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Abstract During the last decade, numerous studies have been carried out to predict future 

climate based on climatic models run on the global scale and fed by plausible scenarios about 

anthropogenic forcing to climate. Based on climatic model output, hydrologic models attempt 

then to predict future hydrologic regimes at regional scales. Much less systematic work has 

been done to estimate climatic uncertainty and to assess the climatic and hydrologic model 

outputs within an uncertainty perspective. In this study, a stochastic framework for future 

climatic uncertainty is proposed, based on the following lines: (1) climate is not constant but 

rather varying in time and expressed by the long-term (e.g. 30-year) time average of a natural 

process, defined on a fine scale; (2) the evolution of climate is represented as a stochastic 

process; (3) the distributional parameters of a process, marginal and dependence, are 

estimated from an available sample by statistical methods; (4) the climatic uncertainty is the 

result of at least two factors, the climatic variability and the uncertainty of parameter 

estimation; (5) a climatic process exhibits a scaling behavior, also known as long-range 

dependence or the Hurst phenomenon; (6) because of this dependence, the uncertainty limits 

of the future are affected by the available observations of the past. The last two lines differ 

from classical statistical considerations and produce uncertainty limits that eventually are 

much wider than those of classical statistics. A combination of analytical and Monte Carlo 

methods is developed to determine uncertainty limits for the nontrivial scaling case. The 

framework developed is applied with temperature, rainfall and runoff data from a catchment 

in Greece, for which data exist for about a century. The uncertainty limits are then 

superimposed onto deterministic projections up to 2050, obtained for several scenarios and 

climatic models combined with a hydrologic model. These projections indicate a significant 

increase of temperature in the future, beyond uncertainty bands, and no significant change of 

rainfall and runoff as they lie well within uncertainty limits. 
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1. Introduction 

Projections of potential climate changes and ensuing land surface effects are typically based 

on the use of general circulation models (GCMs), with hypothesized scenarios (e.g. for the 

increase of CO2 concentration, etc.). Such projections imply uncertainty, whose sources may 

be attributed to insufficient current understanding of climatic mechanisms, to inevitable 

weaknesses of numerical climatic and hydrologic models to represent processes and scales of 

interest, to complexity of processes and to unpredictability of causes (e.g. Strauss, 1993; 

Risbey and Stone, 1996; Mason et al., 1999; Anderson et al., 1999; Wang and Zwiers, 1999; 

Kharin and Zwiers, 2000; Shukla et al., 2000; Goddard et al., 2001). Some of these sources of 

uncertainty are intrinsic to the processes rather than related to our knowledge about the 

processes. As it is now well understood from studies of chaotic dynamical systems, even 

perfect knowledge of the system dynamics does not enable accurate predictions for the distant 

future and does not eliminate uncertainty (e.g. Tsonis, 1992). 

 Thus, the exact knowledge of future conditions, in other words the elimination of 

uncertainty, is probably impossible. Instead, a pragmatic target is the characterization 

(quantification) of uncertainty, which is very useful for decisions. Numerous studies attempt 

to approach this target by scenario-based analyses, which indicate possible trends of future 

climate evolution based on the assumed (scenarios) trends on forcings (e.g., IPCC, 2001; 

Giorgi et al., 2001; Cayan et al., 2001; Georgakakos and Smith, 2001; Dettinger et al., 2004).  

Few studies, however, have provided quantitative measures of uncertainty.   

 The mathematical tools appropriate to quantify uncertainty are provided by probability 

theory including statistics and stochastic processes. Such tools, widely used in the hydrologic 

practice, especially with the development of what has become known as the hydrologic 

statistics, are based on historical observed data. Their successful application emphasizes the 

fact that uncertainty exists even when the forcing conditions do not change, something that is 

sometimes missed under a scenario-based deterministic approach. The problem with 

probabilistic tools arises when forcing conditions (e.g. in the composition of the atmosphere 
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and in land uses) change significantly, so that the observations are no longer representative of 

the period of projection.  

