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Abstract In the last two decades, several researchers have claimed to have discovered low-dimensional 
determinism in hydrological processes, such as rainfall and runoff, using methods of chaotic analysis. 
However, such results have been criticized by others. In an attempt to offer additional insights into this 
discussion, it is shown here that, in some cases, merely the careful application of concepts of dynamical 
systems, without doing any calculation, provides strong indications that hydrological processes cannot 
be (low-dimensional) deterministic chaotic. Furthermore, it is shown that specific peculiarities of 
hydrological processes on fine time scales, such as asymmetric, J-shaped distribution functions, inter-
mittency, and high autocorrelations, are synergistic factors that can lead to misleading conclusions 
regarding the presence of (low-dimensional) deterministic chaos. In addition, the recovery of a hypo-
thetical attractor from a time series is put as a statistical estimation problem whose study allows, among 
others, quantification of the required sample size; this appears to be so huge that it prohibits any 
accurate estimation, even with the largest available hydrological records. All these arguments are 
demonstrated using appropriately synthesized theoretical examples. Finally, in light of the theoretical 
analyses and arguments, typical real-world hydrometeorological time series, such as relative humidity, 
rainfall, and runoff, are explored and none of them is found to indicate the presence of chaos.  
Keywords  attractors; capacity dimension, chaos; chaotic dynamics; correlation dimension; entropy; hydrological 
processes; nonlinear analysis; stochastic processes; time series analysis; rainfall; runoff  

Sur la recherche d’attracteurs chaotiques dans des processus hydrologiques  
Résumé Durant les deux dernières décennies, plusieurs chercheurs ont prétendu avoir découvert le 
déterminisme bas dimensionnel dans des processus hydrologiques, tels que les précipitations et 
l'écoulement, en utilisant des méthodes d'analyse chaotique. De tels résultats, cependant, ont été 
critiqués par d'autres. Afin d'essayer d'offrir des avis supplémentaires dans cette discussion, on montre 
ici que, dans certains cas, la simple application soigneuse des concepts des systèmes dynamiques, sans 
aucun calcul, fournit de fortes indications que les processus hydrologiques ne peuvent pas être 
chaotiques déterministes (bas dimensionnels). En outre, on montre que les particularités spécifiques des 
processus hydrologiques aux échelles temporelles fines, telles que l'asymétrie, les fonctions de 
distribution en forme de J, l’intermittence et les autocorrélations élevées, sont des facteurs synergiques 
qui peuvent mener à des conclusions fallacieuses concernant la présence du chaos déterministe (bas 
dimensionnel). En outre l’identification d'un attracteur hypothétique à partir d'une série chronologique 
est posée comme un problème statistique d'estimation, dont l'étude permet, entre d'autres, la 
quantification de la taille requise de la série; celle-ci apparaît être si grande qu'elle interdit toute 
estimation précise, même avec les plus longues séries hydrologiques disponibles. Tous ces arguments 
sont démontrés en utilisant des exemples théoriques convenablement synthétisés. En conclusion, à la 
lumière de nos analyses et arguments théoriques, des séries chronologiques hydrométéorologiques 
réelles typiques, telles que de l'humidité relative de l’air, de la précipitation et de l'écoulement, sont 
explorées et aucune d'elles ne se révèle être indicatrice de la présence de chaos. 
Mots clefs  attracteurs; dimension de capacité; chaos; dynamique chaotique; dimension de corrélation; entropie; 
processus hydrologiques; analyse nonlinéaire; processus stochastiques; analyse de séries temporelles; pluie; 
écoulement 
 
 
INTRODUCTION 
 
“My thirteenth and last thesis is this. Both classical physics and quantum physics are indeterministic.” 
Karl Popper (in his book Quantum Theory and the Schism in Physics, Routledge, 1992) 
 
The impressive results of chaos analysis of simple physical and mathematical systems 
in the last two decades offered an alternative way to view natural systems. Specifically, 
it became clear that a simple nonlinear deterministic system, even with one degree of 
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freedom, can have a complex, random-appearing evolution. Obviously, however, the 
inverse is not true: complex or erratic-appearing phenomena do not necessarily imply 
that the dynamics are simple.  
 Loosely speaking, the complexity of a system with deterministic dynamics 
depends on the number of degrees of freedom, or dimension of the system attractor, 
and on how many of them are associated with sensitive dependence on initial condi-
tions. The latter are quantified by positive values of the so called Lyapunov exponents 
that are associated with the system dynamics. Chaotic systems are in fact the simplest 
possible deterministic systems with sensitivity to initial conditions: those that have one 
positive Lyapunov exponent (Kantz & Schreiber, 1997, pp. 183, 241), and typically 
have attractor dimension less than two (Kantz & Schreiber, 1997, p. 183). Following 
Kantz and Schreiber, in this paper, the term “low-dimensional (deterministic) chaos” is 
used as synonymous to chaos (even though, as correctly pointed out by Schertzer et 
al., 2002, initially the word chaos was used to describe stochastic phenomena such as 
Brownian motion, or any kind of disorder—cf. Greek mythology).  
 Systems with very many (theoretically infinite) dimensions are usually (and in this 
paper too) characterized as stochastic (or random) systems and are usually modelled 
using probabilistic considerations and the theory of stochastic processes. In a stochastic 
system, the future of the system state cannot be determined completely from its present 
and past, even if the entire past is known. However, the characterization of a system as a 
stochastic (or a random) system should not be regarded as the denial of deterministic 
dynamics in its evolution, but rather as the inadequacy or inefficiency of a pure deter-
ministic mathematical description. For example, tossing of dice is regarded as the most 
typical example of a random system (cf. Albert Einstein’s famous aphorism), even 
though its outcome depends on a few collisions of a cube onto a plane, whose deter-
ministic dynamics can be understood rather easily (perhaps more easily than those of a 
hydrological system also influenced by the global circulation system). 
 Perhaps to fill the gap between the very low-dimensional chaotic systems and the 
very high-dimensional stochastic systems, the term hyperchaos has been coined 
(Rössler, 1979; Kantz & Schreiber, 1997, pp. 183, 241). While numerous chaotic and 
stochastic systems have been studied thoroughly, only a few experimental observations 
of hyperchaos have been recorded. To explain this lack of higher dimensional experi-
mental attractors, Kantz & Schreiber offer two possible explanations: typical systems in 
nature possess either exactly one or very many positive Lyapunof exponents; or systems 
with a higher-than-three-dimensional (3D) attractor are very difficult to analyse.  
 Traditionally, stochastic models have been the preferred mathematical tools in 
hydrology and water resources modelling. Hydrological processes have been most 
frequently modelled as stochastic processes, which also incorporate apparent determin-
istic components of the natural processes (e.g. periodicity) in addition to random 
components. However, in the last two decades, the charming possibility that a complex 
hydrological system with irregular time evolution may au fond be a simple chaotic 
system has motivated several researchers to analyse hydrological processes using 
mathematical tools of the chaos literature. Their intention and hope, perhaps, was to 
discover simplicity and universal determinism in place of what was earlier considered 
as stochastic behaviour with weak deterministic imprints. Thus, an increasing number 
of studies have tried to show that hydrological processes are chaotic. Sivakumar (2000, 
2004) reviews most of the studies related to chaotic analysis of hydrological processes. 
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Such studies, whose number has continuously increased since the late 1980s, have 
analysed processes such as rainfall, runoff and lake storage using time series with 
resolutions from a few seconds to one month and data sizes from one to several 
thousands. In most cases, the authors claimed that they discovered deterministic 
attractors with dimensions varying from about 1/2 to about 10. Few authors reported 
absence of chaos or expressed scepticism about the discovery of chaos in other studies 
and provided arguments for the incorrectness of such results.  
 The attempts to discover chaos in natural phenomena are not unique to hydrology. 
As pointed out by Provenzale et al. (1992),  
“… the desire for finding a chaotic attractor has led to a naïve application of the 
analysis methods; as a result, the number of claims on the presence of strange 
attractors in vastly different physical, chemical, biological and astronomical systems 
has grown (exponentially?)”. 
Here they quote a statement by Grassberger et al. (1991):  
“… most (if not all) of these claims have to be taken with much caution”.  
They also note that convincing evidence for chaos most commonly arises when spatial 
complexity of the system is limited, a condition that could be true for experimental 
systems, but is far from true for hydrological and other geophysical processes.  
 The present paper attempts to proceed a step further than simply expressing 
scepticism about the discovery of chaos in hydrological processes. Specifically, it 
endeavours to show that the hypothesis that hydrological time series manifest 
stochastic, rather than chaotic, systems cannot be rejected using the standard pro-
cedures of chaotic analysis. In addition, it locates critical issues that may lead to an 
erroneous conclusion that a hydrological system is chaotic; such issues may have 
influenced earlier studies that identified chaos in hydrology. Here, it should be made 
clear that the intent of the paper is not to spot flaws or erroneous conclusions in 
particular earlier studies. This is the reason why specific references to these studies (or 
to studies that expressed scepticism) are deliberately avoided. The references included 
are only those that describe theoretical developments or methodologies used in this 
paper. The interested reader is referred to the comprehensive reviews by Sivakumar 
(2000, 2004) for locating related studies and to Sivakumar et al. (2001, 2002) and 
Schertzer et al. (2002) for one of the most recent debates on the issue.  
 In addition to identifying the critical issues, the paper develops ways to recover 
from them and draw correct conclusions. To this aim, the paper first briefly reviews 
some fundamental concepts of chaotic behaviour and the typical procedure for identi-
fying chaos based on the estimation of attractor dimensions; it is the author’s opinion 
that revisiting fundamental concepts is generally useful, and necessary for the particu-
lar scope of this paper. Subsequently, the paper shows that, in some cases, merely the 
careful application of the concepts of dynamical systems provides strong indications 
that hydrological processes cannot be chaotic. Furthermore, it shows that peculiarities 
of hydrological processes can lead to misleading conclusions regarding presence of 
chaos, and in addition demand huge data sets, whose size can be quantified by 
statistical reasoning. Finally, in light of the theoretical analyses and arguments, typical 
real-world hydrometeorological time series are explored and none of them is found to 
indicate the presence of chaos. Details of the real-world examples as well as mathe-
matical derivations that support the theoretical analysis are given separately in 
Koutsoyiannis (2006). 
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 The scope of this paper cannot include all of the numerous applications of chaotic 
tools in hydrology. For instance, many studies have used nonlinear forecast methods 
from chaotic dynamical systems in hydrological applications. The success of such 
applications is not in question, but, as strange as it may seem, this does not necessarily 
indicate that the system at hand is chaotic. For example, in a recent study 
(Koutsoyiannis et al., 2006), a low-dimensional chaotic nonlinear method gave fore-
casts of the monthly flow of the Nile that were equally good in the case that the 
inflows were historical or synthetic (generated by a stochastic model). Thus, the scope 
here is limited to identification of potential chaos and for this reason the emphasis is 
given to time delay embedding of attractors, which has been the standard method for 
identification of chaos both in general and in hydrological applications.  
 
