, SY. The properties of each conduit that links tank i with tank j are its 

conductivity, Cij (expressed in velocity units), its length, Lij, and its cross-sectional area, Aij, which is 

identical to the corresponding aquifer cross-section area. Note that both Aij and Lij correspond to real 

geometrical magnitudes, which are calculated according to the centroid coordinates of model tanks 

and the aquifer thickness. 

The neighboring tanks 1 and 2 in Figure 2 correspond to the aquifer regions 1 and 2. Their base 

areas are F1, F2 and the water levels in them are w1 and w2, respectively. The discharge, Q12, occurring 

from tank 1 to tank 2, is estimated via the Darcy’s equation, i.e. Q12 = C12 A12 (w1 – w2) / L12, where C12 

is the conductivity of conduit 1-2, L12 is the conduit length, and A12 is the cross-section area between 
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aquifer regions 1 and 2. After time δt, the water level changes (fall or rise) in tanks 1 and 2 are 

∆w1 ≈ – Q12 δt / F1 and ∆w2 ≈ Q12 δt / F2, respectively. 

The groundwater flow problem is solved via an explicit numerical scheme, by adopting a small 

time step δt within which the influence of the variation of water levels to the groundwater discharge 

can be neglected. To achieve the optimum speed and stability of the arithmetic solution, the time step 

is tuned throughout the simulation by using a maximum allowed water level change, ∆wmax, within a 

time interval, a tolerance, a, and a multiplier, β. If ∆wmax (1 – a) < ∆wi < ∆wmax (1 + a) for each tank i, 

the time step remains unchanged, otherwise the time step is either multiplied or divided by β. The 

initial time step, δt0, the maximum allowed water level change, ∆wmax, the tolerance, a, and the time 

step multiplier, β, are user-specified. 

The initial conditions refer to initial water level values in tanks, whereas the boundary 

conditions refer to tanks with constant level. The latter can be modeled through a tank of very large 

base. Hence, a spring is modeled as a tank of very large base and the simulated series of the slight 

changes of level can be directly transformed to spring hydrographs. The stress at each tank may be 

positive (recharge) or negative (pumping). 

Model integration within a conjunctive surface-groundwater simulation scheme 

The models developed were integrated within a conjunctive simulation scheme, based on a 

semi-distributed concept, as illustrated in Figure 3. The model was applied on a monthly scale; 

however, we believe that a daily scale would also be suitable. On the other hand, a finer time step is 

not recommended, because it would need routing procedures that are not incorporated in this scheme. 

The whole catchment is divided into spatial subunits with similar hydrological and morphological 

characteristics. These so-called hydrological response units (HRUs) do not necessary correspond to 

physical sub-basins; they are rather conceptual elements, the dynamics of which are modeled via a soil 

moisture accounting reservoir. On the other hand, the aquifer is divided in cells, each one represented 

by a conceptual groundwater tank. 

Each cell is supplied by the percolation of a specific HRU; but the same HRU can supply more 

than one cells. Supposing that percolation is expressed in terms of equivalent water depth, its 
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distribution is made proportionally to the area of each cell. This feature increases the flexibility of the 

model since it allows using different spatial analysis for the surface and groundwater processes. Thus, 

a detailed scheme for the representation of groundwater fluxes can be easily coupled with a coarse one 

for the simulation of the surface ones; even a lumped approach (i.e. a single HRU) may be adequate, 

provided that the catchment characteristics are homogenous. To achieve numerical stability in 

groundwater simulation, a small computational step δt has to be adopted, which is much finer than the 

initial simulation step, ∆t (monthly or daily). Hence, the stress inputs (percolation and pumping) that 

are given at a resolution ∆t are uniformly disaggregated, in order to be consistent with δt. On the other 

hand, the output series of the multi-cell model are aggregated at the specified simulation step, ∆t. 

The total streamflow is estimated by adding the spring outflows to the direct runoff and the 

interflow components, while the water abstractions are made either from surface or groundwater 

resources. The implementation of the former is trivial whereas the latter require some modeling when 

combined abstractions exist. Let Rt be the water demand at time interval t, which is primarily fulfilled 

via surface abstractions and secondly via pumping, and let Qt be the actual streamflow, part of which 

arises from spring outflows. If Qt < Rt, the actual deficit, Rt – Qt, has to be fulfilled via pumping. 

However, pumping reduces water level at the groundwater tanks; this reduces the spring outflow and, 

consequently, the total runoff. This imposes further pumping, and so on. For this reason, the 

simulation scheme is coupled with a demand-partitioning model, which is executed in several cycles, 

until the streamflow value stabilizes. Usually, only one or two cycles are needed for convergence. 

THE OPTIMIZATION ALGORITHM 

General principles 

The recent development of effective and robust global optimization techniques enables the 

automatic calibration of hydrological models. Franchini et al. (1998) make a thorough review of these 

techniques, which aim to handle the usual handicaps of nonlinear optimization, such as the existence 

of multiple local optima at various scales and parameter interactions. 

The calibration of the conjunctive simulation model was implemented through the evolutionary 

annealing-simplex algorithm, which is a probabilistic heuristic global optimization technique that 
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incorporates strategies from different methodological approaches, enhancing them with some original 

elements (Efstratiadis, 2001; Efstratiadis & Koutsoyiannis, 2002). This algorithm was successfully 

applied to a variety of benchmark functions as well as some simple hydrological applications, and 

proved very reliable in locating the global optimum, requiring reasonable computational effort. But till 

now, it was not tested in such a challenging real-world model calibration problem (some information 

about the peculiarities of this problem are given in section “Model calibration”). Its main principle is 

to effectively couple the robustness of simulated annealing in problems with rough search space, with 

the efficiency of local search methods in simple ones. There are only few references in literature on 

how to implement such combined schemes; among them, we distinguish the simplex-annealing 

algorithms of Press et al. (1992, pp. 451-455), Kvaniscka & Pospichal (1997) and Pan & Wu (1998). 

