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Introduction Basic concepts of chaos theory The rainfall series as Cantorian dust

» Studies of the structure of particular storm events (Rodriguez-lturbe et al., 1989; Sharifi et al., 1990; - Generalized entropy /,(€) (Rényi, 1970) of a set (subset of an n-dimensional metric space) partitioned into « The domination of voids (dry periods) in a rainfall time series evokes the parallelism with the Cantorian dust.
Rodriguez-Iturbe, 1991) provided evidence that the temporal evolution of a storm may be characterized as a M(¢) boxes (=hypercubes) with length scale «: 1 More specifically, we can parallel the cumulative hyetograph of a certain period with the “devil’s staircase”,
deterministic chaotic process with low-dimensional strange attractor. 1 Me) o Mie) ;a1 (Schroeder, 1991, p. 167), i.e., the function that maps the interval [0, 1] into itself having plateaus along all

lo(e)=—In 3 p/,S,(e)=exp[-I,(e)]=| X p; , q#1
i=1

Similar results are obtained from simultaneous study of several events of the same meteorological 1-q = void intervals between the Cantorian dust (i.e., almost everywhere). Such an analogy can provide useful
convective character (Tsonis, 1992, p. 169; Tsonis et al., 1993). characterization and quantification of a rainfall time series and can reveal characteristic time scales.

The results are not conclusive for continuous rainfall records at a certain time resolution: I(g) = Mf)p Inp;, Sy(e) = exp[-(€)] = exp Mf)p Inp; |, q=1 Dimensions may be easily calculated for this analogue by a box counting algorithm, where the boxes are time
* Rodriguez-Iturbe et al. (1989), and Rodriguez-Iturbe (1992) do not detect low-dimensional chaotic = o = ") M(e) intervals of equal size € = Af. The measure p; for the ith box must be set p; = Ah/h, where Ah; is the

dynamics in weekly rainfall data of Genoa covering a period of 148 years. where p; is a measure of the part of the set contained in the ith box, such that 21 p; =1 incremental rainfall depth in the ith box and h is the total depth of the entire period.
)

- Jayawardena and La.i (1994) d.etect high-dimepsional chaotic behavior (for gmbeddipg dimension For a set consisting of N (n-dimensional) points: p; = N,/ N, where N, = the number of points contained in the To verify the method we have gpplied it for the devil’s staircase using up to _209 000 boxes (a numt?er equal to
between 30 and 40) in daily rainfall at three rain gages in Hong Kong covering a period of 11 years. ith box the available intervals of the rainfall data set). The results shown below are in perfect agreement with the
They conclude that rainfall series could be better modeled by methods of chaos theory, such as time Generalized dimensions of the set (Grassberger, 1983) theoretical expectations.
delay embedding, than by traditional stochastic models, such as ARMA. ’ T

The detection of chaotic behavior in a rainfall time series has led many researchers to interpret rainfall as a D, = lim —lq(€) — lim C e ‘ os | T orer
deterministic process rather than a stochastic process. However: e—>0 Ing &0 Ineg 2T o ' Toes
The boundary between a deterministic and a stochastic process is not clear. If S,(€) is a power law then s AR 2; '
Stochastic models can incorporate qeterministic components, if any. In addition, deterministic models d(~Iy(e)) d(InS, (¢)) AT TS T IR 3 05 | theoretical
are not generally free of random noise. D, = lim — = = |im 9 BT P [T 2o (canacity dimension] sl | =
There are difficulties in the operational use of deterministic models, whereas stochastic models have -0 d(ng) -0 d(ine) 6 o AT 05| L X%
been used operationally for several purposes (e.g. simulation). Special cases: ) _ 7t RPN S 02 |
Deterministic models do not necessarily improve predictions due to sensitive dependence on initial q=0: ly(e)=InM’ So(e)=1/M D, = lim —InM capacity (or fractal) SR . 01
conditions. This becomes clearer in the case of high-dimensional chaotic behavior. e-0 Ine dimension 0

