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Extended abstract
In recent years, new methods for time series analysis, derived from chaos theory, yielded some 
fascinating results. Among them, the fact that deterministic processes may sometimes be 
statistically indistinguishable from random noise. Currently,  discussion is going on about how to 
characterize a process and how to recognize whether it is stochastic or deterministic. A popular  
method for revealing the underlying dynamics,  if any,  from a time series, is the phase-space 
reconstruction via time delay embedding. According to this method, the state of a system, as 
seen from an observable, is approximated by a number of previous values of this observable. A 
critical issue is how many of these values are necessary, in order to capture efficiently the 
evolution of  the system. In other words, how many variables we need to describe the phase-
space in which the phenomenon evolves. The least necessary number of these variables is 
related to the dimension of the attractor of the system, if such an attractor is identified. The 
capacity and correlation dimension quantify the nature of the attractor. A variety of studies have 
shown that in deterministic processes there exists a finite dimension [dk1]while in stochastic 
processes there is no such a finite value. Therefore the estimation of this dimension provides a 
way of  detecting determinism in a time series.
In recent studies, it was found that the correlation dimension of rainfall time series is finite, 
whereas simple stochastic models (such as ARMA) that are often used to simulate the rainfall 
process exhibit very different behavior. This indicates the presence of deterministic chaos in the 
rainfall process. Despite this, the stochastic modeling of the rainfall process still dominates in 
operational hydrology as it gives sufficient solutions to most problems. 
Our objective in this study is similar to that of several previous studies: to detect deterministic 
chaos in historic rainfall series and compare the results with those obtained from  synthetic series 
generated by stochastic models. The difference is that we use a more detailed stochastic model 
to simulate the rainfall process instead of the simple ARMA models. Specifically, we use the 
scaling model of storm hyetograph†. This is a simple, parameter parsimonious model for the 
temporal evolution of rainfall, which limits the need for a stationarity assumption only within the 
same storm event. The basic hypothesis behind it, is that the process of instantaneous rainfall 
intensities within a storm is a self-similar (simple scaling) process that scales with the duration of 
the storm. The model explains reasonably well the dependence of the total storm depth and of the 
internal structure of a storm on the storm duration. To form a complete rainfall generator, this 
model was combined with a stochastic process describing storm arrivals, durations and total 
depths. It is noteworthy that self-similarity that characterizes the stochastic scaling model is often 
recognized behind chaotic patterns. However, at the generation stage the model behaves like a 
purely linear stochastic model, which for each storm adapts its parameters according to the storm 
duration.
The historic data set used for the study consists of incremental rainfall depths,  measured every 
quarter of an hour,  for an observation period of six years (1984-89), at a station in Ortona, 
Florida. The synthetic data set was generated using the scaling model, after proper fit. The 
comparison of the two sets is done by means of time delay embedding and capacity and 
correlation dimension estimates of the two time series.

† Koutsoyiannis, D. and E. Foufoula-Georgiou, A scaling model of storm hyetograph, Water 
Resour. Res., 29(7), 2345-2361, 1993



Introduction
• Studies of the structure of particular storm events (Rodriguez-Iturbe et al., 1989; Sharifi et al., 1990; 

Rodriguez-Iturbe, 1991) provided evidence that the temporal evolution of a storm may be characterized as a 
deterministic chaotic process with low-dimensional strange attractor. 

• Similar results are obtained from simultaneous study of several events of the same meteorological 
convective character (Tsonis, 1992, p. 169; Tsonis et al., 1993).

• The results are not conclusive for continuous rainfall records at a certain time resolution:
• Rodriguez-Iturbe et al. (1989), and Rodriguez-Iturbe (1992) do not detect low-dimensional chaotic 

dynamics in weekly rainfall data of Genoa covering a period of 148 years.
• Jayawardena and Lai (1994) detect high-dimensional chaotic behavior (for embedding dimension 

between 30 and 40) in daily rainfall at three rain gages in Hong Kong covering a period of 11 years. 
They conclude that rainfall series could be better modeled by methods of chaos theory, such as time 
delay embedding, than by traditional stochastic models, such as ARMA.