Simulated annealing is a stochastic optimization technique based on an analogy with the homonymous 

thermodynamical process. During the cooling process of a metal, nature’s strategy is to both decrease 

and increase its energy, enabling thus to escape from a local minimum energy state in favor of finding 

a better one. This principle is implemented according to a probabilistic law, depending on the 

temperature; the lower is the temperature, the less likely is a significant “uphill” transition. To apply a 

similar strategy within an optimization procedure, it is required to use a control parameter, analogous 

of the temperature, and an annealing cooling schedule that describes the gradual temperature 

reduction. It can be proven that, assuming a large initial temperature and a proper schedule, a 

simulated annealing procedure asymptotically converges to the global optimum. Hence, an annealing-

based algorithm can escape from local optima and pass through various regions of attraction until 

locating the global optimum; but in so doing it sacrifices efficiency. 

On the other hand, deterministic search methods, either gradient-based or direct (i.e., derivative-

free), can easily converge to a local stationary point, but they have no way of getting out of it. A well-

known direct search method is the downhill simplex algorithm of Nelder & Mead (1965). Its core is an 

evolving pattern of n + 1 points (assumed as the vertices of a simplex) that span the n-dimensional 

search space. The simplex explores the feasible space either by reflecting, contracting or expanding 

away from the actually worst vertex, or by shrinking towards the best one. An appropriate sequence of 

such movements guides the simplex to the nearest local minimum, provided that the search space is 
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relatively smooth. Due to its efficiency, the principles of the Nelder-Mead method have been 

incorporated into some global optimization schemes, such as the widely used shuffled complex 

evolution algorithm of Duan et al. (1992).  

Description of the algorithm 

The proposed algorithm is based on the following three concepts: (a) an evolutionary search 

strategy, (b) a set of combined (both deterministic and stochastic) transition rules, either downhill or 

uphill, mainly implemented within a simplex-based evolving pattern, and (c) an adaptive annealing 

cooling schedule that regulates the “temperature” of the system, determining the degree of randomness 

through the evolution procedure. 

To initialize, a population of m ≥ n + 1 points is randomly generated into the feasible space, 

where n is the problem dimension. This population is gradually evolved by, usually, replacing just one 

existing point by a new one (adopting the terminology of genetic algorithms, the former will referred 

as “parent”, whereas the latter as “offspring”). Note that according to the simulated annealing 

principle, an “offspring” should not necessarily be better than its “parent”. Considering a minimization 

problem, a typical iteration cycle consists of the following steps: 

Step 1: The minimum, fmin, and maximum, fmax, values of the objective function, f, within the actual 

population are drawn and the system temperature, T, is re-evaluated so that it never exceeds the 

amount ξ (fmax – fmin), where ξ ≥ 1 is a parameter of the annealing schedule. This restriction prevents 

the “temperature” taking extremely high values, which would drastically reduce the speed of the 

algorithm due to the fact that the searching procedure would become extremely random. 

Step 2: A set of n + 1 points is randomly selected from the actual population. This set will next 

referred as a simplex and symbolized as S = {x1, x2, …, xn + 1}, where f(x1) corresponds to the best 

(lowest) and f(xn + 1) to the worst function value. 

Step 3: From the subset S – {x1}, we choose as candidate parent the point xw that maximizes the 

probabilistic criterion: 

 g(x) = f(x) + u T (3) 
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where u is a random number uniformly distributed in the interval [0, 1]. By adding a random 

component to the objective function f, relative to the actual temperature T, the algorithm behaves as in 

between random and downhill search. In reality, the evaluation criteria are now based on a 

transformed objective space, which may be much smoother than the original one, thus providing more 

flexibility to the search procedure, especially at the early stages of it (i.e., when temperature is high). 

Step 4: A new point, xr is generated by reflecting the simplex away from xw, according to the formula: 

 xr = g + (0.5 + u) (g – xw) (4) 

where g is the centroid of the subset S – {xw}. 

Step 5: If f(xr) < f(xw), xr replaces xw in the actual population. Next, two cases arise. If f(xr) < f(x1), i.e. 

the reflection point is better than the current best vertex, the difference xr – g denotes a direction of 

function minimization or, equivalently, an estimation of the gradient. This fact is of high importance, 

because it enables the search procedure to progress quickly towards a local minimum. Generally, the 

location of the gradient in a rough search space may be extremely difficult, especially when the 

problem is of high dimension. Therefore, whenever the gradient is found, a sequence of “expansion” 

steps are implemented towards the direction of function minimization, according to the simple 

formula: 

 xe = g + φ[s] (xr – g) (5) 

where φ[s] = φ[s – 1] + u, with φ[0] = 1. The expansion continues as long as the function value 

improves, thus accelerating significantly the search procedure. The second case arises when 

f(xr) > f(x1), indicating that a local minimum is in the neighborhood of x1. Then, an offspring is 

generated as follows: 

 xc = g + (0.25 + 0.5 u) (xr – g) (6) 

Adopting the terminology of Nelder & Mead, the above configuration is called outside contraction. If 

f(xe) < f(xr) or f(xc) < f(xr), the new point (either xe or xc) replaces xr in the actual population. 

Step 6: If f(xr) > f(xw), we use the probabilistic criterion (3) to accept or reject xr as candidate 

offspring. Hence, if g( xr) > g(xw), xr is rejected and the simplex is inside contracted as: 

 x΄c = g – (0.25 + 0.5 u) (g – xr) (7) 
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If f(x΄c) > f(xn + 1), i.e. x΄c is worse even than the actual worst vertex, the simplex shrinks towards the 

actual best vertex x1, such as xs,i = 0.5 (x1 + xi) for i = 2, …, n + 1. A simplex volume reduction 

indicates that a local optimum is surrounded. In that case, more than one offsprings are generated, and 

the system temperature is reduced by ψ, which is a second parameter of the annealing schedule, taking 

values into the interval 0.90-0.99. A slight reduction rate prevents temperature taking extremely low 

values. Hence, the searching procedure is prevented from becoming too deterministic, thus avoiding 

early convergence to a local optimum. 