 
DESCRIPTORS OF CHAOTIC BEHAVIOUR 
 
Dynamical systems and attractors 
 
The nonlinear time series methods which are applied in hydrology are based on the 
theory of dynamical systems; these are characterized by: (a) a phase or state space in 
which the motion of the system takes place; (b) a rule stating where to go next from the 
current system position (also known as system dynamics); and (c) a time set that 
describes the moments at which movements from one position to another take place.  
 Typically, the phase space M is a finite-dimensional vector space Rm and the state 
of the system is specified by a vector x with size m. The time set is typically either the 
set of integers I (discrete time) or the set of real numbers R (continuous time). The 
system dynamics is a family of transformations St: M → M (where t denotes time) 
satisfying (Lasota & Mackey, 1994, p. 191): 

S0(x) = x     St(St΄(x)) = St + t΄(x)     x ∈ M (1) 

In discrete time, the system dynamics is completely determined by the m-dimensional 
map S1:  

xn+1 = S1(xn)        n ∈ I (2) 

In continuous time the dynamics is described as a system of m ordinary differential 
equations: 

dx(t)
dt  = s(x(t))      t ∈ R (3) 

whose solution defines the family of transformations St. 
 For a given initial point x0 or x(0), the sequence of points xn = Sn(x0) or the 
function x(t) = St(x(0)) considered as a function of n or t is called a trajectory of the 
dynamical system. In the so-called dissipative dynamical systems, the trajectory of the 
system, after some transient time, is attracted to some subset A of the phase space. This 
set itself is invariant under the dynamical evolution (St(A) = A) and is called the 
attractor of the system (Kantz & Schreiber, 1997, p. 32). Only three types of attractors 
can occur (e.g. Lasota & Mackey, 1994, p. 192; Kantz & Schreiber, 1997, p. 32): 
(a) fixed points indicating that the system settles to a stagnant state, i.e. xn = x0 or 
St(x(0)) = x(0), for all n or t; (b) limit cycles, indicating periodic motion with period ω, 
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i.e. xn+ω = xn or St+ω(x(0)) = St(x(0)), for all n or t; and (c) non-intersecting trajectories, 
in which case xn1

 ≠ xn2
 or St1(x(0)) ≠ St2(x(0)), for all n1 ≠ n2 or t1 ≠ t2. For a system in 

continuous time with a two-dimensional (2D) state space, the fixed point and cycle are 
the only possibilities, whereas for three dimensions and beyond, the more interesting 
non-intersecting attractors can occur, which typically exhibit fractal structure and are 
called strange attractors. For systems in discrete time the non-intersecting attractors 
can occur even in a 2D state space (Lasota & Mackey, 1994).  
 
 
Delay embedding and reconstruction of dynamics 
 
In this paper, as in other hydrological applications of chaotic dynamics, only systems 
expressed in terms of a single scalar real quantity y (e.g. rainfall, runoff, etc.) are 
considered. Such a system evolves in continuous time, and its m-dimensional state x is 
theoretically expressed in terms of the quantity y and a number m – 1 of its derivatives 
with respect to time, i.e. x(t) := [y(t), y΄(t), … y(m-1) (t)]T (where (y(k) := dky/dyk and the 
superscript T denotes the transpose of a vector or matrix). 
 However, in a hydrological (natural) system, only observations of the quantity y on 
discrete time intervals Δt (and no observations of its derivatives) can be available. 
Therefore, the study of the system is done as if it were a discrete time system using the 
so-called delay vectors: 

xn := [yn, yn-τ, …, yn-(m-1)τ]T (4)  

where yn := y(nΔt) and τ is a positive integer. By studying the simplified discrete time 
system, the properties of the original system since can be inferred. According to 
Takens’ embedding theorem (Takens, 1981), for properly chosen embedding dimen-
sion m and time delay τ, the discrete time system will trace out a trajectory that 
represents a smooth coordinate transformation of the original trajectory of the system.  
 Thus, the Takens theorem allows for the reconstruction of the dynamics of the 
system using a time series of a single scalar observable. If the only given information 
is the time series, it is not known a priori what the proper embedding dimension m is. 
This dimension depends on the dimension D of the attractor. The latter dimension has 
important content as D (or better the smallest integer that is not smaller than D) 
represents the number of degrees of freedom needed to describe the state of the system 
(Gershenfeld & Weigend, 1993, p. 48).  
 According to Whitney’s (1936) embedding theorem, which was generalized for 
fractal objects by Sauer et al. (1991), any D-dimensional object (precisely, any D-
dimensional smooth manifold) can be embedded in an m-dimensional Euclidean space 
if m > 2D. For example, a one-dimensional curve of any shape can always be 
embedded in a 3D Euclidean space (and all higher-dimensional spaces), but it cannot 
be embedded in a 2D space because, except for special cases, it will overlap itself (this 
will be further clarified later). Thus, an attractor of the non-intersecting type with 
dimension 1 will intersect itself in a 2D space (projection) but not in a 3D space.  
 Therefore, if the attractor dimension D were known, the state vector size m would 
be the smallest integer that is greater than 2D. But since D is unknown when merely a 
time series is available, an iterative procedure is followed. For trial m = 1, 2, …, the 
dimension D(m) of the trajectory of the system is estimated at the m-dimensional 
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space, until D(m) becomes constant with the further increase of m. This constant is the 
attractor dimension.  
 
