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hydrological processes, including mathematical derivations and the complete studies with real world examples.   

1. Theoretical investigation of correlation dimension of asymmetric processes 

Let Yn be a random process on discrete time n with all Yn (n = 1, 2, …) independent identi-

cally distributed positive variables with distribution function F(y) and density f(y). We assume 

that y > 0 (as happens with all hydrological variables) and also y < ξ where the upper bound ξ 

could be finite or infinite. We will study the correlation dimension for embedding dimension 

m = 1. We consider a partition of the y domain with scale ε. Applying equations (7) and (8) 

from Koutsoyiannis (2006) and observing that pi = F(i ε) – F((i – 1)ε) we find  

 D2 = 
 

lim
ε → 0

 
⎩
⎨
⎧ 
 

1
ln ε ln ∑
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⎭
⎬
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  (A1) 

where ν(ε, ξ) is the smallest integer that is greater than or equal to ξ / ε. For small values of ε 

F(i ε) – F((i – 1)ε) = f(i ε) ε and therefore when ε → 0,  

 D2 = 1 + 
 

lim
ε → 0

 ⎣⎢
⎡ 
 

1
ln ε ln ∑

i = 1

ν(ε, ξ)

 f 2(i ε) ε⎦⎥
⎤ 
  (A2) 

Also, when ε → 0,  

 ∑
i = 1

ν(ε, ξ)

 f 2(i ε) ε → ⌡⌠
0

ξ

  f 2(y) dy =: B (A3) 
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Obviously, if B converges then D2 = 1. This case is the most commonly met, since in most 

cases f(y) has a finite value for the entire domain of y. If f(y) is finite, B converges even if ξ is 

infinite. This is understood if we observe that in this case, there exists an y0 > 0 so that f (y) < 

1 for any y > y0 and therefore f 2(y) < f (y). Thus, the integral f 2(y) in [x0, ∞) is finite, and since 

f(y) is finite everywhere, the integral in [0, ∞) will be finite, too. Consequently the limit in 

(A2) becomes zero and D2 = 1. 

 Now we consider the case that B does not converge. There are two possible sufficient 

conditions that may lead to this case: f(y) tends to ∞ either when y tends to 0 or when y tends 

to ξ where ξ is finite. We concentrate on the first condition, which is the most interesting as 

far as hydrological processes are concerned. In this case only the first term (i = 1) of the sum 

in (A1) is significant so that  

 D2 = 2 
 

lim
ε → 0

 
ln [F(ε)]

ln ε   (A4) 

Applying de l’Hôpital’s rule twice we get 

 D2 = 2 
 

lim
ε → 0

 
ε f(ε)
F(ε)  = 2 + 2 

 
lim
ε → 0

 
ε f ΄(ε)

f(ε)  (A5) 

where f ΄( ) is the derivative of f( ). 

 Now let us view a few examples. First we consider the Pareto distribution, in which 

 F(y) = (y / a)κ,  f(y) = (κ / a) (y / a)κ – 1,  f ΄(y) = (κ – 1)(κ / a2) (y / a)κ – 2,  0 ≤ y ≤ a  (A6) 

Here ξ = a. The integral B converges to (κ2 / a) / (2 κ – 1) when κ > 1/2 and diverges when κ < 

1/2. Therefore, for κ > 1/2, D2 = 1, whereas for κ < 1/2,  

 D2 = 2 + 2 
 

lim
ε → 0

 
(κ – 1)(κ / aκ) εκ – 1

(κ / aκ) εκ – 1  = 2 κ (A7) 

We note that the coefficient of skewness of this distribution is  

 Cs(κ) = 
2 (1 – κ) 2 + κ

 (3 + κ) κ
 (A8) 

which means that the correlation dimension is smaller than 1 when the coefficient of skew-

ness is greater than Cs(1/2) = 0.639. 

 In our second example we consider the gamma distribution, in which 
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f(y) = [1 / a Γ(κ)] (y / a)κ – 1 e–y / a,  f ΄(y) = [1 / a2 Γ(κ)] (κ – 1 – y / a) (y / a)κ – 2 e–y / a,  y > 0 (A9) 

The integral B converges to Γ(κ – 1/2) / [2 π a) Γ(κ)] when κ > 1/2 and diverges when κ < 

1/2. Therefore, for κ > 1/2, D2 = 1, whereas for κ < 1/2,  

 D2 = 2 + 2 
 

lim
ε → 0

 
[1 / a2 Γ(κ)] ε (κ – 1 – ε / a) (ε / a)κ – 2 e–ε / a

[1 / a Γ(κ)] (ε / a)κ – 1 e–ε / a  = 2 κ (A10) 

We note that the coefficient of skewness of this distribution is Cs(κ) = 2 / κ, which means 

that the correlation dimension is smaller than 1 when the coefficient of skewness is greater 

than Cs(1/2) = 2.83. 