Step 7: If g(xr) < g(xw), xr is accepted even if it deteriorates the function value. Next, a given number 

of uphill movements are implemented using a formula analogous to (5), until passing the hill and 

finding a new region of attraction. This strategy, which is quite similar to those introduced by Pan & 

Wu (1998), makes the simplex easily escaping from the current local minimum and search for 

neighboring local minima. 

Step 8: If it is not possible to locate a better offspring, either at the downhill or uphill direction, a 

random point is generated within the boundaries of the actual population and replaces xr according to a 

mutation probability pm.  

Only the main issues of the algorithm are given above; for more details, the reader may refer to 

the original work of Efstratiadis (2001) and Efstratiadis & Koutsoyiannis (2002). The main 

configurations of the search strategy are illustrated in the graphical example of Figure 4. 

APPLICATION OF THE MODEL TO THE BOEOTICOS KEPHISOS RIVER BASIN 

Description of the study area 

The Boeoticos Kephisos river basin, illustrated in Figure 5, lies on the Eastern Sterea Hellas, 

north of Athens, and drains an area of 1987 km2. The catchment geology comprises heavily karstified 

limestone, practically developed on the mountainous and semi-mountainous areas of the basin, and 

alluvial deposits, lying in the plain areas. Due to its karstic background, the watershed has a significant 

groundwater yield. The main discharge points are large karstic springs in the upper and middle part of 

the basin, the most important of which are shown in Figure 5. These account for more than half of the 

catchment runoff. Moreover, an unknown part of groundwater is conducted to the sea, from the NE 
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boundary of the basin. A direct measurement of those outflows is infeasible since their front is too 

extended. 

The river network of the basin originates from altitudes as high as 2400 m and reaches 

downstream to a plain with an area of about 250 km2 and a mean ground elevation of 95 m. Prior to 

1860, the plain was permanently flooded by the basin’s runoff, thus giving rise to the formulation of a 

shallow lake (Kopais) with a mean area of about 150 km2. However, during periods of high flows, the 

lake expanded to 250 km2 as the capacity of karstic sinkholes was insufficient. Effective drainage 

works were initiated in ancient times (2000 B.C.), as reported by Strabo, the geographer (Koukis & 

Koutsoyiannis, 1997). The problem was permanently remedied only by the end of 19th century, after 

the construction of an extended drainage network and a tunnel (Karditsa tunnel) that conveys the 

entire surface water resources of the basin to the external Lake Yliki. From 1950 to 1980, this lake was 

the major water storage project of Athens. Today, Lake Yliki is part of a complex hydrosystem, 

extending on an area of more than 4000 km2 and comprising three additional reservoirs, 350 km of 

aqueducts, 15 pumping stations, four treatment plants and a hundred of boreholes. Besides, some of 

the most important supply boreholes are located at the Vassilika-Parori region, just upstream of the 

Mavroneri springs. These boreholes were drilled in the early 1990’s, within the frame of emergent 

measures taken during a severe drought in the period from 1989 to 1994, at the end of which almost all 

surface resources dried out. Due to a significant reduction of precipitation, in addition to major 

abstractions through the Vassilika-Parori boreholes, the discharge of Mavroneri springs was totally 

interrupted during 1990 and 1993, thus resulting to various social and environmental problems.  

In addition to drinking water for Athens, the surface and groundwater resources of the study 

basin are used for irrigation. The total irrigated area is 325 km2 and the total irrigation demand is 

estimated to 216 hm3/year (Table 1). In the Upper and Middle courses, the irrigation demand is merely 

fulfilled through pumping, whereas in the Lower river course, both surface water and groundwater 

abstractions take place. More precisely, during the irrigation period, the discharge of Boeoticos 

Kephisos is regulated through a system of locks, which divert water to the main irrigation channels. 

This results to practically zero inflows to Lake Yliki during summer. If surface water resources are 

insufficient, the deficit is fulfilled via pumping from nearby aquifers and Lake Yliki. 
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It is obvious that the development of a simulation model for the Boeoticos Kephisos water 

resource system is a challenging task. This is justified by both the complexity of the related physical 

processes (mainly due to the dynamics of the karst and the underground losses) and the existence of 

combined uses. We have to point out that, although this watershed is one of the most studied in Greece 

– the first studies were carried out at the end of 19th century –, no attempt was made towards an 

integrated approach. Moreover, the estimations regarding the basin’s water potential are characterized 

by considerable disagreements. 

Model formulation and input data 

When formulating a conceptual model, an essential option is to calibrate as many parameters as 

the available information can support. Results from previous research suggest that, in case of 

hydrological modeling, up to five or six parameters can be identified from a timeseries of observed 

series (i.e., streamflow), using a traditional curve-fitting procedure (e.g., Wagener et al., 2001). 

This principle of parsimony was applied by taking into account the available hydrologic data of 

the watershed. This consists of daily discharge measurements at the basin outlet (Karditsa tunnel), 

semi-monthly discharge measurements at the main karstic springs and non-systematic level 

observations at a relatively small number of wells, mostly located in the plain areas of the watershed. 

Except for the discharge record at the outlet, which is the longest one in Greece – measurements exist 

from the beginning of the 20th century –, the rest of data was systematically available for a much 

shorter period, i.e. 1984-1994. Nevertheless, this period can be assumed representative of the 

hydrologic regime of the basin, because it contains both high- and low-flow periods, including the 

severe drought mentioned before. Moreover, within this period the water supply boreholes at 

Vassilika-Parori were drilled and operated intensively, by a rate of 50 hm3/year. 