 Another problem met in hydrologic statistics is the fact that it was built on the grounds of 

the classical statistical paradigm, which may not be appropriate to describe complex natural 

phenomena. Particularly, hydrologic statistical estimators of uncertainty are based on classical 

statistics, which assume independence of events. However, in the last decades evidence has 

accumulated that, not only are hydroclimatic phenomena dependent, but exhibit a peculiar 

temporal dependence structure known as scaling behavior, which is equivalent to the Hurst 

phenomenon or long-term persistence. Since the discovery of this behavior (Hurst, 1951), 

numerous studies of long time series affirm its omnipresence not only in hydrological or 

geophysical processes but also in economical, social and technological processes (for 

references see Kantelhardt et al., 2003; Koutsoyiannis, 2003). For a long time this behavior 

was regarded as a puzzle difficult to explain; for example Mesa and Poveda (1993) classified 

the Hurst phenomenon as one of the most important unsolved problems in hydrology and 

stated that “something quite dramatic must be happening from a physical point of view”. 

However, several explanations have been proposed ranging from conceptual (Klemeš, 1974; 

Montanari et al., 1999; Bhattachara et al., 1983; Koutsoyiannis, 2002) to more physically 

based ones (Klemeš, 1978; Beran, 1994, pp. 16-20). More recently, Koutsoyiannis (2006a) 

demonstrated using an extremely simplified climatic toy-model that this behavior can be 

explained by nonlinear climatic dynamics involving positive and negative feedbacks of the 

climatic system; also, Koutsoyiannis (2005b) showed that it may be the result of the 

maximum entropy principle applied to a spectrum of time scales. Furthermore, this scaling 

behavior harmonizes with the general recognition of a perpetually changing climate. Some 

have interpreted the Hurst behavior as a manifestation of nonstationarity; however, as 

explained in Koutsoyiannis (2006b) this is an inconsistent interpretation of long-term 

irregular climatic fluctuations. The idea of nonstationarity as a cause of the Hurst 

phenomenon is attributed to Klemeš (1974); however, a more attentive reading of his paper 

reveals that this is a misconception of his work; even though he used the term nonstationarity 

(in a loose context) he did point out that: “… the process employed in last set of experiments 
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can well be considered stationary”.  Indeed, his final models (processes with a Gaussian-

distributed mean randomly varying from epoch to epoch) are stationary.  

 Adaptation of classical statistical estimators to the scaling paradigm is feasible 

(Koutsoyiannis, 2003). In this case, the obtained uncertainty band for a certain process 

becomes much wider than obtained by classical statistics, especially on multi-year time 

scales, on which climatic projections are done. The difference in results of typical statistical 

tests based on classical statistics on the one hand and those admitting long-term persistence on 

the other hand has been recently demonstrated by Cohn and Lins (2005) both theoretically as 

well as empirically based on the long term mean in northern hemisphere surface air 

temperature during the last century and a half. This difference emphasizes the importance of 

the choice of a (stochastic) model (or more generally of a modeling approach) to the 

quantification of uncertainty. The uncertainty related to the choice of a model (or approach) is 

hardly quantifiable per se. Other portions of uncertainty such as those due to natural 

variability, due to imperfect estimation of model parameters, and due to measurement errors 

can be quantified.  

 Even though the existence of scaling behavior has been known for more than half a 

century, its relationship to climatic uncertainty was only recently recognized as indicated from 

the above citations. Still there is a need to develop methodologies to streamline uncertainty 

estimation incorporating the scaling behavior. One may think of a stationary and a 

nonstationary setting of such methodologies. The stationary setting shall produce uncertainty 

measures assuming past and present forcing conditions and should include estimation of 

uncertainty for long as well as for short lead times. Estimation of uncertainty for short time 

scales is more difficult to achieve because the scaling behavior implies strong temporal 

dependence so that for short lead times future uncertainty limits are affected by the available 

observations of the past. The nonstationary setting would include in addition deterministic 

models to incorporate relationships between causes (forcings) and effects (hydroclimatology).  

 As a first step toward incorporating the scaling behavior in climatic uncertainty estimation, 

this paper is focused on a stationary setting (section 3). Although the emphasis in this 

methodology is on the scaling model, the classical statistical model is also used for 



6 

comparison. In addition and as an exploration step towards the nonstationary setting, 

comparisons of the uncertainty under stationary (e.g. present and past) conditions with the 

future climate trends suggested by GCM outputs are also provided. Such comparisons are 

very useful in order to assess how significant GCM projected hydroclimatic changes are, and 

how important it is to develop a nonstationary setting of the method. The methodology and 

the aforementioned ideas are illustrated based on a case study involving a catchment in 

Greece (described in section 2) in terms of three important hydroclimatic processes: 

temperature, rainfall and runoff. The uncertainty estimations and inter-comparison for the 

case study (section 4) are done for the first half of the 21st century for all three processes. 