M( -9 f f \ f f f f \ 1 4 1
A different approach was suggested by Koutsoyiannis and Foufoula-Georgiou (1993) who took advantage of q=1: I(e)= _Mf : p.Inp; Si(e)= exp( Y p; In Pi) D, = lim -3 p; Inp; . . . 9 10 11 12 0
' 1

1

InS,(¢) AT A 2 00 T eerimen.

fi
revealed scaling properties in rainfall data to build a stochastic scaling model of storm hyetograph. This i=1 £—0 Ing information dimension o _ o Ine o
model descnbes and parametrizes a population of storms’ not the Structure Of a par“cular Storm_ M(E) ) InzM(E . The apphcatlon Of the methOd W|th bOth the hIStOI'IC and SynthetIC ra|nfa" data SetS gave the I’eSU|tS ShOWI‘l
q=2: Iy(e)=-In Y p; Sy(e)= Z p, D, = lim correlation dimension below (continuous lines correspond to historic data and dashed lines to synthetic). We observe that:

i=1 =0 Ing - For each generalized entropy /,, there exist three distinct regions with different slopes. The borders of
where M’ = the number of boxes that intersect the set. these regions are approximately represented by the mean rain duration and the mean interarrival time.
Correlation integral of order-q (integer g > 2) for a set consisting of N points (Grassberger, 1983) » The dimensions of the short time scale (left) area are about 0.5 and those of the intermediate time scale

Cyle) = N‘q{pumber of ¢ - tuples (Xj X (middle) area are about 0.3. | o
1 I » The results for synthetic data agree well with those of the historic data.

withall |x; — X
Objectives, methodology and data used ) L
* Itis not a critical issue to distinguish the real rainfall process from simple stochastic models such as white

noise or ARMA processes. Obviously, there are differences between the real process and this kind of models.
The important question is if there are essential differences that distinguish the real rainfall process from a Co(e)= N‘z{wmber of pairs (xj,x,)with ‘Xj - X/‘ < 8}

well-structured stochastic model, capable of preserving important properties of the rainfall process such as This is calculated more easily and accurately than S,(¢) (Grassberger & Procaccia, 1983; Grassberger, 1983)
Intermittency, seasonality, scaling behavior etc. Takens (1981) embedding theorem: For a scalar time series X(t) obtained from a D-dimensional
Other questions relevant to this issue are: deterministic system, the vector with time-delayed coordinates {X(t), X(t + 1), ..., X(t + (n = 1)1)}, n = 2(D + 1),
* How can typical descriptors of chaotic behavior, such as capacity, information and correlation will trace out a trajectory that is a smooth coordinate transformation of the attractor of the original dynamical X - : A
dimensions, and typical methods, such as time delay embedding, can be used to characterize the rainfall system. If the dynamical system has an attractor of a particular dimension, the embedded trajectory will have = g i fon dimension)| - S0 — LE[D]“:;[T:]L_ 4
process? the same dimension. SA B A CTTr T T
* Are there any characteristic scales in a continuous rainfall record, or not? Application of the theorem: A dynamical system’s reconstruction by time-delay embedding provides a
The methodology adopted consists of the following: method for detecting determinism in a time series and revealing the underlying dynamics, if any, of the P
Selection of a historic data set (six years (1984-89) of incremental rainfall depths, measured every system. The method is applied for various values of the embedding dimension n, and for each n the In & [hr]
quarter of an hour at station Ortona Lock 2, Florida, USA). dimension D, is calculated for some q. If D, becomes invariant for increasing n, there is evidence that:
Adoption and calibration of a stochastic model (the scaling model of storm hyetograph coupled with an » The system is deterministic rather than stochastic (for simple stochastic processes there is no finite
alternating renewal model for modeling rain durations and dry times). (saturation) dimension as n increases).
Generation of a synthetic record with an equal length (six years) using the stochastic model. * The system’s attractor has been identified and quantified by its dimension D,. This is related to the
Computations and comparisons of various descriptors of chaotic dynamics for both the historic and the number of time-delayed values that are necessary, in order to capture efficiently the evolution of the Conclusions and discussion

synthetic data sets. system (i.e., the variables we need to describe the phase-space in which the phenomenon evolves). * No determinism has been detected in the historic continuous rainfall record examined for time resolutions
The application of the method requires numerous points of the time series and a proper selection of the lag from 1/4 to 24 hr and for embedding dimensions up to 32.

