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1. Abstract

Long records of annual maximum daily rainfall from 169 stations from
Europe and the USA, with lengths exceeding 100 years, are statistically
analyzed. It is observed that several dimensionless statistics of the annual
maximum series are virtually constant worldwide, except for an error that
can be attributed to a pure statistical sampling effect. Thus, if all series are
standardized by their mean, they can be described by practically the same
statistical law. From the study of the compound series from all stations with
length 17922 station-years it becomes clear that this extreme value law is of
type II rather than type I (Gumbel) as thought before. This implies a power
type (Pareto) parent distribution, which has scaling properties for low
probabilities of exceedence. Two major questions arise from this research: (1)
Why the statistical law of standardized extreme rainfall is virtually the same
over a wide range of geographical areas and climates? (2) Why is this law
power-type? The second question is answered using the principle of
maximum entropy. Specifically, it is shown that this principle, which
corresponds to maximum uncertainty, results in a Pareto type distribution, if
the coefficient of variation is high, and also predicts the scaling exponent,
which is verified by the historical data.

2. Data set

169 stations from Europe and North America

Record lengths 100-154 years

18065 station-years in total

6 major climatic zones (Note: see details in Koutsoyiannis, 2004)
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4. Initial exploration

Standard deviation (¢) and L moments (A, and A;) as well as observed
maximum values per station are very well correlated with sample mean (u).

The correlations do not change in different climate zones.

These statistics, whose dimensions are same with the sample mean (mm), are
approximately proportional to sample mean.

Dimensionless statistics, such as L coefficients of variation (7,) and skewness
(75) are not correlated with sample mean.

The L coefficients of variation and skewness are correlated with each other.
This correlation, however, does not contain a physical meaning and is a
statistical effect.
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6. Study of the variation of parameters

A Monte Carlo simulation assuming 1

GEYV distribution and all parameters % 08
constant, equal to the average values o
in panel 5, shows that simulated

variation of the mean (crosses) is

much lower than the actual one 02+ -
(continuous line). This suggests that

04

0

variation reflects a climatic effect. o

A Monte Carlo simulation assuming the dimensionless parameters x and ¢
constant, equal to the average values in panel 5, and the scale parameter
varying, shows that simulated variation of several dimensionless
parameters almost equals the actual one. This suggests that the variation
reflects a statistical sampling effect rather than a climatic effect.
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8. Additional support of Type II behaviour

1. Chaouche (2001) exploited a data base of 200 rainfall series of various time
steps (minute-month) from the five continents, each including more than 100
years of data. Using multifractal analyses he showed that:

a Pareto/EV2 type law describes the rainfall amounts for large return
periods;

the exponent of this law is scale invariant over scales greater than an
hour;

this exponent is almost space invariant.

2. Hershfield’s (1961) data set, comprising 95 000 station-years, in a later
study (Koutsoyiannis, 1999) was found to have very similar behaviour.

12. The principle of maximum entropy (ME)

In a probabilistic context, the ME principle was introduced by Janes (1957) as
a generalization of the “principle of insufficient reason” (PIR) attributed to
Bernoulli or to Laplace.

The ME principle is used to infer unknown probabilities from known
information.

It is related to the homonymous physical principle that determines
thermodynamical states.

It postulates that the entropy of a random variable should be at maximum,
under some conditions, formulated as constraints, which incorporate the
information that is given about this variable.
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9. Major theoretical questions

(1) Why the statistical law of standardized extreme rainfall is virtually the
same over a wide range of geographical areas and climates?

The answer is difficult and not addressed here.
(2) Why is this law power-type?

The answer is sought upon the entropy concept and the principle of
maximum entropy (ME).

13. Application of the ME principle to hydrological
variables with high variation

We use the following four constraints, which involve two parameters, the
mean y and the standard deviation ¢, estimated from the sample.

COws)
Sfaydx=1, E[X]= [xfi)dx=p

Variance/Energy

E[X?2=f 2 f(x)dx =%+ 12, x20

Non-negativity

|
1

The non-negativity constraint is essential for hydrological variables.