2. Test case and data sets 

2.1 The Boeoticos Kephisos River basin 

The case study is performed on an important basin in Greece, which is currently part of the 

water supply system of Athens and has a history, as regards hydraulic infrastructure and 

management, that extends backward at least 3500 years. This is the closed (i.e. without outlet 

to the sea) basin of the Boeoticos Kephisos River (Figure 1), with an area of 1955.6 km2, 

mostly formed over a karstic subsurface. Owing to its importance for irrigation and water 

supply, data availability for the catchment extends for about 100 years (the longest data set in 

Greece) and modeling attempts with good performance have already been done on the 

hydrosystem (Rozos et al., 2004). The relatively long records have already made it possible to 

identify the scaling behavior of rainfall and runoff in this basin (Koutsoyiannis, 2003), and 

make the catchment ideal for a case study of uncertainty assessment.  

 The karstic subsurface of the watershed results in a significant groundwater yield directed 

to large springs in the basin or conducted to the sea. The hydrosystem serves multiple water 

uses. The surface resources are diverted to the neighboring Lake Hylike, one of the major 

water storage projects of Athens. Furthermore, important water supply and irrigation 

boreholes are located along the river and significantly affect the flow regime of the 

groundwater system. 
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2.2 Historical data sets  

The long-term data set for the basin extends from 1908 to 2003 and comprises a flow record 

at the river outlet at the Karditsa station, rainfall observations in the raingage Aliartos and a 

temperature record at the same station; the station locations are shown in Figure 1. The 

original temperature record of Aliartos is for about 30 years (1967-97), but given the very 

high correlations of monthly temperature of Aliartos to that of Athens, it was possible to 

reconstruct a temperature record for the study period 1908-2003. The sample statistics of the 

three time series are shown in Table 1 on an annual basis. The convention of a hydrologic 

year (October of previous year to September of the current year) is used throughout this study; 

for easy comparison of runoff to rainfall, the flow record was converted into equivalent runoff 

depth with reference to the area of 1955.6 km2 (this may differ from some earlier studies 

where an additional area of the Hylike lake basin is included). 

 In addition to this long-term but spatially sparse data set, a detailed hydrometeorological 

and hydrosystem control data set is available for a decade (1985-1994) at various sites of the 

basin. This, in addition to the record at Karditsa and Aliartos includes (1) point rainfall 

observations at 12 stations, which were integrated at five sub-basins using the Thiessen 

method (e.g. Koutsoyiannis and Xanthopoulos, 1999); (2) potential evapotranspiration, 

estimated by the Penman-Monteith method (e.g. Koutsoyiannis and Xanthopoulos, 1999); (3) 

water demand for water supply and irrigation, estimated according to the theoretical crop 

needs; (4) discharge records downstream of the main karstic springs; and (5) water table 

observations, with an average frequency of two per month.  

2.3 Future projections 

IPCC Scenarios  

In addition to historical data, six GCM output data sets (past reconstructions and future 

projections) were used in this study for comparison. These correspond to three different 

climatic scenarios, summarized in Table 2, and come from three different GCMs, summarized 

in Table 3. A criterion we used to choose the GCM output data sets for the study, whose main 
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characteristics are shown in Table 4, was the extent of the output time series backward (to the 

past, in addition to future projections) so that we have a means to downscale the model 

outputs and compare the model performance based on the historical climatic evolution and 

especially its variability. These data sets of model runs are available on-line by the Data 

Distribution Centre of the Intergovernmental Panel of Climate Change (IPCC; http://ipcc-

ddc.cru.uea.ac.uk/ddc_gcmdata.html). 

Downscaling temperature and rainfall 

A systematic technique for making inferences on small regional scales from coarser climate-

model scales has been studied by Georgakakos (2003); however, a simpler technique was 

used here. For each scenario the model grid point nearest to the catchment was chosen for 

further analyses (see Figure 1). In addition, time series for the point second nearest to the 

catchment were also analyzed but these analyses are not included here as there is no essential 

difference from what was found based on the nearest point.  

 Time series of temperature and precipitation for the specified grid points were constructed 

and analyzed further; their time span extends to 2049 (some model outputs extend up to 2100 

but the period beyond 2050 was not considered here). Two versions of each time series were 

constructed:  the first, which is referred to as the initial series, is as extracted from the GCM 

outputs by use of the appropriate software packages and the second, which is referred to as the 

transformed series, is transformed to match the average and standard deviation for each month 

for the 30-year period 1960-1989; recall that in all model runs the period with historical input 

ends at 1989, so that from 1990 and beyond the output data constitute future projections. A 

linear transformation, different for each month, was used for temperature time series whereas 

for rainfall time series, to avoid negative values, a power transformation was used instead. 