The simulation model structure was constructed based on the physical characteristics of the 

watershed and its underlying aquifer. Specifically, for the simulation of the surface hydrological 

processes, the watershed was divided in two hydrologic response units (HRUs). This discretization is 

in accordance with the catchment terrain and geological properties; the first HRU (shaded area of 

Figure 5) has an area of 649 km2 that corresponds to the karstic, mountainous part of the basin, 
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whereas the second one (white area of Figure 5), has an area of 1339 km2 that corresponds to the 

basin’s alluvial plains. The total number of parameters is 9, namely the four parameters of each soil 

moisture reservoir (K1, K2, λ, µ) and the upper bound ε, assumed common for the two HRUs. 

On the other hand, for the simulation of the groundwater processes, the aquifer was represented 

through a grid of 4 × 4 = 16 cells, illustrated in Figure 6, left. Cells (1, 1) and (2, 4) correspond to 

groundwater tanks whose inflows represent the basin leakages to the sea. Cells (1, 4), (3, 4) and (4, 4), 

illustrated with dotted lines, correspond to dummy tanks of zero area that are set for convenience (i.e., 

to run the numerical solving scheme that imposes a rectangle multi-cell grid). The main karstic springs 

of the basin, for which there exist systematic discharge measurements, were grouped and represented 

by tanks corresponding to respective cells. Specifically, cell (4, 1) corresponds to the springs of Lilea 

and its surrounding region, cell (4, 2) corresponds to Mavroneri springs, cell (1, 3) corresponds to 

Melas and Polygyra springs (assumed merged), and cell (4, 3) corresponds to Erkina springs. The 

tanks corresponding to cells that are marked gray are supplied by the percolation of HRU 1, namely 

the karstic, mountainous areas of the basin that contribute directly to the spring yield. Similarly, cells 

(2, 1), (2, 2) and (2, 3) are supplied by the percolation of HRU 2, namely the plain areas of the basin. 

The arrows in Figure 6 represent the prevailing groundwater flow directions, and at each one 

corresponds a conductivity term. The total number of the groundwater model parameters is 13, namely 

12 conductivities and the specific yield, assumed common for the whole aquifer, for reasons of 

parsimony. All tank heights were set equal to the average aquifer thickness (230 m). The initial water 

levels of all tanks representing springs was set equal to the spring altitude, whereas for the tanks 

representing the sea this was set to zero. Finally, for the rest of groundwater tanks, the initial levels 

were chosen to be consistent with the historical observations and the steady-state solution. 

In Figure 6 (right), a coarse representation of the hydrosystem is illustrated, consisting of the 

main branch of Boeoticos Kephisos river, its main tributaries, supplied by the four karstic springs, and 

five borehole groups. Specifically, borehole groups 1 to 4 are used for irrigation, as explained in Table 

1, whereas group 5, set just upstream of Mavroneri springs, correspond to Vassilika-Parori boreholes 

that are used for the water supply of Athens. Groundwater abstractions from each borehole group are 

made from the corresponding tank, according to the priorities of Table 1. 
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The model was calibrated on six years (October 1984-September 1990) and validated on four 

years (October 1990-September 1994). For the former period, there exist semi-monthly discharge 

measurements at all spring sites, whilst for the latter there exist less systematic measurements. This 

raw data was used to construct monthly runoff records for the four springs; their average annual values 

are shown in Table 2. Other input series were the demand for irrigation, the areal precipitation and the 

potential evapotranspiration. The precipitation of HRU 1 was estimated via the point rainfall samples 

of seven rain gauges lying at altitude more than 350 m, whereas the precipitation of HRU 2 was 

estimated via the point rainfall samples of five rain gauges of lower altitude (the average altitude of 

the watershed is about 480 m, with maximum 2457 m). The corresponding mean annual values for the 

whole control period are 707 mm (458 hm3) and 622 mm (832 hm3). Finally, the potential 

evapotranspiration was estimated using the Penman method. 

Model calibration 

An automatic calibration procedure requires the specification of a goodness-of-fit measure 

between the simulated and the observed response series of the catchment (habitually, the runoff at its 

outlet), consisting the objective function of an optimization problem. It is now recognized that a 

parameter estimation based on a single performance measure is rather inadequate to simulate properly 

all important characteristics of the physical system that are reflected in the observations (Gupta et al., 

1998; Kuczera & Mroczkowski, 1998). On the other hand, the use of alternative goodness-of-fit 

criteria may lead to multiple optimal parameter sets, which provide equally satisfactory responses. 

Despite the progress made after three decades of research (e.g., Johnston & Pilgrim, 1976; Sorooshian 

& Gupta, 1983; Beven & Binley, 1992; Gupta et al., 1998; Boyle et al., 2000; Wagener et al., 2001), 

the parameter estimation problem is still considered state-of-the-art. During the last years, research is 

focused on the application of vector optimization techniques, through the use of multiple performance 

criteria that measure either different aspects of the hydrograph or different watershed responses (e.g., 

Yapo et al., 1998; Madsen, 2000). In that case, there exist significant trade-offs between the various 

objectives and no unique set of parameters is able to optimize them simultaneously. On the contrary, 

the solution to the calibration problem is a set of parameters that are, from a mathematical point-of-
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view, equivalent (these consist the so-called Pareto set). Although the statistical characteristics of 

these solutions provide useful information about model uncertainty, only one of them must be finally 

selected if the model is to be employed in hydrological forecasting. In such cases, the choice of the 

best compromise set is either based on the experience of the hydrologist or on numerical criteria, such 

as a weighted utility function (Cohon, 1978, pp. 164-212). 

The model efficiency was evaluated by considering multiple performance criteria that refer to 

the observed response series at the basin outlet (Karditsa tunnel) and the four springs. However, 

instead of employing multi-objective optimization, a scalar optimization approach was adopted, by 

aggregating the various criteria into a single objective function. This approach was preferred for 

practical reasons, since the model complexity as well as the existence of various performance 

components within the objective function (five fitting criteria and two penalty terms, as will explained 

bellow) would lead to a high-dimensional (i.e. 7D) Pareto front. Primary investigations indicated that 

there exists an enormous number of non-dominated parameter sets providing calibrations that are far 

away from the objectives of the study, i.e. relatively good predictions of the spring hydrographs but 

simultaneously bad prediction of the hydrograph at Karditsa tunnel or unrealistic parameter values. 