• The detection of chaotic behavior in a rainfall time series has led many researchers to  interpret rainfall as a 
deterministic process rather than a stochastic process. However:

• The boundary between a deterministic and a stochastic process is not clear.
• Stochastic models can incorporate deterministic components, if any. In addition, deterministic models 

are not generally free of random noise.
• There are difficulties in the operational use of deterministic models, whereas stochastic models have 

been used operationally for several purposes (e.g. simulation). 
• Deterministic models do not necessarily improve predictions due to sensitive dependence on initial 

conditions. This becomes clearer in the case of high-dimensional chaotic behavior.
• A different approach was suggested by Koutsoyiannis and Foufoula-Georgiou (1993) who took advantage of 

revealed scaling properties in rainfall data to build a stochastic scaling model of storm hyetograph. This 
model describes and parametrizes a population of storms, not the structure of a particular storm.

Objectives, methodology and data used
• It is not a critical issue to distinguish the real rainfall process from simple stochastic models such as white 

noise or ARMA processes. Obviously, there are differences between the real process and this kind of models. 
• The important question is if there are essential differences that distinguish the real rainfall process from a 

well-structured stochastic model, capable of preserving important properties of the rainfall process such as 
intermittency, seasonality, scaling behavior etc.

• Other  questions relevant to this issue are:
• How can typical descriptors of chaotic behavior, such as capacity, information and correlation

dimensions, and typical methods, such as time delay embedding, can be used to characterize the rainfall 
process?

• Are there any characteristic scales in a continuous rainfall record, or not? 
• The methodology adopted consists of the following:

• Selection of a historic data set (six years (1984-89) of incremental rainfall depths,  measured every 
quarter of an hour at station Ortona Lock 2, Florida, USA).

• Adoption and calibration of a stochastic model (the scaling model of storm hyetograph coupled with an 
alternating renewal model for modeling rain durations and dry times).

• Generation of a synthetic record with an equal length (six years) using the stochastic model.
• Computations and comparisons of various descriptors of chaotic dynamics for both the historic and the 

synthetic data sets.



Summary of the scaling model of storm hyetograph
• Main hypothesis:

where ξ() = instantaneous rainfall intensity, D = duration of the 
event, t = time (0 ≤ t ≤ D), and H = scaling exponent.

• Secondary hypothesis:  Weak stationarity (= stationarity 
within the event), resulting in

• Statistics of total depth, Z

• Statistics of incremental depth, X

• Model parameters

Fitting of the scaling model of storm hyetograph
• The scaling model was fitted to the Ortona data set using a time resolution  Δ =1/4 hr. 
• All storm events of the six-year period with durations greater than Δ were used (426 events with durations 

ranging from 1/2 to 35 hr). Other 37 events with durations Δ (or less) were modeled separately. Events were 
allowed to include periods of zero rainfall less than 7 hr (≈ 1.5 times the average duration).

• The fitting procedure was based on the separation of storms into six classes according to their durations as 
described by Koutsoyiannis and Foufoula-Georgiou (1993).

• Analysis was first performed by separating storms into two seasons (wet: Jun.-Sep.; dry: Oct.-May).
• For simplicity a unique set of parameters was finally adopted for both seasons (H = −0.449, c1 = 8.74, c2 = 

85.68, β = 0.246). 
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• Notable is the de-
parture of H from 
zero, which indi-
cates the departure 
of the process from 
stationarity.