 
Estimation of dimensions 
 
The problem arises then of how to estimate the dimension D of a trajectory or attractor 
A in an m-dimensional vector space. The estimate of a dimension is typically done in 
terms of entropic quantities. It should be stressed that entropy is a probabilistic concept 
and thus the estimation of entropic quantities obeys statistical laws (although in some 
studies this is missing). Specifically, let A be a subset of an m-dimensional metric 
space with a normalized measure P( ) defined on its Borel field. Equivalently, A can be 
regarded as a sample space and the normalized measure P(B) of any subset B of A as 
the probability of B. In our case, for m = 1, A may represent all possible values of a 
hydrological variable such as rainfall or runoff at a specified time scale, so that it is the 
set of positive real numbers R+. Accordingly, for m > 1, the set may represent the  
m-dimensional space formed by the delay vectors.  
 Let us consider a partition of A into ν(ε) boxes (hypercubes) A1, A2, …, Aν(ε) with 
scale length (or simply scale, meaning edge length of each hypercube) ε. The standard 
entropy, also known as the information entropy or the Boltzmann-Gibbs-Shannon 
entropy is by definition: 

φ(ε) := – ∑
i=1

ν(ε)
 pi ln pi (5) 

where pi := P(Ai) is the measure of the part of the set A contained in the ith hypercube 
having the obvious property: 

∑
i=1

 ν(ε)
 pi = 1  (6) 

Equivalently, pi could be interpreted as the probability that a point of A belongs to Ai. 
In this case, φ(ε) is the expected value of the minus logarithm of probability (in this 
case meant on the specific partition) and is typically interpreted as a measure of 
uncertainty.  
 Several generalizations of the standard entropy have been proposed (Rényi, 1970; 
Tsallis, 2004). Among them, the most commonly used for the identification of chaotic 
systems is the Rényi entropy of order q defined to be: 

φq(ε) := 
1

1 – q ln ∑
i=1

ν(ε)
 pq

i  (7) 

Application of de l’ Hôpital’s rule to equation (7) for q = 1 shows that φ1(ε) ≡ φ(ε).  
 The entropy φq(ε) is a decreasing function of ε and tends to infinity as ε tends to 
zero. However, the quantity 

Dq := 
 

lim
ε→0

 
–φq(ε)

ln ε  (8) 
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takes a finite value and it is called the generalized dimension of order q of the set and 
normalized measure under examination (Grassberger, 1983). Applying de l’Hôpital’s 
rule in equation (8), one obtains:  

Dq = 
 

lim
ε→0

 
d(–φq(ε))

d(ln ε)  (9) 

The latter expression is more advantageous than equation (8) for numerical applica-
tions, since the convergence of the derivative is faster. 
 For low values of q, the most frequently used dimensions are produced. Thus,  
q = 0 gives the so-called “box counting” or “capacity” dimension D0, q = 1 the 
“information” dimension D1, and q = 2 the “correlation” dimension D2. For simple 
geometrical objects such as segments of a line or a surface, if the Lebesgue measure is 
used (equivalently, if the uniform probability distribution is assumed) then all Dq are 
equal to the integer topological dimension (1 for a line, 2 for a surface, etc.). For more 
complex mathematical objects including fractal objects or for these simple objects but 
for other measures (or probability distributions), they are not necessarily integers, nor 
all Dq are necessarily equal to each other, as will be demonstrated later. The most 
important among generalized dimensions is the capacity dimension D0, because this is 
in fact the one used in the extension by Sauer et al. (1991) of Whitney’s (1936) 
embedding theorem mentioned above. However, the most frequently used (for reasons 
that will be explained next) is the correlation dimension D2. 
 Estimates of probabilities and entropic quantities can be derived by statistical 
theory based on a certain observed time series or delay vectors thereof. Thus, the 
statistical estimate of pi from a sample of N observed values, each one denoted as xj (or 
a vector sample of N points in the m-dimensional space that is formed by time delay 
vectors, each one denoted as xj), of which Ni are contained in the ith hypercube Ai, is 
typically derived as pi = Ni/N. Accordingly, the estimates of dimensions can be derived 
by numerical evaluation of equations (5)–(9), substituting Ni/N for pi. For integer q ≥ 2, 
an alternative estimation can be done in terms of the so-called generalized correlation 
sum of order q, introduced by Grassberger (1983): 

Cq(ε) := {fraction of q-tuples  (xj1, …, xjq) that have all ||xjs − xjr|| < ε} (10) 

where ||.|| denotes the norm of a vector. This has the important property: 

Cq(ε) ≈ exp[(1 – q) φq(ε)] (11) 

Thus, for integer q ≥ 2, –φq(ε) can be replaced with ln Cq(ε)/(q – 1) in the calculation of 
dimensions using the above equations; the estimation of φq(ε) in terms of Cq(ε) is 
regarded as more accurate than that in terms of Ni/N (Grassberger, 1983; Grassberger 
& Procaccia, 1983). In practice however, only the correlation sum for q = 2 is used, 
because the calculation of higher-order sums is very time consuming. (In fact, this is 
the case even for q = 2.) The correlation sum of order 2, or simply the correlation sum, 
is given by the following equation that is a consequence of equation (10): 

C2(ε, m) = 
2

(N – w) (N – w + 1) ∑i=1

N–w
 ∑
j=i+w

N
 H(ε – ||xi – xj||) (12) 

where H is the Heaviside step function, with H(u) = 1 for u > 0 and H(u) = 0 for u ≤ 0, 
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and w is an integer constant, which for uncorrelated time series is assumed one but for 
correlated ones may be assigned a greater value to exclude from the estimation those 
pairs of points that are close in time (Kantz & Schreiber, 1997, p. 74). For the calculation 
of the distance ||xi – xj||, the maximum norm is usually used as it reduces the computa-
tional time (Hübner et al., 1993). The seemingly complex formula (12) should not 
prevent one to see that the correlation sum C2(ε, m) is the proportion of pairs of points 
having distance smaller than ε between them. In other words, the correlation sum C2(ε, 
m) is the estimate of the true (population) probability that the distance of any two points 
is smaller than ε. 
 
 
Typical procedure for identifying chaos 
 
The estimation procedure of the correlation dimension D2 in terms of correlation sums, 
known as the Grassberger-Procaccia algorithm (after Grassberger & Procaccia, 1983) 
consists of the following steps: 
1. Calculate the correlation sum C2(ε, m) for several values of the scale ε. 
2. Make a log-log plot of C2(ε, m) vs ε and a plot of the local slope d2(ε, m) vs logε, 

where: 

 d2(ε, m) := 
Δ[ln C2(ε, m)]

Δ[ln ε]  (13) 

 and locate a region with constant slope, known as a scaling region (e.g. Hübner et 
al., 1993). 

3. Calculate the slope of the scaling region, which is the estimate of the correlation 
dimension D2(m) of the set for the embedding dimension m. 