Maximization of the Boltzmann-Gibbs-Shannon entropy with these
constraints results in the truncated (for x > 0) normal distribution. This tends
to the normal distribution as o/y — 0 and to the exponential distribution as o/u
— 1. For o/u > 1 the Boltzmann-Gibbs-Shannon ME distribution does not
exist. In this case the Tsallis entropy can be used which results in:

f)=[1+x g+ A x+ A, )], Gy = (4 1) (Ao + Ay g + A, )
where « = (1 — g)/q and A, Lagrange multipliers. In the absence of any

information for k or g, we can set A, = 0 (Koutsoyiannis, 2005) and obtain the
Pareto distribution, which for large x exhibits scaling properties:

f)=1/A) A +xx/A)yT- Frx)=1+xx/A)yVx

Empirical distribution functions computed from:

— the 169 historical annual maximum daily rainfall series;

------- 169 synthetic samples with lengths and means equal to those of historical
series generated from the GEV distribution with constant x and 1;

---- 169 synthetic samples with lengths and means equal to those of historical
series generated from the GEV distribution with x and i) randomly varying
following uniform distributions.

3. Top ten raingauges (in terms of record length)

Zone . . Eleva- Yfears
Latitu- Longi- . Record Start End with

Name /Country de (°N) tude (°) tion length year year missing

/State (m)

values

Florence 6/1taly 43.80 11.20 40 154 1822 1979 4
Genoa 6/1taly 44.40 8.90 21 148 1833 1980
Athens 6/Greece  37.97 23.78 107 143 1860 2002
Charleston City 2/USA/SC 32.79  -79.94 3 131 1871 2001
Oxford 5/UK 51.72 -1.29 130 1853 1993 11
Cheyenne 1/USA/WY 41.16 ~ 104.82 1867 130 1871 2001 1
Marseille 6/France  43.45 5.20 6 128 1864 1991
Armagh 5/UK 54.35 -6.65 128 1866 1993
Savannah 2/USA/GA 32.14  -81.20 14 128 1871 2001 3
Albany 1/USA/NY 42.76  -73.80 84 128 1874 2001

5. Fitting of the Generalized Extreme Value (GEV)
distribution

Parameter Value
GEV equation Shape Mean 0.103
F(x) = exp{ {1 N K[ﬁ_ l’bﬂ B “} Earameter, Standard deviation 0.085
A Min -0.080
Max 0.373

Averages over all Percent positive
raingauges and Scale Mean 15.52
dispersion arameter, 4 Standard deviation 5.81
Characteristicfstc})lf the mm-) Min 4.86

arameters of the
EEV distribution. - Max 3213
. . Location Mean 3.34
Estimation method: parameter,  giandard deviation 0.43
L-Moments % . ’

Min 2.42
Max 4.47

7. Final model fitting
Adoption of the GEV
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Estimation method
Parameter  Max likelihood ~ Moments  L-moments Least squares

K 0.093 0.126 0.104 0.148
A 0.258 0.248 0.255 0.236
Y 3.24 3.36 3.28 3.54

10. The entropy concept

For a discrete random variable X taking values x; with probability mass
function p; = p(x;), the Boltzmann-Gibbs-Shannon (or extensive) entropy is
defined as
¢ =E[-Inp(X)] = - piln pi,  where > pi=1
j=1 j=1
For a continuous random variable X with probability density function f(x),
the entropy is defined as

¢ =E[-In f(X)] =—f f(x) In fix) dx, where [ f(x)dx=1
In both cases the entropy ¢ is a measure of uncertainty about X and equals

the information gained when X is observed (Papoulis, 1991).

In other disciplines (statistical mechanics, thermodynamics, dynamical
systems, fluid mechanics), entropy is regarded as a measure of order or
disorder and complexity.

14. Application to extreme daily rainfall

Data set: the same as previously. Series above threshold (rather than series of
annual maxima), standardized by mean, were formed and used (this was
possible for the 168 of the 169 stations; the unified series contained 17922
station-years). 10
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11. Generalization of entropy

Tsallis (1988) heuristically generalized the Boltzmann-Gibbs-Shannon
entropy by postulating the entropic form

1-Yp
i=0

Bg = qT (for discrete x),  ¢g=

1= J [fo) dx

i—1 (for continuous x)
where g is any real number. This has been called Tsallis entropy or
nonextensive entropy and remedies disabilities or inconsistencies in the use
of the classical entropy. For g — 1 this precisely reproduces the Boltzmann-
Gibbs-Shannon entropy, i.e., ¢; = ¢.

15. Conclusions

1. Long records of daily rainfall from 169 stations worldwide, indicate
impressive similarities in extreme rainfall over all climates.

2. Specifically, several dimensionless statistics are virtually constant
worldwide, except for an error attributed to a statistical sampling effect.

3. Thus, if all series are standardized by their mean, they can be described
by virtually the same statistical law.

4. Clearly, this law is not exponential/EV1 (Gumbel) as thought before, but
Pareto/EV2 and has scaling properties for low probabilities of exceedence.

5. The emergence of the Pareto law is explained by the principle of
maximum entropy, which corresponds to maximum uncertainty.
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