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Some type-“why?” questions

O Why the probability for each outcome ~
of a die is 1/6?

O Why the normal distribution is so
common for variables with relatively
low variation?

O Why variables with high variation tend
to have asymmetric inverse-J-shaped ,
(rather than bell-shaped) distributions? uncertainty)

O Why variables with high variation tend
to have a scaling behaviour in state?

O Why the Hurst phenomenon (scaling
behaviour in time) is so common in Same reason?
geophysical, socioeconomical and ~
technological processes? >

Because this
behaviour
maximizes
entropy (i.e.
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What is the Hurst phenomenon? (simple scaling behaviour)

A process at the annual scale

Xi

The mean of Xi

u = E[Xi]

The standard deviation of Xi

o =~/Var[Xi]

The aggregated process at a multi-year scale k > 1

Y= (1) (X + ...+ X)
(2k) = (1/k) (Xi+1+ ... + Xox)

k
Yi):=

The mean of Y,(zk)

(1/k) (Xi-mr+1+ ... + Xik)
E[Y] = u

The standard deviation of Yfk)

o® =/Var [Y]

if consecutive Xi are independent

a(k)=a/\/ﬁ

if consecutive X are positively correlated

o(k)>a/\/%

if Xi follows the HHurst phenomenonj‘

(05<H<1)

Extension of the standard deviation scaling and
definition of a simple scaling stochastic process

k \H
- p= [lj (Y - )

for any scales k and [
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Tracing and quantification of the Hurst phenomenon
Example: The Nilometer data series

Log StD [x¥]
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What is entropy?

O

For a discrete random variable X taking values x; with
probability mass function p; = p(x;), the Boltzmann-Gibbs-
Shannon (or extensive) entropy is defined as

¢ =E[-Inp(X)]=-D_pilnp, where > pi=1

j=1 i=1
For a continuous random variable X with probability density
function f(x), the entropy is defined as

¢ = E[-In fiX)] =—[ fix) In fix) dx, where [ flx)dx=1

In both cases the entropy ¢ is a measure of uncertainty about
X and equals the information gained when X is observed.

In other disciplines (statistical mechanics, thermodynamics,
dynamical systems, fluid mechanics), entropy is regarded as a
measure of order or disorder and complexity.
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Entropic quantities of a stochastic process

O

The order 1 entropy (or simply entropy or unconditional entropy) refers
to the marginal distribution of the process X;:

¢ =E[-In iX)]= —J fix) In f(x) dx,

The order n entropy refers to the joint distribution of the vector of
variables X, = (X, ..., X,) taking values x,, = (x, ..., x,,):

¢n == E[-In f(Xu)] = —J f(xu) In f(xu) dxe
The order m conditional entropy refers to the distribution of a future

variable (for one time step ahead) conditional on known m past and
present variables (Papoulis, 1991):

qbc,m = E[_Inf(Xl |}(Of Y X—m+l)] = (Pm_qu-l

The conditional entropy refers to the case where the entire past is
observed:

qbc = hmm > qbc,m
The information gain when present and past are observed is:

¢:=¢_¢c
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What is the principle of maximum entropy (ME)?

O In a probabilistic context, the principle of ME was introduced by
Janes (1957) as a generalization of the “principle of insufficient
reason” attributed to Bernoulli (1713) or to Laplace (1829).

O In a probabilistic context, the principle of ME is used to infer
unknown probabilities from known information.

O In a physical context, a homonymous and relative physical principle
determines thermodynamical states.

O The principle postulates that the entropy of a random variable should
be at maximum, under some conditions, formulated as constraints,
which incorporate the information that is given about this variable.

O Typical constraints used in a probabilistic or physical context are:

. _ Mean/Momentum Non-negativity
Jfeeydx =1, EIX]1= [ x flw) dx =g x20

—oo

Variance/Energ Dependence/Stress

E[X2]=fx2f(x) dx =02+ 2, E[Xin+1]=f Xixi+1 f(xi, xi+1) dxidxi+1= p 02 + u?
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Application of the ME principle at the basic time scale

O Maximization of either ¢, (for any n) or ¢, with the mass/mean/
variance constraints results in Gaussian white noise, with
maximized entropy

¢ =¢c=In(c\/21e), ¢,=n¢

and information gain 1y = 0. This result remains valid even with the
non-negativity constraint if variation is low (o/u <<1).