Construction of runoff time series 

To estimate runoff under simulated  forcings, and given the great extend of karst in the study 

basin, both surface and ground water processes must be modeled simultaneously; also, given 

that the basin is not in natural condition, the model must take into account both natural 

processes and anthropogenic influences on the catchment. To simulate the hydrological 
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processes of the Boeoticos Kephisos basin an advanced hydrologic modeling scheme, called 

Hydrogeios  (Efstratiadis et al., 2005), was used, which can handle all these requirements. 

Hydrogeios is an improved version of an earlier modeling attempt (Rozos et al., 2004), which 

estimates the available water resources at characteristic sites of the river basin and the 

underlying aquifer. It is semi-distributed with parameters assigned on the basis of the physical 

characteristics of the watershed. The model requires geographical and hydrological input 

(precipitation and potential evapotranspiration, at a sub-basin scale), as well as management 

input (infrastructures, water needs, costs and priorities). The monthly time scale was chosen 

for this climatic study.  

 For setting up the hydrologic model, the detailed data set described in section 2.2 was split 

into two subsets (or subperiods), consisting of the calibration subperiod of six years (October 

1984-September 1990) and the validation subperiod of four years (October 1990-September 

1994). In a second step the model was run for the period 1908-2003 with the long term 

historical data set in order to assess its behavior in comparison with the historical runoff time 

series. To acquire detailed input for the model run for this period, the available long term time 

series were downscaled as described below. In a third step, the same downscaling procedure 

was applied with GCM output time series and the hydrologic model was run to obtain future 

runoff time series according to each of the climatic scenarios.  

The MOVE.1 technique (Hirsh et al., 1993) was used for the downscaling of the rainfall 

time series, i.e. the derivation of rainfall time series for each of the five sub-basins on the 

basis of the point rainfall time series at Aliartos. The technique preserves both mean and 

variance, and is thus superior to linear regression models for this study, given the importance 

of variance in uncertainty estimation. The same method was used for downscaling 

temperature.  

 To derive potential evaporation time series from temperature, especially for the GCM 

scenarios, it was first attempted to use incoming solar radiation produced by the models. 

Inspection of the climatic time series of solar radiation on a 30-year time scale, as obtained 

from the GCM outputs for the models and scenarios described above, showed that the 

climatic variability of radiation is rather negligible and that different models, rather than 
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different scenarios, produce different radiation (probably as a result of different definition or 

representation of the quantity in each model). Given these disagreements among models, the 

absence of measured solar radiation data, which would enable standardization of synthetic 

series, and the negligible variation of climatic solar radiation indicated by the models, 

eventually it was preferred not to use the GCM output for solar radiation. Rather, to estimate 

the potential evaporation in a downscaling framework, the following approximate relationship 

(Koutsoyiannis and Xanthopoulos, 1999, p. 223) was used, 

 Ep = 
a S0 – b
1 – c T   (1) 

where S0 is the incoming solar radiation at the top of the atmosphere (not affected by changes 

in the atmosphere composition), T the surface temperature and a, b and c parameters that are 

estimated by minimizing the squared error from Penman-Montieth potential evaporation (for 

the period of the detailed data set). As shown in Koutsoyiannis and Xanthopoulos (1999), if 

there exist data to calibrate the parameters of this equation, its accuracy is very high (with a 

determination coefficient value of 0.99). 

 For the water demand, which is also a necessary input to the hydrologic model, 

assumptions were made considering the history of agricultural and urban development in the 

area. Specifically, it is assumed that in 1984 the demand reached a saturation value which is 

maintained in the 21st century. During 1900-1984, a 2% increase of the total demand per year 

was assumed. Before 1900 (for scenarios MP01GG01 and MP01GS01), zero demand was 

assumed (prior to 1900 the Copais plain was a lake). 

 Despite the unavoidable simplifications regarding hydrological input, especially the 

downscaling of the areal precipitation, the model performance for the entire 1908-2003 period 

based on historical input was very satisfactory, comparable to that of the calibration period 

(1984-1990). The coefficient of efficiency (defined in (25)) for the runoff at the outlet was 

75% and 68%, on a monthly and annual basis, respectively. These scores reflect a generally 

good model performance with some isolated significant departures of the simulated from the 

observed values for a limited number of flood events, for which the lack of spatial rainfall 
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reduced performance. The good model performance with historical input renders the model 

capable for use with GCM projections of runoff given the projections of temperature and 

rainfall. Thus, for each of the GCM scenarios, it was possible to produce a runoff scenario by 

running the hydrologic model.  