• The comparison of 
the model with data 
of wet, dry and both 
seasons is given in 
Figures (a) (statis-
tics of total depth), 
(b) (statistics of in-
cremental depth), 
(c) (lag-1 correlation 
coefficient of incre-
mental depth) and 
(d) (lag-k correlation 
coefficient of incre-
mental depth). 
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Basic concepts of chaos theory
• Generalized entropy Iq(ε) (Rényi, 1970) of a set (subset of an n-dimensional metric space) partitioned into 

M(ε) boxes (=hypercubes) with length scale ε:

where pi is a measure of the part of the set contained in the ith box, such that 

For a set consisting of N (n-dimensional) points: pi = Ni / N, where Ni = the number of points contained in the
ith box

• Generalized dimensions of the set (Grassberger, 1983)

If Sq(ε) is a power law then 

• Special cases:

where M΄ = the number of boxes that intersect the set.
• Correlation integral of order-q (integer q ≥ 2) for a set consisting of N points (Grassberger, 1983)

Basic property: Cq(ε) ≈ Sq(ε)
• Special case: Correlation integral of order-2 or simply correlation integral

This is calculated more easily and accurately than S2(ε) (Grassberger & Procaccia, 1983; Grassberger, 1983)
• Takens (1981) embedding theorem: For a scalar time series X(t) obtained from a D-dimensional 

deterministic system, the vector with time-delayed coordinates {X(t), X(t + τ), ..., Χ(t + (n − 1)τ)}, n ≥ 2(D + 1), 
will trace out a trajectory that is a smooth coordinate transformation of the attractor of the original dynamical 
system. If the dynamical system has an attractor of a particular dimension, the embedded trajectory will have 
the same dimension.

• Application of the theorem: A dynamical system’s reconstruction by time-delay embedding provides a 
method for  detecting determinism in a time series and revealing the underlying dynamics, if any, of the 
system. The method is applied for various values of the embedding dimension n, and for each n the 
dimension Dq is calculated for some q. If Dq becomes invariant for increasing n, there is evidence that:

• The system is deterministic rather than stochastic (for simple stochastic processes there is no finite 
(saturation) dimension as n increases).

• The system’s attractor has been identified and quantified by its dimension Dq. This is related to the 
number of time-delayed values that are necessary, in order to capture efficiently the evolution of  the 
system (i.e., the variables we need to describe the phase-space in which the phenomenon evolves).

The application of the method requires numerous points of the time series and a proper selection of the lag  
τ. (Tsonis, 1992, p. 151,162; Tsonis et al., 1993).
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Application of the time-delay embedding method for rainfall data
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• Data used
The method was applied for both the historic and synthetic 
(generated by the stochastic model, see Appendix) data for four 
time resolutions, as shown in the table to the right, and for 
embedding dimensions up to 32. The results are shown in the 
following figures.

• An interpretation of the results
• The horizontal line in the lower tail of all curves (Figures above) 

indicates zero correlation dimension. This is due to the nonzero
probability of zero rainfall, which results in numerous time-delayed 
vectors with all coordinates zero.

• There is (roughly) a scaling region (except for the case of 1/4 hr 
resolution) extended between the depth resolution limit (1 mm) and 
about two times the average of nonzero depths.

• The slope of this scaling region, estimated by least squares, is an 
increasing function of embedding dimension (logarithmic plot to the 
left). No saturation value appears.

• The results of the analysis of synthetic series (dashed lines) are quite 
similar with those obtained from the historic series (continuous lines). 
Both depart from white noise.

• Application to the inverse series (Figure to the right).
• The inverse series represents time intervals 

corresponding to an increase of rainfall depth by 1 
mm. Linear interpolation was used to inverse the 
series, which obviously introduces error for intervals 
less than 1/4 hr. 

• The results of the synthetic series (dashed lines) are 
again quite similar with those obtained from the 
historic series (continuous lines).

• No clear scaling region appears here.
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The rainfall series as Cantorian dust
• The domination of voids (dry periods) in a rainfall time series evokes the parallelism with the Cantorian dust. 