 In our third example we consider the Weibull distribution, i.e., 

 F(y) = 1 – exp[–(y / a)κ],  f(y) = (κ / a) (y / a)κ – 1 exp[–(y / a)κ]  

  f ΄(y) = (κ / a2) [κ – 1 – (y / a)κ] (y / a)κ – 2 exp[–(y / a)κ],  y > 0  (A11) 

The integral B converges to (κ / a) Γ(2 – 1/ κ) / 22 – 1 / κ when κ >  1/2 and diverges when κ < 

1/2. Therefore, for κ > 1/2, D2 = 1, whereas for κ < 1/2,  

 D2 = 2 + 2 
 

lim
ε → 0

 
(κ / a2) ε [κ – 1 – (ε / a)κ] (ε / a)κ – 2 exp[–(ε / a)κ]

(κ / a) (ε / a)κ – 1 exp[–(ε / a)κ]  = 2 κ (A12) 

We note that the coefficient of skewness of this distribution is  

 Cs(κ) = 
2 Γ3(1 + 1 / κ) – 3 Γ (1 + 1 / κ) Γ (1 + 2 / κ) + Γ (1 + 3 / κ)

[Γ(1 + 2 / κ) – Γ2(1 + 1 / κ)]3 / 2  (A13) 

which means that the correlation dimension is smaller than 1 when the coefficient of skew-

ness is grater than Cs(1/2) = 6.62. 

2. Required sample size to estimate attractor dimensions 

It is well known that the length of the confidence interval of the estimate of a probability p 

from a sample with relatively high size N for a confidence coefficient γ is 

2 z(1 + γ) / 2 [p (1– p) / N]0.5  where za is the a-quantile of the standard normal distribution. If c is 

the acceptable relative error in the estimation of p then 

 2 z(1 + γ) / 2 [p (1– p) / N]0.5 = 2 c p (A14) 

Solving for N, we find that the minimum sample size Nmin that is required for estimating the 

probability p with confidence γ and acceptable relative error c is    
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 Nmin = (z2
(1 + γ) / 2 / c2) (1 / p – 1)  (A15) 

Now, if we replace p with the correlation sum (by its definition (12) in Koutsoyiannis, 2006, 

C2(ε, m) is an estimate of probability) and Nmin with N2
min / 2 (since our sample in this case is 

composed of pairs of values), and also ignore 1 in the last term of (A15) (assuming that p is 

small so that 1/p is much larger than 1) we find that the minimum sample size required to 

estimate C2(ε, m) with confidence γ and acceptable relative error c is   

 Nmin = (z(1 + γ) / 2 / c) [2 / C2(ε, m)]0.5  (A16) 

For a stochastic system, combining (A16) with (18) in Koutsoyiannis (2006) we find  

 Nmin = 2 (z(1 + γ) / 2 / c) [C2(ε, 1)]–m / 2  (A17) 

If we replace ε in (A17) with ε–, the highest possible scale that suffices to accurately estimate 

the correlation dimension, we obtain equation (19) in Koutsoyiannis (2006).  

 For the choice of an acceptable relative error c we must investigate the relation of the rela-

tive error in estimating C2(ε, m) with that in estimating d2(ε, m), which is our final target. We 

assume that the local slope is calculated from two successive values of C2(ε, m), at scales ε1 

and ε2 = α ε1, whose theoretical values are C2(ε2, m) = β C2(ε1, m). We also assume that the 

empirical values depart from the theoretical ones by c each on opposite direction, i.e., 

C΄2(ε2, m) = (1 + c) C2(ε2, m) and C΄2(ε1, m) = (1 – c) C2(ε1, m). The theoretical local slope is  

 d2(ε, m) = 
ln[C2(ε2, m)] – ln[C2(ε1, m)]

ln ε2 – ln ε1
 = ln β / ln α (A18) 

whereas the estimated slope will be 

 d΄2(ε, m) = 
ln[C΄2(ε2, m)] – ln[C΄2(ε1, m)]

ln ε2 – ln ε1
 ≈ 2 c / ln α + ln β / ln α (A19) 

where we have considered ln (1 ± c) ≈ ± c due to the small value of c. Therefore, the relative 

error in d2(ε, m) is 2 c / ln β. For β = 0.9, the relative error becomes ≈ 20 c which means that a 

1% error in C2(ε2, m) can result in an error in d2(ε, m) as high as 20%.  