1. (Tsonis, 1992, p. 151,162; Tsonis et al., 1993).

Basic property: C(€) = Sy(¢) e —
Special case: Correlation integral of order-2 or simply correlation integral Ll E[D]=4_|63 hr |- E[T]=1[01-83 hr

No essential differences have been detected between chaotic descriptors of the historic rainfall series and the
synthetic data obtained by a well-structured stochastic model based on the scaling model of storm
hyetograph.

Summary of the Scahng model of storm hyetogl’aph Both the historic and synthetic series are (obviously) distinguished from white noise.

« Main hypothesis: " &(t, D) Application of the time_delay embedding method for rainfall data There are difficulties in applying thg fume-delay embed_dlng methgd tq contlnuou.s raqugll records of short time
where &() = instantaneous rainfall |ntens|ty, D = Quration of the scale, owing to the nonzero probability of zero rainfall in a short time interval. It is anticipated that the method

* Data used Time His toric Synihetic | Adopted may be applied without problems for time scales considerably larger than the mean dry time (e.g., monthly

event, t = time (0 <t< D), and H = Scallng exponent. ] . ] . resolution |record length| record length time lag
Secondary hypothesis: Weak stationarity (= stationarity The method was applied for both the historic and synthetic (hr) (# points) | (# points) (hr) time scale), but this would require records of hundreds of years to obtain reliable estimates.

within the event), resulting in (generated by the stochastic model, see Appendix) data for four = s aris - The Cantorian dust analogue of rainfall indicates the presence of two characteristic time scales in a rainfall
time resolutions, as shown in the table to the right, and for 6 8 732 8 858 72 series, which are the average rain duration and the average interarrival time.
E(t.Dy=ciD" embedding dimensions up to 32. The results are shown in the 24 2183 221 nd In addition, this analogue quantifies the examined rainfall series (both historic and synthetic) with a fractal
[é ] = f ” f *70 000 points were used for correlation dimension calculations . . .
E(t.D)E( +7.D)1= o /D)D2Hwhere (z/D) = k( /D)_ﬁ S oflowing Tigures. . T, —— dimension of about 0.5 for short time scales.
StatiStIES of tgotaT zl,ep!r: ¢ZT preizy =" ‘ pesotuon |12 Elxlx > 0] limit = 1 mm —§4Ixmm - The Cantorian dust analogue eliminates the problem of nonzero probability of zero rainfall; however the
‘ LR method’s application with time-delayed vectors is not straightforward.

E[z]=cip”

Var(Z] = c2D""*" where c2 = 2k /[(1- B)(2 - B)—ci | . | , ‘ 4 ‘
Statistics of incremental depth, X | 0.1 1 | % | 2 | Appendix: Generation of synthetic data by the scaling model
Ho . 3 ] ‘ k j » Phase A: Application of the alternating renewal model for temporal location of events.

E[X’]= 16D , . Total depth =2 - o | } = 3 A1: Generation of dry time from a Weibull distribution for the dry season (Oct.-May) and a two-segment
Var[Xi]z Coici) 5—/3 _ersp(") Incremental depth = X; | | | mme | 3 | | = nme Weibull distribution for the wet season (Jun.-Sep.), using different parameter sets for each month.
CoveXi. X 2 B¢ 2 2(H+1) - L 1/4 hr | ' 1hr A2: Generation of rain duration from an exponential distribution, using different parameters for each month.

OV[ b ]= rcz +C1)8 I=1,B)~ C1 ]5 - ‘ - ; - | | « Phase B: Calculation of statistics of total and incremental depths for each event (Koutsoyiannis and Tsakalias,

' | | ‘ ’ " | 1992; Koutsoyiannis, 1994; Mamassis et al., 1994).

(i-104 A log., & (mm] logi & [mm] B1: Calculation of E[Z], Var[Z], E[X], CoV[X, X], u5[X] from the equations of the scaling model.