 As explained above this is done iteratively for m = 1, 2, … and iterations stop when 
D2(m) saturates to a constant value D2, independent of m. The convergence of D2(m) to 
the value D2 verifies that a D2-dimensional attractor: (a) exists, which means that the 
system under study is deterministic; (b) has been identified; and (c) can been embedded 
in an m-dimensional space where m is the minimum integer for which D2(m) = D2. 
Conversely, if D2(m) does not become constant for increasing m, the system is 
characterized as stochastic, rather than deterministic. This procedure has been followed 
in most of the hydrological applications mentioned in the introduction to characterize a 
time series as stochastic or deterministic. 
 Several authors have warned that the procedure has several critical points that require 
careful attention (see discussions in, among others, Tsonis, 1992; Tsonis et al., 1993; 
Kantz & Schreiber, 1997; Graf von Hardenberg, 1997a; Sivakumar, 2000), otherwise the 
results may be flawed. These points are revisited in the next section, and some additional 
critical points whose ignorance could result in erroneous interpretations are introduced. 
 
 
IMPORTANT ISSUES IN IDENTIFYING CHAOS IN HYDROLOGICAL 
PROCESSES 
 
A conceptual approach to the dimensionality of a hydrological attractor 
 
Before applying any algorithm to quantify the dimensionality of an attractor in a 
hydrological process, it would be a good idea to try a more conceptual approach and to 
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determine, if possible, what would be a reasonable expectation of this dimensionality. It 
is natural to start with the rainfall process in discrete time on daily time scale (the same 
reasoning applies in finer time scales as well). For this process and time scale some 
studies have claimed to have seen chaos with dimensionality D2 as low as 1 (or less).  
 In a daily rainfall time series there exist periods with zero rainfall. Let us consider 
here the complete time series with consecutive dry and wet periods, similar to what 
most studies have done. (Later fine time scale rainfall series excluding dry periods will 
be also examined). Let k be the maximum observed dry period in days. For example, in 
Athens, Greece, in a 132-year record of rainfall record, k = 130 days (more than four 
months). The day when this dry period starts is set n = 1, so that the rainfall depths yn 
for n = 1 to k are all zero. Let us assume that the rainfall at the examined location is the 
outcome of a deterministic system whose attractor can be embedded in Rm for some 
integer m. This attractor is reconstructed using delay embedding with delay τ. Further-
more, let us assume that m < (k – 1)/τ + 1. Then, there exist at least two delay vectors 
with all their components equal to zero. Namely, xk = [yk, yk–τ , yk–2τ , …, yk–(m–1)τ ]T = 0 
and xk-1 = [yk-1, yk-1-τ, yk-1-2τ, …, yk-1-(m-1)τ]T = 0 where 0 is the zero vector. Therefore, xk 
= S1(xk-1) = S1(0) = 0, and since the system is deterministic, it will result in xn = 0 for 
any n > 0 (since xk+1 = S1(xk) = S1(0) = 0, etc.). That is, given that rainfall is zero for a 
period k, it will be zero forever, which means that the attractor is a single point. This of 
course is absurd and thus the embedding dimension should be m ≥ (k – 1)/τ + 1. Now, 
Whitney’s embedding theorem (Kantz & Schreiber, 1997, p. 126) tells us that the 
attractor should have dimension D ≥ (m – 1)/2 and, hence, D ≥ (k – 1)/2τ. For example 
(as in Athens), if the maximum dry period k = 130 and a “safe” delay τ = 10 is 
assumed (this will be discussed further later), the above analysis results in an 
embedding dimension of at least 13 and an attractor dimension of at least 6.  
 As high as this attractor dimension may seem (compared to values reported in 
some hydrological applications), it is still too low. In this reasoning, rainfall has been 
considered as a discrete time process. If it were considered as a continuous time 
process, as in fact is, then instead of assuming x as a vector of delay coordinates, it 
would be regarded as x(t) = [y(t), y΄(t), … y(m-1)t)]T, as explained earlier. Now, at any 
time within a dry period, x(t) = 0, regardless of the dimension m used (the rainfall 
depth and all its derivatives of any order are zero). Clearly then, the attractor cannot 
be of the non-intersecting type (since x(t) = 0 for several, in fact infinite, values of t), 
but it will be of the fixed-point type, the fixed point being the zero vector. Of course, 
this is not true, because at some time the system will depart from the “attracting” 
zero point. Thus, the system that is described by the rainfall depth is not low-
dimensional (it cannot have a finite dimensional attractor), but rather infinite-
dimensional (stochastic).  
 On coarser discrete time scales, such as monthly, it may be the case (for wet areas) 
that the zero rainfall values do not occur. However, if the rainfall process is high- or 
infinite-dimensional on fine time scales, naturally it will be high- or infinite-
dimensional on coarser time scales as well. In addition, since rainfall is the input that 
mobilizes all other hydrological processes in a catchment, the number of degrees of 
freedom of any other hydrological process (e.g. streamflow) will be at least equal to 
that of rainfall. Moreover, if rainfall is indeed stochastic, all other processes in the 
catchment will also be stochastic. 
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 Until now, the conceptual approach followed did not use any algorithm at all. In 
the case of application of an algorithm, it could be a good idea to examine whether its 
results are conceptually consistent and meaningful. For example, if the attractor dimen-
sion were found to be as low as one or even smaller, as indeed happens in some of the 
applications published, then it would have a direct geometrical interpretation. To 
demonstrate what an attractor with dimension one or less looks like, an example from a 
system with known chaotic dynamics was constructed. The well-known logistic equa-
tion zn = a zn-1(1 – zn-1) with a = 3.97977, which obviously has one degree of freedom 
(so that D ≤ 1), was used as a starting point. Then, to make the attractor more 
interesting, zn was routed through a linear filter to obtain the series yn := b0 zn + b1 zn-1 
+ b2 zn-2 + b3 zn-3 + b4 zn-4 with b0 = 1, b1 = 2, b2 = 1.5, b3 = 1, b4 = 0.5. Here, no 
additional degree of freedom was introduced and thus the dimension of the attractor 
was not increased; this was verified using the Grassberger-Procaccia algorithm. The 
attractor, constructed graphically using 10 000 points, is shown in Fig. 1 in a 2D 
(upper panel) and a 3D (lower panel) space. That the dimension of the attractor does 
not exceed one is obvious in both panels, although the 2D graph is not appropriate to 
show the non-intersecting type of the attractor (it intersects itself).  
 Now if the same work is done with a hydrological series, a totally different picture 
is obtained. In Fig. 2, an “attractor” has been plotted in a 2D (upper panel) and a 3D 
(lower panel) space using 10 000 points of a daily rainfall series, which will be 
discussed further in the section “Real world examples”. These graphs are typical for 
any daily rainfall series. One cannot locate any one-dimensional structure in such 
graphs. On the contrary, the cloud of points fills all space both in two and three 
dimensions. Therefore its topological dimension, which is expressed by the capacity 
dimension D0, equals the embedding dimension, that is, 2 in the upper panel and 3 in 
the lower panel. As will be shown in the next sub-section, the correlation dimension of 
this 2- or 3-dimensional space filling cloud could be 1 or even less, but this is totally 
irrelevant. What matters is that the cloud of points fills up space and, thus, the capacity 
dimension equals the embedding dimension. 
 One may argue that the plots of Fig. 2 are in two and three dimensions, whereas 
studies that estimated attractor dimensions of the order of one have simultaneously 
shown that the embedding dimension should be at least 10 or more, possibly up to 40. 
But clearly this is an inconsistency of these studies. If the attractor dimension were one 
or less, then, according to Whitney’s embedding theorem, a 3D embedding space 
would suffice to embed it (there would be no need to go to embedding dimensions 10–
40). 
 Another type of suspect results are those in which runoff appears to have an 
attractor with dimension lower than that of rainfall at the same area and time scales. As 
explained above, it is difficult to imagine how runoff (hydrological system output) 
could have dimension smaller than rainfall (hydrological system input).  
 