3. Real world examples 

In this section we present the details of some real world hydrometeorological series, which 

include rainfall on daily, sub-daily, and monthly timescale (sections 3.1, 3.2, and 3.3, respec-

tively) relative humidity (section 3.4) and streamflow (section 3.5). Summary of this 

investigation is given in Koutsoyiannis (2006). 
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3.1 Daily rainfall series 

As explained in Koutsoyiannis (2006), the role of rainfall is crucial in investigating chaos in 

hydrological processes, since rainfall is the input that mobilizes all other hydrological proc-

esses in a catchment. Also, in Koutsoyiannis (2006) some arguments that the rainfall process 

cannot be low-dimensional deterministic are presented, without applying any algorithm to 

determine dimensions. However, just for demonstration we apply the standard algorithm to 

some historical rainfall data series. Several such series were examined and the results are in 

all cases similar. Here we present the results for one series, the daily data at the Vakari rain-

gauge, western Greece. This raingauge is located in one of the wettest parts of Greece with 

40% rainy days and a mean annual rain depth approaching 1700 mm. (According to the 

arguments in Koutsoyiannis (2006) the wetter the climate regime the greater is the hope of 

lower dimensionality of the attractor). More than 31 years or 11 476 daily data values were 

available. Among these years, the maximum dry spell length is 47 days, that is, 2.5 times 

smaller that that of the Athens raingauge discussed in Koutsoyiannis (2006). The mean, stan-

dard deviation and coefficient of skewness of the data record are 4.59 mm, 11.90 mm and 

4.59, respectively. Had the zero values been excluded from the record, these statistics would 

be 11.38, 16.55, and 2.96, respectively. In any case, the skewness is very high and the distri-

bution is J-shaped. The lag-one autocorrelation of the series is 0.35, which means that a delay 

τ = 1 would suffice. Plots of the delay representation of the series in two and three dimensions 

are shown in Figure 2 in Koutsoyiannis (2006). However, for the application of the Grassber-

ger-Procaccia algorithm we chose a much higher (and thus safer) value, τ = 12, which we 

located as the position where the autocorrelation function has its first minimum.  

 In Figure A1 we have plotted the correlation sums C2(ε, m) (upper panel) and their local 

slopes d2(ε, m) (lower panel) versus scale ε for embedding dimensions m = 1 to 8 calculated 

from the this daily rainfall series. As expected due to the presence of zeros in the data series, 

the local slopes for all embedding dimensions become zero for small scales (ε ≤ 0.0004). 

Thus, this figure says nothing about the capacity dimension of the “attractor” of the rainfall 

process.  If we incorrectly ignored the small scales and instead chose scales in the region 0.01-

0.1, we would come up with small positive dimensions, not exceeding 1.5 even for embed-

ding dimensions 8. If we also continued the plots for embedding dimensions 10, 20, 30 and so 

on, totally ignoring the astronomical number of data points required to do estimations in these 

dimensions, it is very probable that we would conclude that there is a low dimensional chaotic 

attractor here with dimension 1.5. This, however, would be a totally erroneous result. 
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Figure A1 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) vs. scale ε for 

embedding dimensions m = 1 to 8 calculated from the daily rainfall series at the Vakari raingauge.  

 It is interesting to see what happens with this data series if we exclude zero data values and 

apply the algorithm due to Graf von Hardenberg et al. (1997b). This is shown in Figure A2, 

where again we observe that the local slopes d2(ε, m) become zero for small scales. In this 

case, this is the result of round-off errors in the data values, rather than a theoretically consis-

tent result. Specifically, 5% of the values have been rounded to 0.1 mm (which is the limit of 

the measuring device), 4% as 0.2 mm, 3% as 0.3 mm and so on. This is equivalent to having 
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nonzero probabilities of occurrence of these values, which in turn results in zero slope of the 

correlation sum. The main difference of Figure A2 from Figure A1 is that even for large 

scales the local slopes tend to more reasonable values, i.e., to about 0.7 for m = 1, 1.4 for m = 

2, etc.  
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Figure A2 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) vs. scale ε for 

embedding dimensions m = 1 to 8 calculated from the same daily rainfall series as in Figure A1 but excluding 

points with zero values.  
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 To minimize the effect of round-off errors we also performed another application of the 

algorithm by Graf von Hardenberg et al. (1997b) excluding data values that are less than 2 

mm. In this case the sample size becomes too low to allow for any accurate estimation but 

clearly shows that the correlation dimension D2(m) tends to the embedding dimension m, 

which means that the time series has a stochastic character. 