Moreover, a manual choice of the best compromise parameter set would be an extremely hard and 

time-consuming task. On the other hand, the adopted strategy, where all performance criteria were 

aggregated through the use of appropriate weighting coefficients, in addition to the empirical guidance 

of the optimization procedure that will be explained herein, ensured a relatively fast and reliable model 

calibration. 

Initially, the objective function was formulated as the weighted sum of the determination 

coefficients of the five hydrographs. The determination coefficient, usually referred in hydrology 

literature as Nash-Sutcliffe measure (Nash & Sutcliffe, 1970), is a goodness-of-fit measure given by: 

 d = 1 – 
∑

i = 1

n
 (xi – yi)2

∑
i = 1

n
 (xi – x–)2

 (8) 
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where xi is the observed series, x– is its average value, yi is the simulated series and n is the time 

horizon. The determination coefficient dj of each series j was multiplied by a weighting factor wj. For 

the total runoff, the prediction of which stands as the main objective of the study, the weight was set 

equal to 6. Furthermore, for the Mavroneri springs flow, a reliable prediction of which is also 

important for the reasons explained earlier, the weight was set equal to 2. For the rest of springs, a unit 

weight was adopted. We recall that the total number of parameters is 22, namely 9 for the surface and 

13 for the groundwater module. This number is in accordance to the principle of parsimony, given that 

the objective function consists of five goodness-of-fit measures. Therefore, there is sufficient 

information to explain the adopted parameterization. 

Besides spring flow measurements, other useful raw data were the water table observations at a 

restricted number of wells. However, a direct incorporation of these measurements into the objective 

function was not feasible since these refer to the drill scale, while the simulated tank level series refer 

to the aquifer scale. But on the other hand, the observations indicate that during the whole calibration 

period the water table decline was negligible for the entire aquifer except for the vicinity of Mavroneri 

springs. This useful information, which is independent of the model scale, was taken into account by 

introducing a penalty term P1, defined as the square difference between the initial and the final level of 

each tank regarding the whole calibration period, i.e. (wn – w0)2. In that manner, it was ensured that the 

calibration would forbid the appearance of over-year trends in the simulated aquifer level series. 

A major characteristic of the groundwater system dynamics was the occasional interruption of 

spring flows. During the control decade, this phenomenon was observed at all springs except those of 

Melas. A successful representation of a spring’s intermittency was assumed a crucial factor of the 

model reliability. Hence, a second penalty term P2 was introduced (by means of average square error), 

to prohibit the generation of runoff in case of spring interruption or the opposite. We note that the 

above penalty is additional to the error term already incorporated into the Nash-Suttclife measure; the 

latter is affected by measurement errors as well as errors due to the use of monthly runoff values based 

on sparse discharge measurements, whereas the penalty term is independent of such errors. 

According to the above assumptions, the formulation of the objective function was: 
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 f = ∑
j = 1

5
 wj dj + ξ1 P1 + ξ2 P2 (9) 

where ξ1 and ξ2 are scalar coefficients, the value of which was let to change in order to generate 

alternative optimal parameter sets. 

The calibration procedure followed a hybrid strategy based on a combination of automatic and 

manual methods; such strategies have proved very effective in case of complex hydrologic models 

(e.g., Boyle et al., 2000; Eckhartd & Arnold, 2001). First, a “rough” calibration was employed, 

allowing a large variation of parameters. Several optimizations were carried out, by modifying the 

boundaries of the feasible parameter space and the weights ξ1 and ξ2 of the two penalty terms. In that 

manner, some characteristic regions of attraction corresponding to specific regions of the Pareto set 

were detected. Next, the optimization was let to seek for the global optimum of each region of 

attraction, already identified within the previous phase, by drastically restricting the feasible space. 

Throughout this phase, the calibration was separately performed for the surface and groundwater 

model parameters, in order to primarily ensure a very good adaptation of the hydrograph at the basin 

outlet, and secondly, an acceptable adaptation of the spring hydrographs. All optimizations were 

carried out via the evolutionary annealing-simplex algorithm, which proved very effective and 

efficient, taking into account the peculiarities of this problem. Moreover, the manual control of 

calibrations directed the algorithm to acceptable regions, which ensured a satisfactory model 

performance for the entire set of criteria, in spite of the various uncertainties concerning the physical 

processes, the relatively large number of parameters and their interactions, as well as the major 

approximations concerning the model inputs (e.g. the abstractions).  

Analysis of results 

As expected, a large number of parameter sets was found to provide almost equivalently good 

performance, according to numerical (curve fitting) criteria. Therefore, the selection of the best 

compromise set was based on empirical considerations. Specifically, we rejected all sets providing at 

least one of the following characteristics: (a) parameters with no physical sense; (b) bad performance 

regarding the reproduction of some of the observed runoff series, namely points lying on the 

boundaries of the Pareto set; (c) bad reproduction of output statistics. The last criterion refers to 
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response series except the calibrated ones, namely series for which there are no available 

measurements. By investigating the properties of those series (marginal statistics and existence of 

over-year trends), we both ensured a reliable reproduction of all physical processes of the basin and a 

realistic hydrologic balance of it. 