 
Capacity vs correlation dimension and the effect of an asymmetric distribution  
 
Wang & Gan (1998) have pointed out that the underlying distribution function plays a 
role in the estimation of correlation dimension. They demonstrated this by using 
random data series generated from Gamma and Poisson distributions. They argued that  
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Fig. 1 Delay representation of a series of 10 000 points generated from the linearly 
routed logistic equation (see text) in two (upper panel) and three (lower panel) 
dimensions.  

 
 
the correlation dimension for these data series is underestimated due to a clustering 
feature, or an “edging effect”. In this section, this issue is analysed theoretically and it 
is shown that small estimated values of correlation dimension should not necessarily 
be interpreted as underestimated, as in fact can be correct estimates—but these 
estimates are irrelevant to the existence of an attractor. 
 It can be easily shown that, in random time series from a continuous distribution 
function, the capacity dimension D0(m) equals the embedding dimension, m, or, in 
other words, the time-delayed vectors fill up the embedding space. This has been given 
a key role in identifying chaos in hydrological processes and particularly in the charac-
terization of a process of chaotic rather than stochastic. However, as discussed in the  
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Fig. 2 Delay representation of a series of 10 000 daily rainfall depths in two (upper 
panel) and three (lower panel) dimensions.  

 
 
section “Descriptors of chaotic behaviour”, in identifying chaos the correlation dimen-
sion D2(m) rather than the capacity dimension D0(m) has been typically used. It is the 
rule that the correlation dimension of a random series D2(m) equals D0(m) and 
therefore the embedding dimension m. It is shown (Koutsoyiannis, 2006) that a 
sufficient condition for this rule to be valid is that the probability density functions f(y) 
is square-integrable, i.e.  

⌡⌠
A

 

 f 2(y)dy < ∞ (14) 

Furthermore, it is shown that this condition may be not valid in purely random 
processes following non-symmetric J-shaped distributions, for which D2(m) is smaller 
than m. More specifically, it is shown that in such processes and for embedding 
dimension m = 1:  
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D2(1) = 2 + 2 
 

lim
ε→0

 
ε f ΄(ε)

f(ε)  < 1 = D0(1) (15) 

where f ΄( ) is the derivative of f( ). By analogy, D2(m) = mD2(1) < m (but D0(m) = m).  
 For example, it was shown (Koutsoyiannis, 2006) that in distribution functions 
typically used in hydrology, such as Pareto, Gamma and Weibull, with shape 
parameter κ smaller than 1/2 or, equivalently, coefficients of skewness greater than 
0.639, 2.83 and 6.62, respectively, the correlation dimension for embedding dimension 
1 is D2(1) = 2κ < 1. A demonstration of this is given in Fig. 3 using a series of 10 000 
random points generated from the Pareto distribution F(y) = yκ, 0 ≤ y ≤ 1 with shape 
parameter κ = 1/8. Here it is expected that D2(m) = 0.25 m. In Fig. 3, the estimated 
correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower panel) 
have been plotted vs scale ε for embedding dimensions m = 1 to 8. It should be noted  
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Fig. 3 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 
panel) vs scale ε for embedding dimensions m = 1 to 8 calculated from a series of 
10 000 independent random values with Pareto distribution with exponent 1/8.  
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that the scales ε in this figure, as well as in all subsequent figures, are normalized (by 
rescaling data values in the interval [0, 1]). The empirical results in Fig. 3 agree 
perfectly with the theoretical expectations (D2(1) = 0.25, D2(2) = 0.5, etc.). 
 Non-symmetric J-shaped distribution functions with large positive coefficients of 
skewness are the most common in hydrological processes on fine time scales (e.g. hourly 
or daily), which are the most important time scales when investigating the presence of 
determinism. Therefore, the correlation dimensions estimated from hydrological data 
series do not correspond to the actual topological dimensions of the “attractors”. 
 
 
Effect of intermittency 
 
Things are even worse when examining rainfall series, which on fine and intermediate 
time scales (e.g. finer than monthly) are characterized by the presence of zeros. As 
shown in Koutsoyiannis (2006), when the probability of having zero values is non-zero, 
the correlation dimension D2(m) for any m is precisely zero. This is demonstrated in 
Fig. 4, which shows the correlation sums from a series of 10 000 independent random 
values, 80% of which are generated from the uniform distribution and the remaining 
20% are zeros, located at random. Clearly the slopes of the correlation sums are zero for 
small scale ε for all embedding dimensions, except for the very large ones (7 and 8) 
where the zero slope is not emerging due to insufficient number of points in the data set.  
 Therefore, looking for correlation dimensions in a fine timescale rainfall series is 
totally useless: the correlation dimension is simply zero for any embedding dimension. 
Positive estimated dimensions in rainfall series simply indicate that a wrong range of 
the scale ε was used. For example, if the correlation dimension in Fig. 4 had been 
estimated around ε = 10-2, the resulting D2 would be in the range 0.2–1.5 for 
embedding dimensions 1 to 5. Note that, by definition (equations (8) and (9)), the 
correlation dimension is theoretically determined for ε → 0, which means that, in 
practice, the lowest possible region of the scale must be used in estimations. 
 The problems of intermittency are not unique to rainfall series that contain zeros. 
Streamflow series display another type of intermittency, as the flow shifts among 
different regimes, low and regular flows, and floods. For such kinds of data series, that 
exhibit intermittency without including zeros, Graf von Hardenberg et al. (1997b) have 
shown that the standard algorithms fail to estimate correctly the dimensions of processes 
characterized by intermittency, while giving no warning of their failure. In addition, they 
demonstrated that the Grassberger-Procaccia algorithm, applied on a time series from a 
composite chaotic system with randomly driven intermittency, estimates a very small 
dimension (e.g. D2 = 1 or smaller), although the actual dimension of the system is in-
finite (as they assumed randomly driven intermittency). Finally, they proposed ways to 
refine the algorithm so as to obtain correct results. The simplest of them is to filter the 
data by excluding all the delay vectors x having at least one component xi < c, where c 
an appropriate cut-off value (typically a small percentage, e.g. 5%, of the average of the 
data series) that leaves out all “off” data points of the intermittent time series. This 
simple algorithm was proven very effective. It must be noted, however, that it reduces 
dramatically the number of data points, especially for large embedding dimensions, and 
it is well-known that the number of data points is a crucial issue in estimating dimen-
sions, as will be further discussed just below. 
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Fig. 4 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 
panel) vs scale ε for embedding dimensions m = 1 to 8 calculated from a series of 
10 000 independent random values, 80% of which are generated from the uniform 
distribution and the remaining are zeros (located at random).  

 
 
 The results of Graf von Hardenberg et al. (1997a,b) have not been given attention 
in hydrological applications, although hydrological processes of central interest such as 
rainfall and runoff are intermittent. This is a source of significant errors, which act 
synergistically with other sources of errors. 
 The effect of intermittency is closely related to the effect of an asymmetric distri-
bution function. A J-shaped distribution that is defined for positive values of the 
variable and has a high coefficient of skewness produces random points whose largest 
percentage are close to zero whereas a small number of points can take very large 
values. This can be interpreted as virtually equivalent to intermittency. Therefore, the 
methods proposed by Graf von Hardenberg et al. (1997b) to recover from flawed 
values of dimensions are appropriate to recover from the effect of an asymmetric 
distribution function, as well.  
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Effect of sample size 
 
Kantz & Schreiber (1997, p. 242) show that an extremely high number of data points is 
needed to recover chaos from time series and also describe the great difficulties in 
identifying the dynamics of systems that are not low-dimensional (e.g. have dimension 
higher than 1–2). However, they avoid suggesting a specific formula to estimate the 
sufficient number of data points required. In hydrological applications, two such 
formulae have been used: that of Smith (1988): 

Nmin = 42m  (16) 

and an approximation of the formula of Nerenberg & Essex (1990): 