Resolution 2 Elx|x > 0] Resolution 2 Elxlx > 0] . . ) ] . . . )
limit=1 mm = 20. limit = 1 mm _32.98 mm B2: Formulation of a sequential generating scheme as X = Q V, where Q is a matrix of coefficients and V is

a vector of independent variates, assumed (approximately) three-parameter gamma distributed.
‘ 0.5 T ‘ ‘ B3: Estimation of parameters of the generating scheme, i.e.,
2(H+1) h : f ; /¥ - } } } a. Coefficient matrix: QQ" = Cov[X, X] = Q by lower triangular decomposition.
2 ' } 3 } a ; ‘ 1 b. Statistics of V;:
IR+ i1+ \| o | ‘ A | | ‘ .

where § = A/D, f(m,ﬁ):g[(m_1) ‘f’+(m+1) ‘ﬁ]_mz‘ﬁ (m>0) T, 5 i | - ‘ s )

Model parameters

H scaling exponent
¢t mean value parameter
c2 variance parameter estimated from c2 =Var([Z]/D

} estimated from E[Z]=c1D" " (by least squares)

B correlation decay parameter estimated from g =1—
a)uE[V XI ZI 10)/IE[VI
Var [Vz ] —1

3 i1 3

~ 7 _ -~ _\7._ [ b ~ 7. _

lution | 251 ' | ‘ lution |
:;eﬁf HHen ' ‘ ‘ 4 ;isﬁru on » Phase C: Generation of the sequence of incremental depths for each event (Koutsoyiannis and Tsakalias,

Fitting of the scaling model of storm hyetograph _ ; — T e 1- 1992; Koutsoyiannis, 1994: Mamassis et al., 1994).
» The scaling model was fitted to the Ortona data set using a time resolution A =1/4 hr. 0. . 1.5 2 0. , 1.5 2 C1: Generation of total depth Z, assumed two-parameter gamma distributed.

All storm events of the six-year period with durations greater than A were used (426 events with durations s £l o € fmm] C2. Application of the sequential procedure to obtain an initial sequence of incremental depths X".
ranging from 1/2 to 35 hr). Other 37 events with durations A (or less) were modeled separately. Events were « An interpretation of the results C3. Determination of the final (adjusted) sequence:

allowed to include periods of zero rainfall less than 7 hr (= 1.5 times the average duration). - The horizontal line in the lower tail of all curves (Figures above) v.  veioK

The fitting procedure was based on the separation of storms into six classes according to their durations as indicates zero correlation dimension. This is due to the nonzero

described by Koutsoyiannis and Foufoula-Georgiou (1993). probability of zero rainfall, which results in numerous time-delayed
Analysis was first performed by separating storms into two seasons (wet: Jun.-Sep.; dry: Oct.-May). vectors with all coordinates zero.

For simplicity a unique set of parameters was finally adopted for both seasons (H = -0.449, ¢, =8.74, ¢, = There is (roughly) a scaling region (except for the case of 1/4 hr Acknowledgments

85.68, B =0.2406). 100 5 T | | | : R
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. (b) Mean Standard )
Notable is the de- deviation ‘ j ‘ j about two times the average of nonzero depths. with FORTRAN programs, used for preliminary comparison. Computational resources were provided by the National Technical University of Athens
parture of H from

Modeled —_ | A ‘ The slope of this scaling region, estimated by least squares, is an (Central Computer Department and HYDROSCOPE Computer Network).
zero, which indi-