After extended investigation, two parameter sets were finally detected, the values of which are 

illustrated in Table 3. These sets provide similar performance by means of both numerical and 

empirical criteria. Tables 4 and 5 illustrate the model efficiency values of the five hydrographs for the 

calibration and validation period. The determination coefficient for the runoff series at the basin outlet 

exceeds 92% for the calibration and 80% for the validation, thus ensuring a very satisfactory 

predictive capability of the model. Moreover, the bias referring to both the historical mean and 

standard deviation is negligible (about 1% and –4%, respectively, for both parameter sets). Although 

model efficiency regarding springs was not as good as the hydrograph at the outlet, this was still 

acceptable, given the complexity of the karstic system and the inaccuracies in the calibration data 

(hydrographs based on infrequent measurements). Even the performance of Melas-Polygyra springs is 

satisfactory, despite the fact that their historical runoff series present almost zero or even negative 

cross-correlation with precipitation. Figures 7 and 8 illustrate the observed and simulated hydrographs 

at the basin outlet and Mavroneri springs, respectively (for the entire time horizon). Although these 

hydrographs refer to the first parameter set, they are practically identical to those of the second one. 

As shown in Table 3, some parameter values are almost identical for the two sets, thus 

indicating low uncertainty. But for others, the uncertainty remaining after the calibration is still 

significant; these are parameters mainly affecting the estimation of the evapotranspiration and 

outflows to the sea (e.g., conductivities upstream of tanks concentrating the losses to the sea). In 

reality, due to the existence of non-measurable outflows to the sea, the problem of allocating the 

hydrological losses of the basin is ill-posed, given that it has a degree of freedom. Table 6 shows the 

mean annual surface and groundwater hydrologic balance for the 10-year control period, which refers 

to the two parameter sets. In reality, these sets provide two extreme scenarios regarding the allocation 

of hydrological losses. Specifically, the first parameter set provides the highest (among the two) 

evapotranspiration (835 hm3/year or 64.7% of the mean annual precipitation) and the lowest outflows 
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to the sea (61 hm3/year), whereas the second set provides the lowest evapotranspiration (727 hm3/year 

or 56.4% of the mean annual precipitation) and the highest outflows to the sea (182 hm3/year). In the 

absence of further information, such as estimations based on direct measurements, any of the 

parameter sets is suitable for the purpose of the study. 

SUMMARY AND CONCLUSIONS 

The paper presents an integrated approach regarding conjunctive modeling of surface and 

groundwater hydrological processes, through a case study on a watershed with many peculiarities. In 

this study, the following issues are investigated: (a) building a model for simulating both physical 

processes and human interventions at the watershed scale; (b) developing an innovative optimization 

method for automatic model calibration; and (c) proposing a calibration strategy that used both manual 

and automatic procedures and was based on a combined optimization criterion, including various types 

of information on the system studied. 

The hydrological simulator consists of three independent modules that were integrated within a 

conjunctive scheme. The first is a conceptual soil moisture accounting model, based on an enhanced 

version of the classical Thornthwaite approach. The model is able to represent the main hydrological 

processes, even when applied to a semi-arid catchment. The second module is a groundwater model 

based on a multi-cell approach that uses an explicit numerical scheme for the solution of flow 

equations. Its novelty is that, albeit using only two conceptual components (groundwater tanks and 

conveyance elements), it attains to represent all essential processes of a groundwater system, including 

spring runoff and water exchanges with neighboring aquifers (or the sea). The third module is a water 

management model, which is linked to the aforementioned ones in case of combined abstractions. 

Outputs of one model become inputs to the other; e.g., the percolation rates of the surface simulation 

model supplies the groundwater tanks, whereas the demand rates of the water management model are 

used to estimate surface and groundwater abstractions. The main advantage of the above scheme is 

that each of the three modules can be applied in different time and space scales. Moreover, although it 

uses relatively few parameters, it attains to represent particularly complex physical systems, even 

perturbed through human interventions. 
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For the automatic calibration of model parameters, an innovative method, the so-called 

evolutionary annealing-simplex algorithm, was used. This is a robust global optimization scheme, 

suitable for problems with rough response surfaces. This algorithm combines well-known 

methodologies, such as simulated annealing and the downhill simplex technique, within an 

evolutionary scheme. Its specific feature is the use of transition rules that are both deterministic and 

stochastic, where the degree of randomness is automatically adapted through a suitable annealing 

schedule; as the search proceeds, the influence of the stochastic component is gradually reduced until 

the global optimum is reached. The case study, also regarded as a benchmark test for the evolutionary 

annealing-simplex algorithm, provided encouraging conclusions about its performance; generally, 

both in terms of accuracy and speed, the algorithm proved practically equivalent to the widely used 

shuffled complex evolution method. 

Our study indicated that, when calibrating hydrologic models, especially in case of complex 

simulation schemes with many parameters and multiple performance criteria, it is preferable to employ 

both automatic and manual methods. In that case, the hydrologist’s experience is crucial regarding 

three issues: (a) the formulation of the objective function; (b) the guidance of the search procedure, 

through setting appropriate boundaries on parameters; (c) the selection of the best compromise 

solution. Regarding the first issue, it proved critical to take advantage of all available data reflecting 

the basin responses, thus using multiple performance criteria. Specifically, the model performance was 

tested on the basis of measured responses (i.e. hydrographs) and indicative but non-representative 

measures of model state variables (i.e. groundwater levels). Concerning the second issue, the 

shrinkage of the feasible space facilitates the search procedure and also leads to realistic parameter 

values. Finally, the third issue points out the importance of analyzing model outputs regarding not 

only the observed responses but also the non-observed series (i.e. evapotranspiration), and using 

empirical criteria in order to achieve realistic predictions. We also note that in the specific case study, 

the adopted scalar optimization strategy that involved our manual interventions proved much more 

convenient than typical multi-objective optimization approaches, since it avoided to explore a vast 

number of solutions that may be inconsistent with our objectives. 
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The application of the conjunctive model to the particularly complex Boeoticos Kephisos basin 

proved that, albeit using relatively few parameters and a coarse spatial analysis, the model managed to 

reliably represent not only the main responses of the catchment, i.e. the runoff at its outlet, but also 

other important components, concerning the dynamics of the underlying system. The model provided 

satisfactory predictions despite various uncertainties related to the complexity of the physical 

processes and the quality of input data. Moreover, due to its parsimonious formulation, the model was 

computationally quite effective. However, some weaknesses have been detected regarding the 

simultaneous calibration of parameters of different scales, e.g. reservoir capacities and conductivities. 