3. Probabilistic quantification of hydroclimatic uncertainty 

3.1 Description of uncertainty  

The quantification of uncertainty is done using notions of probability and statistics, which can 

be found in mathematical statistics books such as Papoulis (1991) and Bickel and Doksum 

(2000); a summary of notions compiled for this study, along with clarifications for a few 

required modifications can be found in Koutsoyiannis et al. (2006). The most important 

modification is that classical statistics are based on the assumption that a sample is a sequence 

of independent identically distributed random variables, whereas in our framework the 

variables representing a climatic process are assumed dependent in time.  

 Let Xi represent a hydrometeorological quantity at the annual scale at time i. We use the 

convention that i = 0 corresponds to present, i < 0 to the past and i > 0 to the future. 

Furthermore, we assume that there is a record of n observations of the present and past, which 

we write as a vector x0,n = [x0, …, x1 – n]΄ (where the prime is used to denote the transpose of a 

vector or matrix). We recall from statistical theory that each observation xi represents a 

realization of a random variable Xi, so that x0,n is a realization of a vector of identically 

distributed random variables X0,n = [X0, …, X1 – n]΄ (notice the upper and lower case symbols 

used for random variables and values thereof, respectively, and the arrangement of the sample 

members and observations from the latest to the earliest). In natural macroscale phenomena 

this realization is unique, whereas the theory of stochastic processes implies infinite 

realizations of the process of infinite length. This is not a contradiction: a stochastic process is 

a mathematical model whereas our observations are for a real world process with unique 

evolution. We use the model to predict future behavior and we infer the model structure and 

parameters from our observations x0,n by imposing some fundamental postulates such as those 
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of stationarity and ergodicity (for justification and interpretation of the stationarity postulate 

see Koutsoyiannis, 2006b). 

 It is sometimes meant that climate is represented by a parameter β, such as the mean 

annual rainfall at a certain location. The numerical value of this parameter is unknown but it 

can be estimated (approximated) by the observed sample mean x
_
 = (x0 + … + x1 – n) / n. The 

smaller the sample size n, the higher the uncertainty about the true value β, which can be 

called parameter uncertainty. This uncertainty is represented by a pair of statistics (random 

variables) U (upper) and  L (lower) called the interval estimators of β for a chosen confidence 

coefficient α. These variables have the property P{L < β < U} = α. Their observed sample 

estimates l, u define the interval estimate (l, u) of β, which represents the quantified measure 

of parameter uncertainty.  

 In a few special cases analytical derivation of confidence limits is possible. In all other 

cases the determination of confidence limits requires numerical methods such as Monte Carlo 

simulation. By construction, Monte Carlo simulation assumes a fully known model (along 

with its parameters) and therefore can readily produce prediction limits of random variables 

rather than confidence limits of parameters (for clarification of the difference of prediction 

limits and confidence limits see Papoulis, 1991, and Koutsoyiannis et al. 2006). The 

calculation of confidence limits of parameters is much more difficult than that of prediction 

limits and requires repetitive simulations with different parameters (in a sort of inverse 

problem setting). Here an approximate Monte Carlo simulation technique was used, which is 

general enough to yield confidence limits of any distributional parameter (marginal or 

dependence) or any combination of parameters for any marginal distribution and dependence 

structure of the stochastic process of interest, provided that there exists a stochastic generator 

of this process (see Koutsoyiannis and Kozanis, 2005, for details). 

 The notion of a climatic parameter (a number constant in time) is, however, not very 

helpful in climatic studies. When we speak of climatic variability in time we indirectly 

assume that climate is better represented as a time varying quantity (i.e. a stochastic process, a 

time indexed family of random variables) rather than as a constant parameter. Specifically, it 

has been common practice in climatology as well as in hydrology to consider as climate the 
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time average of a certain quantity over a certain number of years. In this case, the climate at 

any time (year) i can be represented as the discrete time stochastic process X(k)
i  (also termed a 

stochastic sequence or a digital process) defined in terms of the annual process Xi as 

 X(k)
i  := (Xi + … + Xi – k +1)/k (2) 

This notation implies that X(1)
i  ≡ Xi (that is, a superscript equal to one can be omitted) 

furthermore, X(k)
i  is an ‘overlapping’ moving average if i = …, –1, 0, 1, 2, … and a ‘non-

overlapping’ average if i =  …, –k,  0, k, 2 k, … (we use both options in the following 

sections). Typically, the convention k = 30 is used to standardize the climatic time scale 

(number of years); a less frequently used value is k = 10 (for example, IPCC provides records 

of observed global climate on a 30-year, as well as a 10-year basis; http://ipcc-

ddc.cru.uea.ac.uk/obs/index.html). Here, unless otherwise stated, it is assumed that k = 30.   