Nmin = 102 + 0.4 m (17) 

The first suggests that more than 108 and 1016 data points are needed to estimate the 
correlation dimension for embedding dimensions m = 5 and 10, respectively. The 
second decreases these figures significantly to the level of 104 and 106 data points, 
respectively. However, even in the second case, the required data points are too many 
even to allow one to think of applying the time-delay embedding method for 
dimensions higher than five. Nevertheless, in most hydrological studies, the method 
has been applied for embedding dimensions much higher than five (even up to 40), and 
the resulting correlation dimensions have been interpreted as accurate enough to assure 
the existence of chaotic dynamics. Generally, it is hoped that both formulae over-
estimate the required number of data points. However, to the author’s knowledge no 
proof was ever given that the formulae overestimate the required sample size.  
 The problem of determining the sample size is, in fact, not too difficult, as it can 
be reduced to a standard statistical problem and be resolved in a rigorous manner. 
When it is attempted to show that a time series originates from a low-dimensional 
deterministic system rather than a stochastic system, it is natural to make the null 
hypothesis that it originates from a stochastic system and then to reject this hypothesis. 
Under this null hypothesis, the correlation sum for any scale ε and any embedding 
dimension m is:  

C2(ε, m) = [C2(ε, 1)]m  (18) 

As clarified above, C2(ε, m) is the estimate of the true probability that the distance of 
two points is less than ε. This, along with an independence hypothesis (justified from 
the construction of time-delay vectors as will be described later) explains equation 
(18). Using classic statistical techniques, it is shown (Koutsoyiannis, 2006) that the 
required sample size to estimate C2(ε, m) is: 

Nmin = 2(z(1+γ)/2/c) [C2(ε–, 1)]-m/2  (19) 

where za is the a-quantile of the standard normal distribution, γ is a confidence 
coefficient, c is the acceptable statistical relative error in the estimation of true 
probability from C2(ε, m) and ε– is the highest possible scale that suffices to accurately 
estimate the correlation dimension for embedding dimension 1 (meaning that for ε > ε– 
it becomes inaccurate). It can be observed that the proposed formula (19) coincides 
with equation (17), if one assumes (as typically in statistics) a confidence coefficient 
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γ = 0.95 for which z(1+γ)/2 = 1.96, an acceptable error c = 3% and a sufficient C2(ε–, 1) = 
0.15 (indeed, 20.5(1.96/0.03) 0.15-m/2 = 101.97+0.41m ≈ 102+0.4m). However, equation (19) 
is more general and the appropriate values of c and C2(ε–, 1) need to be more carefully 
selected, depending on properties of the time series at hand.  
 This result and its application are demonstrated using an example with a totally 
random system. Specifically, a sequence of 10 000 random numbers from the Weibull 
distribution with shape parameter κ = 1/8 (and scale parameter 1) is used. It is known 
from the discussion above that, although the system is random, the correlation 
dimension D2(m) does not equal the embedding dimension m, but rather is 2κm = m/4. 
In addition, since the probability distribution function is known, it is easy to calculate 
numerically (using equations (11) and (5)) the true (population) values, which the 
correlation sum C2(ε, 1) and the local slope d2(ε, 1) represent, for any scale ε. Then 
from equation (18), the true values of C2(ε, m) and d2(ε, m) can be calculated for any 
embedding dimension m. These have been plotted in Fig. 5 as continuous curves. It is  
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Fig. 5 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 
panel) vs scale ε for embedding dimensions m = 1 to 8 calculated from a series of 
10 000 independent random points from the Weibull distribution with shape parameter 
1/8. Continuous lines represent the true (population) quantities, whose estimates are 
C2(ε, m) and d2(ε, m). 
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observed from the lower panel of Fig. 5 that the curve d2(ε, 1) rises very slowly from 
d2(1, 1) = 0 to its limit value d2(0, 1) = D2(1) = 0.25, so that even for ε as low as 10-10, 
the theoretical value d2(10-10, 1) = 0.18, i.e. 28% smaller than the correlation dimen-
sion. At ε = 10-20, d2(10-20, 1) = 0.245 (only 2% smaller than the true correlation 
dimension). Thus, it may be assumed that the highest acceptable ε is ε– = 10-20 and, 
from the upper panel of Fig. 5, it is concluded that C2(ε–, 1) = 0.0011 (much lower than 
0.15).  
 Until now, for this example, the generated time series was not used at all. Now, to 
make the statistical calculations, the acceptable statistical error c in the estimation of 
C2(ε, m) is assumed equal to 1%. This is safe enough yet not too small as may seem at 
first glance: as demonstrated in Koutsoyiannis (2006), it corresponds to a much larger 
statistical error in d2(ε, m), which may be as high as 20%; this must be considered in 
addition to the “theoretical” error of 2% discussed in the previous paragraph. Thus, the 
required number of points is Nmin = 20.5 × (1.96/0.01) × 0.0011-m/2 = 102.44+1.48m = 
301.65+m. This is much higher than obtained from equation (17) and closer to that 
obtained by equation (16). (More precisely, the results of the current analysis are 
higher than those of equation (16) unless m > 17.) For instance, for m = 1, 2, 5 and 10, 
one obtains Nmin = 8350, 252 000, 6.9 × 109 and 1.7 × 1017, respectively. This 
obviously means that it is totally impractical to estimate correlation dimensions even 
for small dimensions, not only because of the difficulty to get such a large sample size 
(in this example this is not so important because data are synthesized), but also because 
of the huge amount of calculation required (note that the number of comparisons is in 
fact proportional to (Nmin)2m). 
 Because the actual sample size in the example N = 10 000 is greater than Nmin = 
8350 for m = 1, reliable estimates of C2(ε, 1) and d2(ε, 1) can be obtained for ε even 
smaller than ε– = 10-20 down to a critical value ε–1. This can be estimated from equation 

(17) by replacing Nmin with N and ε– with ε–1. Solving then for C2(ε–, 1) for m = 1 it is 
found that C2(ε–1, 1) = 2 [z(1+γ)/2/(c N)]2. In this example, C2(ε–1, 1) = 0.000768, which, 
according to the graph of the upper panel of Fig. 5 (after a small extrapolation) 
corresponds to ε–1 = 2.1 × 10-21.  
 If the same sample size N is used for all embedding dimensions, as is the case in 
most applications including this example, then the same critical value of C2 applies to 
all embedding dimensions, i.e.:  

C2(ε–m, m) = C2(ε–1, 1) = 2 [z(1+γ)/2/(c N)]2  (20) 

This has been plotted as a dashed straight line in the upper panel of Fig. 5. This line is 
critical for estimations, as all points of C2(ε, m) lying below this line do not have the 
required accuracy. The intersections of this line with the different curves C2(ε, m) 
determine the critical ε–m for each embedding dimension m. Given ε–m, the 
corresponding d2(ε–m, m) can be found and a critical curve in the lower panel of Fig. 5 
can be plotted (dashed line), above which all points do not have the required accuracy. 
It must be noted that this example was structured based on the known probability 
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distribution function of the variable. However, the method developed can be applied 
even when the distribution function is not known, as will be seen in next examples. 
 In conclusion, the proposed approach to determine the required sample size or, 
equivalently, the adequacy of estimations for a given sample size, involves two 
characteristic scales: the upper limit ε–, which is common for all embedding 
dimensions, and the lower limit ε–m which is an increasing function of dimension. The 

required sample size Nmin for embedding dimension m is determined setting ε–m = ε–, 

whereas for a given N an estimation is accurate when ε–m ≤ ε–. Furthermore, the limits  

ε–m and ε– can be determined in a geometrical manner. The steps are the following: 
1. Make plots of C2(ε, m) and d2(ε, m) for several embedding dimensions m. 
2. In the plot of d2(ε, 1) (i.e. for embedding dimension 1) locate a region where  

d2(ε, 1) becomes constant and relatively smooth. Set ε– and ε–1 the upper and lower 

limit of this area, respectively (meaning that above ε–, d2(ε, 1) is not constant and 
below ε–1 it becomes too rough). 