Empirical, both seasons ‘ : ‘ . h . . . . . .
Empirical, dry season | | | increasing function of embedding dimension (logarithmic plot to the
Empirical, wet season ‘ : : : I
g?iﬁse thr:geespsa::_grr}e] Mean Standard l i I I I I Ieft)' No saturation Value_appears' i i . ) Grassberger, P., Generalized dimensions of strange attractors, Physics Letters, 97A(6), 227-230, 1983.
_ P : deviation 1 | The results of the ana|y3|3 of synthetlc series (daShed Ilnes) are qwte Grassberger, P., An optimized box-assisted algorithm for fractal dimensions, Physics Letters A, 148(1, 2), 63-68, 1990.
stationarity. [ el similar with those obtained from the historic series (continuous lines). Grassberger, P. and |. Procaccia, Characterization of strange attractors, Physical review letters, 50(5), 346-349, 1983.
. mpirical, bo seasons . . . . . g . . . .
The comparison of - Emgmcal dry season 1 Both depart from white noise. Resolution Average Jayawar.den.a, A.W.and F. Lgl, Analy3|s an.d prediction of chaf)s in rainfall and stream flovy time series, Journal of Hydrology, 153, 23-52, 1994.
the model with data i Empirical, wet season limit (0.25 h) (6.44 h) Koutsoyiannis, D., A stochastic disaggregation method for design storm and flood synthesis, Journal of Hydrology, 156, 193-225, 1994.
. ] ] . _ _ ] : : Koutsoyiannis, D. and E. Foufoula-Georgiou, A scaling model of storm hyetograph, Water Resources Research, 29(7), 2345-2361, 1993.
of wet, dry and both e e ‘ ‘ ‘ « Application to the inverse series (Figure to the right). ‘ T ‘ Koutsoyiannis, D. and G. Tsakalias, A disaggregation model for storm hyetographs, Presentation at the 3rd meeting of the AFORISM project, Athens,

‘e Al : 10 . . . .
seasons is given in D Ihr] « The inverse series represents time intervals 1992. o _ o _ L _
Mamassis, N., D. Koutsoyiannis and E. Foufoula-Georgiou, Stochastic rainfall forecasting by conditional simulation using a scaling model, XIX EGS

Figures (a) (statis- : : : 1 | ' |
J ( ) ( i A correspondlng to an increase of rainfall depth by 1 I I ‘ I General Assembly, Grenoble, abstract in Annales Geophysicae, Vol. 12, Supplement II, Part 1l, 324, 1994.

. Small Large ' . . .
tics of total depth), ol ol durations durations mm. Linear interpolation was used to inverse the ] 1/ | - | Rényi, A., Probability theory, North-Holland, Amsterdam, 1970.
(b) (statistics of in- ~ — 'I‘E":I";i’r'i‘:gl both seasons series, which obviously introduces error for intervals ‘ ' Rodriguez-lturbe, I., B. F. de Power, M. B. Sharifi and K. P. Georgakakos, Chaos in rainfall, Water Resources Research, 25(7), 1667-1675, 1989.
cremental depth), 6t 6T EmpiricaI: dry season less than 1/4 hr . Rodriguez-lturbe, |., Exploring complexity in the structure of rainfall, Advances in Water Resources, 14(4), 162-167, 1991.
(c) (| ag-1 correlation i I Empirical, wet season ) ) _ ) - Schroeder, M., Fractals, chaos and power laws: Minutes from an infinite Paradise, Freeman & Co., New York, 1991.

9 Vodeled — The results of the synthetic series (dashed lines) are : | ‘ ‘ Sharifi, M. B., K. P. Georgakakos and |. Rodriguez-lturbe, Evidence of deterministic chaos in the pulse of storm rainfall, Journal of Atmospheric

coefficient of incre- ‘ Empirical, both seasons | 5 again quite similar with those obtained from the Sl . | Sciences, 45(7) 1990
Takens, F., Detecting strange attractors in turbulence, in Dynamical systems and turbulence, edited by D. A. Rand and L.-S. Young, Lecture Notes in

mental depth) and = Empirical, dry season : . . . . . ‘ ‘ ‘ ‘
(d) (lag-k EorZeIation : Empirical, wet season - historic series (continuous lines). o Tx . | Mathematics, 898, 336-381, Springer-Verlag, Berlin, 1981.

S . * No clear scallng region appears here. i ; ' ; ; Tsonis, A. A., Chaos: From theory to applications, Plenum Press, New York, 1992.
coefficient of incre- 10 5 pmy 20 _‘ _‘ ‘ ‘ 2 3 Tsonis, A. A, J. B. Elsner and K. P. Georgakakos, Estimating the dimension of weather and climate attractors: Important issues about the procedure
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