This problem is typical in conjunctive modeling and may be a possible issue for further research. 

An appropriate implementation of the model presupposes, among others, the discrimination of 

the watershed and its underlying aquifer into spatial elements with homogenous characteristics, i.e. 

hydrologic response units and groundwater cells, respectively. Although in our case study this was 

done manually, the existence of a systematic procedure on formulating the model structure (based on 

criteria such as geology, geomorphology and land-use) not only would facilitate the user but also it 

would contribute to a more rational conceptualization. Other issues for further improvement of the 

model are: (a) the incorporation of routing procedures, in order to employ simulations at finer than 

monthly time step, (b) the use of a better (e.g. implicit) numerical scheme, in order to reduce the 

computational effort of groundwater simulation, and (c) the enhancement of the water management 

model, to represent more complex hydrosystems, consisting of reservoirs, river diversions, etc. 

The calibration strategy may stand as a proposal for treating the equifinality problem in 

response to the need of a unique parameter set for engineering applications. Moreover, this strategy is 

consistent with the most recent approaches on multiobjective optimization, where decision-making is 

implemented in an interactive manner, by articulating preferences during the search; after each 

optimization step, a number of alternative solutions are obtained, on the basis of which the user 

specifies further preference information, thus guiding the search (Horn, 1997). 

This paper mainly focused on the formulation and calibration of the hydrological model. The 

next step is to integrate this model within the DSS for the management of the Athens water supply 
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system, as explained in the introduction. Currently, our research team is working in this direction; the 

results will be reported in due course. 
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Tables 

Table 1 Allocation of irrigation demand, ordered by priority. 

Irrigated region Area (km2) Abstractions from Demand 
(hm3/year) 

Upstream boundaries until 
Mavroneri springs 19 Aquifers (borehole group 1) 13 

Mavroneri springs region 51 
Mavroneri springs 
Aquifers (borehole group 2) 

34 

Between Mavroneri and 
Melas springs 29 Aquifers (borehole group 3) 19 

Downstream of Melas 
springs 226 

Lake Yliki (≈ 20 hm3) 
Streamflow diversions 
Aquifers (borehole group 4) 

150 

TOTAL 325  216 
 

Table 2 Mean annual runoff of Boeoticos Kephisos river and its springs (hm3). 

Runoff series Calibration period 
(10/1984-9/1990) 

Validation period 
(10/1990-9/1994) 

Lilea springs 34.8 Not available 
Mavroneri springs 48.4 27.2 
Melas-Polygyra springs 123.7 Not available 
Erkina springs 21.0 Not available 
Net runoff at Karditsa tunnel 233.9 171.6 
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Table 3 List of calibrated model parameters. 

Parameter Symbol Unit Set 1 Set 2 
Interflow threshold for HRU 1  K1(1) m 0.037 0.019 

Interflow threshold for HRU 2  K1(2) m 0.331 0.331 

Storage capacity of HRU 1  K2(1) m 0.167 0.132 

Storage capacity of HRU 2 K2(2) m 0.442 0.589 

Interflow retention rate of HRU 1  λ(1) month – 1 0.068 0.078 

Interflow retention rate of HRU 2  λ(2)  month – 1 0.043 0.042 

Percolation retention rate of HRU 1  µ(1)  month – 1 0.359 0.452 

Percolation retention rate of HRU 2  µ(2)  month – 1 0.056 0.089 

Upper bound of potential evapotranspiration ε  month – 1 0.232 0.213 

Specific yield (common for the entire aquifer) SY  month – 1 0.274 0.171 

Conductivity from cell (1,2) to (1,1)  Cx(1,1) m/s 0.000025 0.000023 

Conductivity form cell (2,1) to (2,2) Cx(2,1) m/s 0.000275 0.000471 

Conductivity form cell (1,2) to (1,3) Cx(1,2) m/s 0.020333 0.008856 

Conductivity from cell (2,2) to (2,3) Cx(2,2) m/s 0.000067 0.002120 

Conductivity form cell (2,3) to (2,4) Cx(2,3) m/s 0.000127 0.000414 

Conductivity from cell (3,1) to (2,1) Cy(2,1) m/s 0.000033 0.000043 

Conductivity from cell (3,1) to (4,1) Cy(3,1) m/s 0.010815 0.005089 

Conductivity from cell (2,2) to (1,2) Cy(1,2) m/s 0.001712 0.001931 

Conductivity from cell (3,2) to (3,3) Cy(2,2) m/s 0.000066 0.000096 

Conductivity from cell (3,2) to (4,2) Cy(3,2) m/s 0.006275 0.003562 

Conductivity from cell (3,3) to (2,3) Cy(2,3) m/s 0.000005 0.000007 

Conductivity from cell (3,3) to (4,3) Cy(3,3) m/s 0.000862 0.000562 
 

Table 4 Model efficiency, by means of determination coefficients for the calibration and validation 

periods (NSCAL and NSVAL, respectively) and relative error of average and standard deviation 

(AVERR and STDERR, respectively) for the calibration period – Parameter set 1. 

Runoff series NSCAL NSVAL AVERR STDERR
Basin outlet 0.926 0.803 0.011 -0.041 

Lilea springs 0.795 0.522 0.054 -0.069 

Mavroneri springs 0.659 0.495 -0.069 -0.299 

Melas-Polygyra springs 0.194 - -0.029 -0.301 

Erkina springs 0.358 0.254 0.001 -0.303 
Note: The determination coefficients of the spring hydrographs are not corresponding to the entire 

validation period (48 months), but to a smaller one (34 months for Lilea and Mavroneri springs, 30 

months for Erkina springs, and none for Melas and Polygyra springs). 
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Table 5 Model efficiency, by means of determination coefficients for the calibration and validation 

periods (NSCAL and NSVAL, respectively) and relative error of average and standard deviation 

(AVERR and STDERR, respectively) for the calibration period – Parameter set 2. 