3. From the plot of C2(ε, 1) determine C2(ε–1, 1). 
4. Set C2(ε–m, m) = C2(ε–1, 1) and determine ε–m for each m. 

5. For those m where ε–m ≤ ε– and d2(ε, m) is nearly constant in the interval (ε–m, ε–), 

determine D2(m) as the average d2(ε, m) on this interval. For those m where ε–m > ε–, 
D2(m) cannot be determined.  

If for any reason the sample size Nm is different for different embedding dimensions m, 
the equation in step 4 should be replaced by:  

C2(ε–m, m) = C2(ε–1, 1) (N1/Nm)2 (21) 

 A geometrical view of the procedure is possible by plotting the equations ε = ε– and 
ε = ε–m in both diagrams of C2(ε, m) and d2(ε, m). In the example of Fig. 5, it is clear 

that only D2(1) can be estimated with N = 10 000 points, provided that ε– = 10-20. For 
instance, a larger ε– = 10-10 would enable estimating D2(2), D2(3) and D2(4) as well, as 
becomes apparent by observing the dashed curve in the lower panel of Fig. 5. However, 
the cost to be paid in this case would be the underestimation of dimensions by 28%, as 
discussed above, which notably is due to theoretical rather than statistical reasons.  
 
 
Effect of autocorrelation 
 
Hydrological time series, especially on fine time scales, are characterized by high auto-
correlation coefficients. Autocorrelation in stochastic processes may be misleadingly 
interpreted as low-dimensional determinism when applying the standard algorithms for 
estimating dimensions. Examples of a highly autocorrelated stochastic processes 
(including fractional Gaussian noise and other simpler linear and nonlinear processes), 
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in which the naïve application of the standard methods leads erroneously to low-
dimensional attractors (down to 1), have been offered by Osborne & Provenzale 
(1989); Theiler (1991) and Provenzale et al. (1992) (see also Tsonis, 1992, p. 174).  
 In autocorrelated series, a larger number of data points may not suffice to avoid 
misleading results. Another important issue is the appropriate selection of the time 
delay τ in constructing delay vectors. Several authors have discussed this (see, among 
others, Tsonis, 1992, pp. 151–156; Abarbanel et al., 1993; Kantz & Schreiber, 1997, 
pp. 130–134; Sivakumar, 2000). The most common approach is to choose as τ the time 
where the autocorrelation function decays to 1/e, where e is the base of the natural 
logarithm. Other options are to choose the time where the first minimum of the time-
delayed mutual information is located, or to optimize it inside the interval defined by 
the times of the 1/e decay of autocorrelation and the minimum of mutual information. 
An additional means of alleviating the effect of temporal correlation is to exclude  
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Fig. 6 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 
panel) vs scale ε for embedding dimensions m = 1 to 8 calculated from a series of 
10 000 autocorrelated random values having approximately Pareto distribution with 
shape parameter 0.44.  
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delay vectors that are close in time. This is attained by adopting a relatively high value 
of w in equation (12) that is used for the estimation of correlation sums. 
 The effect of autocorrelation may act synergistically with the effect of an 
asymmetric distribution function and the effect of sample size. To demonstrate this, a 
data series of 10 000 autocorrelated values with J-shaped distribution function was 
considered. This was generated in the following manner. For the data point yn, eight 
random numbers were generated at a first step from the Pareto distribution with shape 
parameter 1/8 and at a second step the random number whose logarithm was nearest to 
ln yn-1 was chosen as yn. This technique resulted in a series with a Markovian 
dependence structure with lag-one autocorrelation 0.72 and approximately Pareto 
distribution with shape parameter κ = 0.44. Therefore it is expected that the correlation 
dimension in m dimensions of this series will be D2(m) = 2κm = 0.88 m. The empirical 
estimates of the correlation sums and their local slopes are shown in Fig. 6. These 
estimates were based on delay time τ = 4, which corresponds to the 1/e (=0.37) decay 
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Fig. 7 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 
panel) vs scale ε for embedding dimensions m = 1 to 8 calculated from the same series 
as in Fig. 6, but excluding points having at least one coordinate smaller than 0.01.  
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of the autocorrelation function. It is observed that the empirical correlation dimension 
for m = 1 agrees perfectly with the theoretical expectation D2(1) = 0.88. However the 
empirical D2(2) is around 1, significantly less than the expectation 1.76. The technique 
proposed in the previous sub-section for assessing the accuracy of empirical estimation 
suggests that accurate estimations of correlation dimensions for m > 2 are not possible, 
as demonstrated graphically in Fig. 6. By ignoring this and considering all estimated 
dimensions as accurate, it would be concluded that correlation dimensions, estimated 
for ε in the interval (10-4, 10-3), saturate at about 1. This would lead to the claim that a 
purely stochastic system is a low-dimensional deterministic system.  
 To recover from this inaccurate result and simultaneously to show the synergistic 
action of the several effects, the technique discussed earlier due to Graf von 
Hardenberg et al. (1997b) of cutting off the very small values, was used, in this case 
recovering from the effect of the high skewness. Applying a cut-off threshold 0.01, the 
correlation sums and local slopes were determined and plotted in Fig. 7 (upper and 
lower panel, respectively). Clearly here, it can be observed that for m = 1 and 2, 
D2(m) = m, whereas for higher dimensions, although accurate estimations are not 
possible, the figures indicate a tendency for high D2(m). Thus, the cut-off technique 
helps to avoid erroneous results in this example. 
 
 
REAL-WORLD EXAMPLES 
 
In light of the above theoretical analyses, some real-world hydrometeorological series, 
which include rainfall (on daily, sub-daily and monthly timescales), relative humidity, 
and streamflow have been examined. The complete study is presented in 
Koutsoyiannis (2006); here only a summary is given. 
 As explained earlier, the role of rainfall is crucial in investigating chaos in hydro-
logical processes.  Some arguments that the rainfall process cannot be low-dimensional 
deterministic were also presented without applying any algorithm. However, just for 
demonstration, Fig. 8 gives a graphical depiction of the standard algorithm of esti-
mating dimensions to a historical rainfall data series (rainfall in Vakari, western 
Greece, characterized by wet climate, 11 476 daily data 60% of which are zero; 
skewness 4.59; lag-one autocorrelation 0.35). As already discussed, due to the 
presence of zeros in the data series, the local slopes for all embedding dimensions 
become zero for small scales (ε ≤ 0.0004). Thus, this figure says nothing about the 
capacity dimension of the “attractor” of the rainfall process. If the small scales were 
incorrectly ignored and instead scales in the region 0.01-0.1 were chosen, small 
positive dimensions, not exceeding 1.5 even for embedding dimensions 8 would be 
estimated. If such plots were also constructed for embedding dimensions 10, 20, 30 
and so on, totally ignoring the astronomical number of data points required to do 
estimations in these dimensions, a conclusion that there is a low-dimensional chaotic 
attractor here with dimension 1.5 would be very likely. This behaviour is repre-
sentative of all rainfall series examined (in drier climates the “dimension” is even 
smaller) and may explain claims in several studies for very low dimension of the 
rainfall process. This, however, must be a totally erroneous result. Even if zero values 
are excluded and the algorithm due to Graf von Hardenberg et al. (1997b) with cut-off 
value slightly higher than zero is applied, again the local slopes d2(ε, m) are zero for  
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Fig. 8 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 
panel) vs scale ε for embedding dimensions m = 1 to 8 calculated from the daily 
rainfall series at the Vakari raingauge.  