3.2 Storm data 

If the presence of zeros in a rainfall time series is a strong obstacle to analyzing the presence 

of chaos, one may think that going to a much finer timescale and limiting the analysis strictly 

to a rainy period (a single storm) one could find the deterministic chaos. The idea of a deter-

ministic (meaning low dimensional?) evolution of a storm has been favoured long before 

hydrologists became involved with chaos. For example, Eagleson (1970, p. 184) states “The 

spacing and sizing of individual events in the sequence is probabilistic, while the internal 

structure of a given storm may be largely deterministic”.  

 To explore this idea we used a storm time series measured with high temporal resolution. 

This data set corresponds to one of several storms that were measured by the Hydrometeorol-

ogy Laboratory at the University of Iowa using devices that are capable of high sampling rates 

(Georgakakos et al., 1994). The data is available on the Internet from ftp.iihr.uiowa.edu. Spe-

cifically, the data set used is that of the event labeled Rain 1, which occurred during 2-3 

December 1990.  

 The duration of this storm was almost 27 h and the rain depth was measured every 10 s, so 

that the data set contains 9679 data points. The total depth is 104.9 mm, and the mean, maxi-

mum and minimum 10-second intensity are 3.89, 118.74, and 0.07 mm/h, respectively. The 

standard deviation of the 10-second intensities is 6.16 mm/h (1.58 times the mean) and their 

coefficient of skewness is 4.83. The distribution function is J-shaped and the gamma 

distribution function with a shape parameter 0.40 gives an acceptable fit to the data series. 

The autocorrelation is very high. For lags 1, 100 and 500 is 0.88, 0.48 and 0.15, respectively, 

and only at lag 850 becomes zero. For high frequencies (> 4×10–3 cycles per second) the 

power spectrum is approximately a power function of frequency with an exponent 1.63 

(estimated by Georgakakos et al., 1994).  
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Figure A3 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) vs. scale ε for 

embedding dimensions m = 1 to 8 calculated from the fine timescale rainfall series at Iowa.  

 The correlation sums C2(ε, m) of this time series for τ = 500 and their local slopes d2(ε, m) 

are plotted in Figure A3 versus scale ε for embedding dimensions m = 1 to 8. Again here we 

observe zero slopes for low scales. These again are due to round-off errors that artificially 

result in equal values: for example 217 values are 0.09 mm/h and 169 are 0.08 mm/h. If we 

ignore the regions with zero slopes, and apply the statistical reasoning exhibited in Koutso-

yiannis (2006), we find that for the plot of m = 1 the upper limit for adequate estimations is ε– 



10 

= 0.008 and the lower limit for accurate estimations is ε–1 = 0.0014. For m = 2, we find from  

(21) (Koutsoyiannis, 2006) that ε–2 = 0.0072 < ε–, whereas for all greater m, ε–m > ε–. Thus, 

D2(m) can be estimated only for m = 1 and 2, and the estimated D2(1) = 0.69 and D2(2) = 1.00. 

Given that the shape parameter of the gamma distribution is 0.40, the expected values for an 

entirely random series are 0.80 and 1.60 for m = 1 and 2 respectively. In any case, these 

results do not support nor prohibit the existence of low-dimensional deterministic dynamics.  
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Figure A4 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) vs. scale ε for 

embedding dimensions m = 1 to 8 calculated from the fine timescale rainfall same series as in Figure A3 but 

excluding points having at least one coordinate smaller than 0.01.  
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 As an additional analysis, we applied the Graf von Hardenberg et al. (1997b) algorithm 

excluding data values smaller than 1% of the maximum value and plotted the resulting corre-

lation sums and local slopes in Figure A4. Now it can be observed that D2(1) = 1 and for 

higher dimensions, although no accurate estimations can be obtained, it is apparent the ten-

dency that D2(m) = m, which indicates the absence of chaotic behaviour. 

3.3 Monthly rainfall series 

It has been found that many systems are composed of a huge number of internal microscopic 

degrees of freedom, but nevertheless produce signals which are found to be low dimensional 

(Kantz & Schreiber, 1997, p. 34). The coupling between the different degrees of freedom and 

an external field of some kind, lead to collective behaviour which is low dimensional. The 

reason is that most degrees of freedom are either not excited at all or “slaved” (Kantz & 

Schreiber, 1997, p. 239).  

 By analogy, it may be useful to study a hydrological process on a coarse timescale and try 

to identify chaos there. Even if the system on a fine timescale appears random, one may think 

of some collective behaviour on the coarser timescale, which could result in a low-dimen-

sional attractor.  