O Maximization of either ¢, (for any n) or ¢, with the additional
constraint of dependence with p > 0 results in a Gaussian Markovian
process (AR(1)) with maximized entropy

¢ =In(c\/21te), de=In[o\27e(1-p?)], Pn= P+ (m—1) e

and information gain ¢ =-Im/1-p?.
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What happens at other scales?
Benchmark processes

a

Should maximization be based on a single time scale (annual) and

not on other (e.g. multi-annual) time scales?

O

of lag.
1.

Markovian (AR(1)) with exponential
decay of autocorrelation, p; = p/

Moving average (MA(1) or MA(g) if
MA(1) is infeasible) with p;=0 forj>g:
The minimum autocorrelation structure
Gray noise (GN) with p; = p: The

Autocorrelation

maximum autocorrelation structure

(non-ergodic)

Fractional Gaussian Noise (FGN) with

power type decay of autocorrelation,
p; ~H 2 H-1) [j12H-2

How do entopic quantities behave at larger time scales if entropy
maximization is done at the basic (annual) time scale?

First step: demonstration using benchmark processes, all assuming
positive autocorrelation function that is a non-increasing function

0.1

——AR(1)
—o— MA(1)
—s—FGN

—a— GN

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0.01

Lag
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Comparison
of benchmark
processes:
unconditional
and
conditional
entropies as
functions of

scale
Unconditional Conditional
——AR -<~-AR
—e—MA - -o--MA
—=—FGN  --o--FGN
—4&— GN ----GN
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Entropy
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100
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Entropy maximization at larger scales

O All five constrains are used (mass/mean/variance/dependence/non-negativity)

O The lag one autocorrelation (used in the dependence constraint) is determined
for the basic (annual) scale but the entropy maximization is done on other
scales

O The variation is low (0/u << 1) and thus the process is virtually Gaussian. This
is valid for the examined annual and over-annual time scales.
O For a Gaussian process the nth order entropy is given as ¢, = 1lm|(2 7 e)" J,
where §,,is the determinant of the autocovariance matrix c, := Cov[X, X,].
O The autocovariance function is assumed unknown to be determined by
application of the ME principle. Additional constraints for this are:
m Mathematical feasibility, i.e. positive definiteness of ¢, (positive 9,)
m Physical feasibility, i.e. (a) positive autocorrelation function and (b)
information gain that is a non-increasing function of time scale

(Note: periodicity that may result in negative autocorrelations is not
considered here due to annual and over-annual time scales)

O To avoid an extremely large number of unknown autocovariance terms, a
parametric expression is used at an initial step, i.e., Cov[X, X, ]=y;=
Vo (1 +x B 1j19)-VF with parameters k, & and B (see details in Koutsoyiannis, 2005b).
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Maximization of
conditional
entropy
constrained for
non-increasing
information
gain

Conclusion:
As time scale
increases, the
dependence
tends to FGN
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Maximization of
unconditional
entropy
constrained for
non-increasing
information
gain

Conclusion:
As time scale
increases, the
dependence
tends to FGN
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Final step:

Maximization of
unconditional
entropy averaged
over ranges of 01
scales, with
nonparametric
autocovariance

Autocorrelation
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Conclusions

O Maximum entropy + Low variation - Normal
distribution + Time independence

O Maximum entropy + Low variation + Time dependence +
Dominance of a single time scale -~ Normal distribution
+ Markovian (short-range) time dependence

O Maximum entropy + Low variation + Time dependence +
Equal importance of time scales -~ Normal distribution +
Time scaling (long-range dependence / Hurst
phenomenon)

O The omnipresence of the time scaling behaviour in
numerous long hydrological time series, validates the
applicability of the ME principle

O This can be interpreted as dominance of uncertainty in
nature.
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Discussion

m]

The ME principle applied at fine time scales, where hydrological
processes (rainfall, runoff) exhibit high variation, explains the power law
tails of distribution functions and the state scaling at high return periods.

(See paper in Session P3.01, Scaling and nonlinearity in the hydrological cycle
and Koutsoyiannis, 2005a, b)

It is shown (Papoulis, 1991) that conditional entropy equals entropy rate,
ie. lim, ¢, /n. Thus, maximum conditional entropy could be intuitively
related to the physical principle of maximum entropy production
(according to which the rate of entropy production at thermodynamical
systems is at a maximum).

The latter principle explains the long-term mean properties of the global
climate system and those of turbulent fluid systems [Ozawa et al., 2003].

Specifically, this principle explains

m the latitudinal distributions of mean air temperature and cloud cover;
and the meridional heat transport in the Earth;
the behaviour of the planetary atmospheres of Mars and Titan;
perhaps, the mantle convection in planets;

a variety of aspects of fluid turbulence, including thermal convection
and shear turbulence.
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