 
 
small scales. This is the result of round-off errors in the data values, rather than a 
theoretically consistent result. But in this case the local slopes tend to more reasonable 
values (in this example to about 0.7 and 1.4 for m = 1 and 2, respectively; 
Koutsoyiannis, 2006). To minimize the effect of round-off errors, the cut-off value 
should be increased to 2 mm. In this case the sample size becomes too low to allow for 
any accurate estimation but shows (Koutsoyiannis, 2006) that the correlation dimension 
D2(m) tends to the embedding dimension m, which means that the time series is better 
represented as the outcome of a stochastic process. 
 If the presence of zeros in a rainfall time series is a strong obstacle to analysing the 
presence of chaos, one may think that going to a much finer timescale and limiting the 
analysis strictly to a rainy period (a single storm) one could find the deterministic chaos. 
The idea of a deterministic (meaning low-dimensional?) evolution of a storm has been 
favoured long before hydrologists became involved with chaos. For example, Eagleson 
(1970, p. 184) states “The spacing and sizing of individual events in the sequence is 
probabilistic, while the internal structure of a given storm may be largely deterministic”.  
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 To explore this idea, a storm time series measured with high temporal resolution 
(10 s) was used. This data set (size 9679; skewness 4.83; lag one autocorrelation 0.88) 
corresponds to one of several storms that were measured at the University of Iowa using 
devices that are capable of high sampling rates (Georgakakos et al., 1994). As described 
in Koutsoyiannis (2006), the results of the standard algorithm do not support nor 
prohibit the existence of low-dimensional deterministic dynamics but those of the Graf 
von Hardenberg et al. (1997b) algorithm excluding data values smaller than 1% of the 
maximum value (to recover from zero slopes that again are due to round-off errors) 
show a tendency that D2(m) = m, which indicates the absence of chaotic behaviour. 
 It has been found that many systems are composed of a huge number of internal 
“microscopic” degrees of freedom, but nevertheless produce signals which are found 
to be low-dimensional (Kantz & Schreiber, 1997, p. 34). The coupling between the 
different degrees of freedom and an external field of some kind, leads to collective 
behaviour which is low-dimensional. The reason is that most degrees of freedom are 
either not excited at all or “slaved” (Kantz & Schreiber, 1997, p. 239).  
 By analogy, if a system on a fine timescale appears random, one may think of 
some collective behaviour on a coarser timescale, which could result in a low-
dimensional attractor. In this respect, a rainfall series on a coarse (monthly) time scale, 
was studied. This is from Athens, Greece, characterized by a dry climate, and contains 
1586 monthly data values being the longest rainfall record in Greece and one of the 
longest in the world (zero values 9%; skewness 1.75; lag one autocorrelation 0.32). As 
can bee seen in Koutsoyiannis (2006), due to the small record size only the estimate of 
D2(1) is accurate and is about 1. For higher dimensions no accurate estimations can be 
obtained, but again the tendency is that D2(m) = m, which does not signify a chaotic 
behaviour. 
 Since difficulties were found in identifying chaos in rainfall on all timescales, it 
could be a good idea to move to another related process in the direction of 
meteorology. The meteorological variable most closely related to rainfall is the relative 
humidity since when it rains, it approaches saturation (i.e. the value 100%). A relative 
humidity series is totally free from zeros, intermittency, and high skewness which 
makes its study easier and the results more reliable. The correlation sums and their 
local slopes of a relative humidity time series for Athens, Greece, on hourly timescale 
(18 888 data values; skewness –0.26; lag one autocorrelation 0.97) are shown in Fig. 9 
vs scale ε for embedding dimensions m = 1 to 8. It is observed on the plots of m = 1 
that a long scaling area appears between ε– = 0.08 and ε–1 = 0.00092. Thus, ε–m < ε–, for 
m ≤ 4, as shown graphically in Fig. 9, which means that D2(m) can be estimated 
accurately for m = 1 to 4. The estimated values are D2(m) = m, a result that again does 
not allow any hope for low-dimensional determinism.  
 Finally, the most representative hydrological process has been studied using a 
daily streamflow series (Pinios River, Greece; 8 246 data values of which 1435 were 
missing data that were left unfilled; skewness 3.46; lag one autocorrelation 0.86). As 
explained earlier, a streamflow series must be regarded as intermittent even if it is free 
from zeros. As in rainfall examples, again here an accurate estimation of D2(m) is 
possible only for m = 1; this is D2(1) ≈ 1. For higher embedding dimensions m, a 
tendency appears for D2(m) increasing with m, which again does not indicate a chaotic 
behaviour (Koutsoyiannis, 2006).  
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Fig. 9 Correlation sums C2(ε, m) (upper panel) and their local slopes d2(ε, m) (lower 
panel) vs scale ε for embedding dimensions m = 1 to 8 calculated from the relative 
humidity series at Athens.  

 
 
SUMMARY AND CONCLUSIONS 
 
The debate about the presence of low-dimensional deterministic (chaotic) dynamics in 
hydrological processes such as rainfall and runoff is still active, almost two decades 
after the first publications claiming detection of such dynamics and some contem-
poraneous studies expressing scepticism about such claims. This paper has attempted 
to offer some additional insights on this discussion by studying several aspects of 
dynamical systems and their application to the characterization of the hydrological 
processes. 
 The arguments that are presented and studied in the paper are the following: 
1. A time series that contains periods with zero values, as does rainfall, can hardly be 

the outcome of a low-dimensional deterministic dynamical system. 
2. In addition, since rainfall is the input that mobilizes all other hydrological 

processes in a catchment, such as streamflow, these processes can hardly be 
chaotic, too.  
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3. An attractor dimension as low as 1 or even smaller, which in some cases were 
claimed for hydrological processes, would be directly visualized via delay represen-
tation graphs. This however, has never come into light, simply because in fact such 
graphs manifest space filling clouds rather than one-dimensional structures. 

4. The attractor dimension must be consistent with the dimension used to embed it 
according to Whitney’s embedding theorem. For example, if an attractor 
dimension were 1 or less, then a 3D embedding space would suffice to embed it. 
The fact that the required embedding dimension in some cases was reported to be 
as high as 10-40 simply indicates inconsistency of results. 

5. The embedding theorems are in fact based on the concept of the capacity 
dimension whereas the standard algorithms to determine attractor dimensions use 
the concept of the correlation dimension. The two dimensions are most often 
identical but it is proved that if the distribution function is J-shaped with high 
skewness, as is the case with hydrological processes on fine timescales, the 
correlation dimension is smaller than the capacity dimension. This may produce 
misleadingly small estimated dimensions. 

6. Intermittency (which is apparent in hydrological processes—not only in rainfall 
but in streamflow as well) is another factor that can result in a misleading low 
attractor dimension even in infinite-dimensional systems. This known result has 
not been given the required attention in hydrological studies investigating chaos. 

7. Another known issue is the fact that very many data points are needed to recover 
chaos from time series, which are hardly available in hydrological processes. This 
has not been given the required attention in hydrological studies (albeit mentioned 
sometimes) because perhaps the calculation of the sample size is ambiguous.  
Here, using statistical reasoning, a rigorous methodology has been proposed for 
estimating the required sample size for a certain embedding dimension or, 
conversely, the maximum allowed embedding dimension for a given sample size. 
It turns out that the required sample size in hydrological time series may be even 
more exceptionally high than believed due to the asymmetric distribution 
functions. 

8. The high autocorrelation that characterizes many hydrological processes, mostly 
on fine timescales, is another factor that, acting synergistically with the other 
factors described above, may be misleadingly interpreted as low-dimensional 
determinism. 

 All these arguments have been demonstrated using appropriately synthesized 
theoretical examples. Finally, in light of the theoretical analyses and arguments, typical 
real-world hydrometeorological time series, which include rainfall (on daily, fine sub-
daily, and monthly timescales), relative humidity, and streamflow, have been explored 
and none of them is found to indicate the presence of chaos but, rather, correspond to 
the outcomes of stochastic systems. 
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