More specifically, we can parallel the cumulative hyetograph of a certain period with the “devil’s staircase”, 
(Schroeder, 1991, p. 167), i.e., the function that maps the interval [0, 1] into itself having plateaus along all 
void intervals between the Cantorian dust (i.e., almost everywhere). Such an analogy can provide useful 
characterization and quantification of a rainfall time series and can reveal characteristic time scales.

• Dimensions may be easily calculated for this analogue by a box counting algorithm, where the boxes are time 
intervals of equal size ε = Δt. The measure pi for the ith box must be set pi = Δhi/h, where Δhi is the 
incremental rainfall depth in the ith box and h is the total depth of the entire period.

• To verify the method we have applied it for the devil’s staircase using up to 209 000 boxes (a number equal to 
the available intervals of the rainfall data set). The results shown below are in perfect agreement with the 
theoretical expectations.

• The application of the method with both the historic and synthetic rainfall data sets gave the results shown 
below (continuous lines correspond to historic data and dashed lines to synthetic). We observe that:

• For each generalized entropy Iq, there exist three distinct regions with different slopes. The borders of 
these regions are approximately represented by the mean rain duration and the mean interarrival time. 

• The dimensions of the short time scale (left) area are about 0.5 and those of the intermediate time scale 
(middle) area are about 0.3.

• The results for synthetic data agree well with those of the historic data.
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Appendix: Generation of synthetic data by the scaling model
• Phase A: Application of the alternating renewal model for temporal location of events.

A1: Generation of dry time from a Weibull distribution for the dry season (Oct.-May) and a two-segment
Weibull distribution for the wet season (Jun.-Sep.), using different parameter sets for each month.

A2: Generation of rain duration from an exponential distribution, using different parameters for each month.
• Phase B: Calculation of statistics of total and incremental depths for each event (Koutsoyiannis and Tsakalias, 

1992; Koutsoyiannis, 1994; Mamassis et al., 1994).
B1: Calculation of E[Z], Var[Z], E[X], Cov[X, X], μ3[Χ] from the equations of the scaling model.
B2: Formulation of a sequential generating scheme as X = Ω V, where Ω is a matrix of coefficients and V is 

a vector of  independent variates, assumed (approximately) three-parameter gamma distributed.
B3: Estimation of parameters of  the generating scheme, i.e.,

a. Coefficient matrix: ΩΩΤ = Cov[X, X] ⇒ Ω by lower triangular decomposition.
b. Statistics of Vi:

• Phase C: Generation of the sequence of incremental depths for each event (Koutsoyiannis and Tsakalias, 
1992; Koutsoyiannis, 1994; Mamassis et al., 1994).

C1: Generation of total depth Z, assumed two-parameter gamma distributed.
C2. Application of the sequential procedure to obtain an initial sequence of incremental depths X΄.
C3. Determination of the final (adjusted) sequence:

Conclusions and discussion
• No determinism has been detected in the historic continuous rainfall record examined for time resolutions 

from 1/4 to 24 hr and for embedding dimensions up to 32.
• No essential differences have been detected between chaotic descriptors of the historic rainfall series and the 

synthetic data obtained by a well-structured stochastic model based on the scaling model of storm 
hyetograph.

• Both the historic and synthetic series are (obviously) distinguished from white noise.
• There are difficulties in applying the time-delay embedding method to continuous rainfall records of short time 

scale, owing to the nonzero probability of zero rainfall in a short time interval. It is anticipated that the method 
may be applied without problems for time scales considerably larger than the mean dry time (e.g., monthly 
time scale), but this would require records of hundreds of years to obtain reliable estimates. 

• The Cantorian dust analogue of rainfall indicates the presence of two characteristic time scales in a rainfall 
series, which are the average rain duration and the average interarrival time. 

• In addition, this analogue quantifies the examined rainfall series (both historic and synthetic) with a fractal 
dimension of about 0.5 for short time scales. 

• The Cantorian dust analogue eliminates the problem of nonzero probability of zero rainfall; however the 
method’s application with time-delayed vectors is not straightforward.
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