 The quantification of uncertainty with the notion of a climatic process is more complex 

than in the case of a climatic parameter. Here, in addition to parameter uncertainty, we have 

also the uncertainty due to (natural) temporal variability. As a stochastic process is a time 

indexed sequence of random variables, there is a range of characterizations that may be 

employed depending on the order of the joint distribution we are willing to consider for the 

characterization (e.g., first order characterization by the one-dimensional distribution at a 

single time for all times, second order characterization for the two dimensional joint 

distribution between any two times for all times, etc.). For a first order characterization at any 

scale k, let F(k)(y) be the distribution function of each of X(k)
i  ≡ Y. To express quantitatively the 

uncertainty due to temporal variability we choose a confidence coefficient α΄ and we find the 

distribution quantiles yb (below) and ya (above) such that  

 P{yb < X(k)
i  < ya} = α΄ (3) 

(see also Figure 2). If F(k)(x) is precisely known and its inverse is (F(k))–1, then yb and ya can be 

determined from (e.g. Papoulis, 1990)  

 yb = (F(k))–1(b),  ya = (F(k))–1(a),   b = (1 – α΄)/2,   a = (1 + α΄)/2 (4) 
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 Precise knowledge of F(k) means that both its mathematical expression (model) and its 

parameters are known. In practice, none of these are known. The model is simply 

hypothesized, based on exploration of available observations, on previous experience and, in 

the best case, on theoretical reasoning. The parameters are estimated from the available 

historical record. Thus, on top of the uncertainty due to temporal variability, we have 

additional uncertainty due to parameter estimation. Because both yb and ya are not variables 

but parameters (dependent on the distributional parameters), their uncertainty is expressed as 

discussed above about parameter uncertainty. In this case we need to choose another 

confidence coefficient α (not necessarily equal to α΄ but in this study, unless stated differently, 

it is assumed α = α΄ = 0.95). Thus, the uncertainty of yb is expressed by the confidence 

interval estimate (l(yb), u(yb)) and that of ya by the confidence interval estimate (l(ya), u(ya)). 

Consequently, the total uncertainty can be expressed by the interval (l(yb), u(ya)) (see 

explanation in Figure 2). 

 Although uncertainty is also introduced by measurement errors, this is neglected here 

assuming that it is much smaller compared to the other two sources of uncertainty.  

3.2 The scaling property 

In classical statistics, if σ(k) := StD[X(k)
i ] denotes the standard deviation of the random variable 

X(k)
i  at scale k and any time i, we have the fundamental law  

 σ(k) = 
σ
k
 (5) 

where σ ≡ σ(1) is the standard deviation of each of Xi. Given a time series of sufficient length 

n, we can test in a simple way whether this law is fulfilled or not. To this aim, from the 

observed time series xi we form the time series x(k)
i  with k = 1, 2, …, (up to about n/10, so that 

the resulting time series have at least ten elements) and i = 0, –k, –2k, –3k, …, and from the 

time series of each k we calculate the estimate s(k) of the standard deviation σ(k). Plotting s(k) 

versus k (preferably on a logarithmic plot) we can test graphically the validity of the statistical 

law (5). Such plots for the test time series (temperature, rainfall and runoff in Boeoticos 
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Kephisos) are given in Figure 3. The non fulfillment of law (5) is clear and all three plots of 

the real world time series suggest a more general law of the form   

 σ(k) = 
σ

k1 – H (6) 

where H is a constant between 0.5 and 1. As shown in Figure 3, the value of H ranges 

between 0.64 and 0.79 in the three series.  

 A stochastic process that has the property (6) is mathematically feasible and can be called a 

simple scaling stochastic process (SSS process; else it is known as the stationary intervals of a 

self-similar process, or a fractional Gaussian noise if its distribution function is normal). In 

fact, (6) can serve as a definition of an SSS process, sufficient for the purpose of this paper 

(see also Koutsoyiannis, 2002, 2003; for a definition in continuous time see Beran, 1994). The 

statistical behavior expressed by equation (6) is in fact the scaling behavior and the constant H 

is the Hurst exponent. It is stressed that the SSS process is stationary.  