 Here we present the results for one series on a coarse timescale, the monthly rainfall in at 

the station of the National Observatory in Athens, which is the longest rainfall record in 

Greece (see Koutsoyiannis & Baloutsos, 2000). This corresponds to a dry climate with about 

400 mm annual rainfall; in 9% of the months the rainfall is zero. More than 132 years or 1586 

monthly data values were available (August 1859 to September 1991). The mean, standard 

deviation and coefficient of skewness of the data record are 32.9 mm, 36.0 mm and 1.75, 

respectively. Had the zero values been excluded from the record, these statistics would be 

36.4, 36.2, and 1.70, respectively. Despite the large skewness, the distribution is bell-shaped. 

The autocorrelation coefficient of the series is 0.32 for lag one and decays quickly, so that it 

becomes negative for lag three. 

 The correlation sums and the local slopes of this series, excluding zero points and using 

delay τ = 1, are plotted in Figure A5 versus scale ε for embedding dimensions m = 1 to 8. Due 

to the small record size only the estimate of D2(1) is accurate (as verified from the graphical 

application of the procedure described Koutsoyiannis (2006) shown in Figure A5) and is 

about 1. For higher dimensions no accurate estimations can be obtained, but again the ten-

dency is that D2(m) = m, which does not signify a chaotic behaviour. 
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Figure A5 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) vs. scale ε for 

embedding dimensions m = 1 to 8 calculated from the monthly rainfall series at Athens excluding zero points.  

3.4 Relative humidity series  

Since we found difficulties in identifying chaos in rainfall on all timescales, it could be a good 

idea to move to another related process in the direction of meteorology. The meteorological 

variable most closely related to rainfall is the relative humidity since when it rains, it 

approaches saturation (i.e., the value 100%). The data series we used is the relative humidity 
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of the period 1 December 1998 to 4 February 2001 on hourly timescale (18 888 data values) 

and comes from the meteorological station of the National Technical University in Athens 

(available on the Internet at www.itia.ntua.gr/meteo/); a few missing values were filled in by 

linear interpolation in time. Obviously, the relative humidity series is totally free from zeros 

and intermittency, which makes its study easier. The mean, standard deviation and coefficient 

of skewness of the data record are 60.2%, 17.2% and –0.26, respectively, whereas the mini-

mum and maximum values are 12.3% and 99.0%. The distribution is bell-shaped. The auto-

correlation coefficient of the series is as high as 0.97 for lag one and decays slowly, so that it 

becomes smaller than 1/e only for lag 108.  

 The correlation sums C2(ε, m) of this time series for τ = 108 and their local slopes d2(ε, m) 

are plotted in Figure A6 versus scale ε for embedding dimensions m = 1 to 8. We observe on 

the plots of m = 1 that a long scaling area appears between ε– = 0.08 and ε–1 = 0.00092. Thus, ε–
m < ε–, for m ≤ 4, as shown graphically in Figure A6, which means that D2(m) can be estimated 

accurately for m = 1 to 4. The estimated values are D2(m) = m, a result that again does not 

allow any hope for low-dimensional determinism.  

3.5 Daily streamflow series  

Finally, we will study the most representative hydrological process using a daily streamflow 

series of the Pinios River, central-eastern Greece, at the Ali Efenti gauge. The data series 

extends through the period 3 January 1972 to 18 March 1998 (8 246 data values of which 

1435 were missing data that were left unfilled). As explained Koutsoyiannis (2006), a stream-

flow series must be regarded as intermittent even if it is free from zeros. The mean, standard 

deviation and coefficient of skewness of the data record are 39.6 m3/s, 56.5 m3/s and 3.46, 

respectively, whereas the minimum and maximum values are 1.0 m3/s and 553.5 m3/s. The 

distribution is very asymmetric yet bell-shaped. The autocorrelation coefficient of the series is 

as high as 0.86 for lag one and decays slowly, so that it becomes zero only for lag 94.  

 The correlation sums C2(ε, m) of this time series for τ = 94 and their local slopes d2(ε, m) 

are plotted in Figure A7 versus scale ε for embedding dimensions m = 1 to 8. We observe on 

the plots of m = 1 that a scaling area appears between ε– = 0.06 and ε–1 = 0.001, whereas for all 

other m, ε–m > ε–, which means that an accurate estimation of D2(m) is possible only for m = 1; 

this is D2(1) ≈ 1. For higher embedding dimensions m, a tendency appears for D2(m) increas-

ing with m, which again does not indicate a chaotic behavior.  
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Figure A6 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) vs. scale ε for 

embedding dimensions m = 1 to 8 calculated from the relative humidity series at Athens.  
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Figure A7 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) vs. scale ε for 

embedding dimensions m = 1 to 8 calculated from the discharge series at Ali Efenti gauge at Pinios River.  
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