Runoff series NSCAL NSVAL AVERR STDERR
Basin outlet 0.922 0.801 -0.009 -0.036 

Lilea springs 0.805 0.527 0.015 -0.131 

Mavroneri springs 0.688 0.469 -0.059 -0.286 

Melas-Polygyra springs 0.249 - -0.021 -0.452 

Erkina springs 0.354 0.258 -0.005 -0.227 
 

Table 6 Mean annual water balance of Boeoticos Kephisos catchment (hm3). 

Hydrologic variable Parameter set 1 Parameter set 2 

Surface water balance 
Precipitation 1291 (100.0%) 1291 (100.0%) 
Actual evapotranspiration 835 (64.7%) 727 (56.4%) 
Percolation 342 (26.5%) 457 (35.5%) 
Flood runoff 114 (8.8%) 109 (8.4%) 

Groundwater balance 
Percolation 342 (100.0%) 457 (100.0%) 
Spring runoff 192 (56.0%) 192 (42.0%) 
Pumping 134 (39.1%) 133 (29.0%) 
Underground flows to the sea 61 (17.8%) 182 (39.7%) 
Groundwater storage difference  -44 (-12.9%) -49 (-10.7%) 

Water abstractions 
Surface water abstractions 83 (38.3%) 84 (38.7%) 
Groundwater abstractions (pumping) 134 (61.7%) 133 (61.3%) 
Total abstractions 217 (100.0%) 217 (100.0%) 

Hydrological losses 
Evapotranspiration 835 (93.2%) 727 (80.0%) 
Outflows to the sea 61 (6.8%) 182 (20.0%) 
Total losses 896 (100.0%) 909 (100.0%) 

Boeoticos Kephisos runoff 
Total runoff 306 (100.0%) 301 (100.0%) 
Surface water abstractions 83 (27.1%) 84 (27.8%) 
Net runoff (Karditsa tunnel) 223 (72.9%) 217 (72.2%) 



      31

Figure captions 

Fig. 1 Original (left) and modified (right) Thornthwaite model. 

Fig. 2 Groundwater model tanks. 

Fig. 3 An example of establishing a scheme for combined simulation of surface and groundwater 

flows. 

Fig. 4 Schematic representation of simplex configurations in a two-dimensional search space: (a) 

reflection, (b) expansion, (c) outside contraction, (d) inside contraction, (e) shrinkage. Solid lines 

correspond to the initial configuration, whereas dashed ones correspond to the final configuration. 

Fig. 5 The Boeoticos Kephisos river basin, its main karstic springs and the water supply boreholes at 

Vassilika-Parori. The shaded area represents the mountainous regions of the basin and corresponds to 

HRU 1, whereas the white one represents the plain regions and corresponds to HRU 2.  

Fig. 6 Illustration of the multi-cell groundwater simulation model (left) and the hydrosystem 

schematization (right). The aquifer bounds are represented by the thick frame. Gray cells correspond 

to mountainous karstic regions whereas white ones correspond to plain regions, and they are supplied 

by the percolation of HUR 1 and HRU 2, respectively. Dummy cells are illustrated with dotted lines. 

On the left figure, arrows represent feasible water paths between groundwater tanks; at each one 

corresponds a specific conductivity value. Circles represent springs, whereas triangles (on the right 

scheme) represent groundwater abstractions from the corresponding borehole groups (Table 1). 

Fig. 7 Observed and simulated time series of the monthly runoff at the basin outlet (Karditsa tunnel), 

from October 1984 to September 1994 (parameter set 1). 

Fig. 8 Observed and simulated time series of the mean monthly discharge of Mavroneri springs, from 

October 1984 to September 1994 (parameter set 1). 
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Fig. 1 Original (left) and modified (right) Thornthwaite model. 
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Fig. 2 Groundwater model tanks. 
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Fig. 3 An example of establishing a scheme for combined simulation of surface and groundwater 

flows. 
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Fig. 4 Schematic representation of simplex configurations in a two-dimensional search space: (a) 

reflection, (b) expansion, (c) outside contraction, (d) inside contraction, (e) shrinkage. Solid lines 

correspond to the initial configuration, whereas dashed ones correspond to the final configuration. 

 

Fig. 5 The Boeoticos Kephisos river basin, its main karstic springs and the water supply boreholes at 

Vassilika-Parori. The shaded area represents the mountainous regions of the basin and corresponds to 

HRU 1, whereas the white one represents the plain regions and corresponds to HRU 2. 
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Fig. 6 Illustration of the multi-cell groundwater simulation model (left) and the hydrosystem 

schematization (right). The aquifer bounds are represented by the thick frame. Gray cells correspond 

to mountainous karstic regions whereas white ones correspond to plain regions, and they are supplied 

by the percolation of HUR 1 and HRU 2, respectively. Dummy cells are illustrated with dotted lines. 

On the left figure, arrows represent feasible water paths between groundwater tanks; at each one 

corresponds a specific conductivity value. Circles represent springs, whereas triangles (on the right 

scheme) represent groundwater abstractions from the corresponding borehole groups (Table 1). 
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Fig. 7 Observed and simulated time series of the monthly runoff at the basin outlet (Karditsa tunnel), 

from October 1984 to September 1994 (parameter set 1). 



      35

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ο
-8

4

Ο
-8

5

Ο
-8

6

Ο
-8

7

Ο
-8

8

Ο
-8

9

Ο
-9

0

Ο
-9

1

Ο
-9

2

Ο
-9

3

M
ea

n 
m

on
th

ly
 d

isc
ha

rg
e 

(m
3 /s)

Observed
Simulated

 
Fig. 8 Observed and simulated time series of the mean monthly discharge of Mavroneri springs, from 

October 1984 to September 1994 (parameter set 1). 