 Another way to demonstrate the departure of the natural behavior from the classical 

statistical model is through very low and very high flows over different scales. Such a 

demonstration is depicted in Figure 4 for the Boeoticos Kephisos 96-year runoff record. The 

record was aggregated from scales 1 to 10 (years) and for each scale the minimum and 

maximum value was found. For these values, the return periods were calculated assuming that 

the distribution of X(k)
i  is normal and that the standard deviation over scale k is given by (5) 

and (6) for the classical and SSS model, respectively. As shown in Figure 4, the classical 

model renders return periods reaching 100 000 years for large scales. The reason for this is 

that some dry (or wet) years are in reality clustered in multiyear periods but this is quite 

unlikely according to the classical model. In nature, however, a clustering behavior is very 

common and this is well represented by the SSS model, which for all scales renders return 

periods around 100 years to the minima and maxima of all scales, as expected for a record 

with length of about 100 years. 
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3.3 Unconditional uncertainty 

Let yb and ya be the b and a distribution quantiles of X(k)
i  as in (4); these describe the 

uncertainty due to temporal variability to a first order characterization. We wish to find the 

total uncertainty by incorporating the parameter uncertainty as described in section 3.1. We 

assume for convenience that the process of interest Xi is normally distributed; this can be 

justified for the annual scale and was empirically verified (Koutsoyiannis, 2005a). A fortiori, 

X(k)
i  is also normally distributed. Strictly speaking, in all cases the distribution should be 

assumed as truncated normal because all variables are bounded from below (rainfall and 

runoff by zero, temperature by absolute zero; Koutsoyiannis, 2005a). The analytical handling 

of the truncated normal distribution is difficult, so to simplify calculations the truncated 

normal distribution is approximated by a normal distribution and if needed a truncation is 

done a posteriori to confidence limits estimated numerically. 

 If µ and σ are the parameters of the (marginal) normal distribution of the process at scale 1, 

then in classical statistics, by virtue of (5) the quantities whose confidence limits are to be 

estimated are 

 y(k)
b  = µ + ζb σ / k,      (7) 

where ζb is the b quantile of the standard normal distribution, and y(k)
a , whose expression can 

be derived from (7) by replacing the subscript b with a. These quantities combine the 

uncertainty in the estimation of both µ and σ (which are estimated by the observed sample 

mean x
_
 ≡ x(n)

0  and the standard deviation s). Similarly, by virtue of (6), the corresponding 

quantities for the SSS case are  

 y(k)
b  = µ + ζb σ / k1 – H (8) 

and y(k)
a , and combine the uncertainty in the estimation of µ, σ and H.  

 Combining known results in hydrological statistics (e.g., Stedinger et al., 1993, p. 18.30) 

and equation (5), we can easily obtain approximate confidence limits of y(k)
b , which for the 

classical case are  
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 u(y(k)
b ), l(y(k)

b ) = x(n)
0  + ζb s / k ± ζ(1 + α)/2 εb s (9) 

where  

 εb = 
1
n
 1 + 

ζ2
b

2 k   (10) 

 Generalization of these equations for the SSS case with known H has been proposed in 

Koutsoyiannis (2003). With a small adaptation, these confidence limits are expressed as  

 u(y(k)
b ), l(y(k)

b ) = x(n)
0  + ζb s / k1 – H  ± ζ(1 + α)/2 εb s (11) 

where 

 εb = 
1

n1 – H 1 + 
φ(n, H)
2 n 2H – 1 ⎝⎜

⎛
⎠⎟
⎞ζb

k 1 – H

2

,    φ(n, H) = (0.1 n + 0.8)0.088(4H 2 – 1)2
 (12) 

It can be easily verified that equations (9) and (10) are special cases of (11) and (12), 

respectively, obtained when H = 0.5.  

 The analytical derivation of confidence limits for the realistic case where H is unknown 

and is estimated from the sample may be intractable. In this case, the Monte Carlo method can 

be used based on the quantities defined in equations (7) and (8) (the analytical results (9)-(12) 

are not applicable in this case). The Monte Carlo confidence limits are illustrated in Figure 5, 

which also compares classical confidence limits to those of the SSS case; the sample statistics 

used to calculate the confidence limits are those of runoff shown in Table 1. Although in this 

figure only the Monte Carlo confidence limits are plotted, where applicable the theoretical 

ones were also evaluated and were found to be virtually indistinguishable from the Monte 

Carlo ones. Specifically, for the classical case, the theoretical confidence limits evaluated 

from (9) are indistinguishable from those marked MCCL/classical in Figure 5, and the 

theoretical confidence limits evaluated from (11) are indistinguishable from those marked 

MCCL/SSS 1 (for known H).  

 The upper panel of Figure 5 refers to the annual quantities (i.e. k = 1). In this case both the 

classical and the SSS models result in the same amount of uncertainty due to variability (the 
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point estimates marked as PE in Figure 5 are the same). However, there are significant 

differences in the parameter uncertainty. The confidence band in the classical case is narrow 

and becomes much wider in the SSS case with known H  (marked MCCL/SSS 1 in Figure 5) 

and even wider in the case of unknown H (marked MCCL/SSS 2).  

 More interesting is the lower panel of Figure 5, which refers to the climatic quantities (i.e. 

k = 30). The low variability and uncertainty in the classical model is depicted as a narrow, 

almost horizontal, band in Figure 5. Here, the SSS model, in addition to the higher parameter 

uncertainty, results in uncertainty due to variability much wider than in the classical one 

(obviously this is implied by the term k1 – H in (11) as compared to the term k in (9)). As a 

result, while in the classical model the total uncertainty (width of the interval) is about 50% of 

the mean, in the SSS case it becomes about 200% of the mean, or four times larger. In 

addition, according to the SSS model, the uncertainty at the 30-year scale is only slightly 

lower than that of the annual scale (the latter is 268% of the mean). This contrasts to the 

classical model, which yields significant reduction as we proceed from the annual to the 

climatic scale.  

 A comparison of the uncertainty of climatic values of rainfall and runoff is depicted in 

Figure 6. The lower panel of this, which refers to runoff, is identical to the lower panel of 

Figure 5 except in the vertical scale, which was changed to agree with that of the upper panel 

of Figure 6; the upper panel refers to rainfall and was constructed in the same manner as that 

of runoff. The comparison of the two panels in terms of the results of the classical model 

suggests that the uncertainty in runoff is lower than that in rainfall. This is an inconsistency of 

the classical model as it is well known that the variability of rainfall is magnified under the 

rainfall-runoff transformation, provided that the same spatial scale is used for both processes. 

In the SSS model the inconsistency is remedied as the uncertainty of runoff is higher than that 

of rainfall.  

3.4 Conditional uncertainty 

The confidence limits obtained in section 3.3 describe the uncertainty on a long lead time 

(theoretically for lead time tending to infinity, so that the influence of the past information 
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becomes negligible) and need to be adapted for the short lead time by taking into account the 

information from observations. The adaptation could be done either by modifying the Monte 

Carlo method already used or by deriving analytical equations, which are then evaluated by 

the Monte Carlo simulation technique mentioned earlier (Koutsoyiannis and Kozanis, 2005). 

Here we preferred the second option because analytical equations provide some insight into 

the factors influencing uncertainty. 

 The adaptation is very simple in the case of the classical model. For a lead time longer than 

the climatic time scale (i ≥ k) the unconditional confidence limits apply. For a shorter lead 

time (i < k) the climate, conditional on the present and past information, could be written 

 X(k)
i |x0,n := (Xi + …+ X1 + x0  + ... + xi – k +1)/k = 

 i 
k  X(i)

i  + ⎝⎜
⎛

⎠⎟
⎞1 – 

 i 
k  x(k – i)

0  (13) 

where it was assumed that the available observation period is longer than the climatic time 

scale (n > k). Because in the classical model X(i)
i  is independent from X(k – i)

0 , it suffices to 

calculate confidence limits for the quantities 

 y(k)
b,i  = 

 i 
k  y(k)

b  + ⎝⎜
⎛

⎠⎟
⎞1 – 

 i 
k  x(k – i)

0  = 
 i 
k  

⎝
⎜
⎛

⎠
⎟
⎞µ + ζb 

σ
k

 + ⎝⎜
⎛

⎠⎟
⎞1 – 

 i 
k  x(k – i)

0  (14) 

and y(k)
a,i . We note that the last term of (14) is a constant known without uncertainty (as we 

have assumed that the observation errors are negligible). Thus, the conditional confidence 

limits are simple linear transformations of the unconditional ones.  

 In the SSS case, the situation is much more complex because of the temporal dependence. 

As shown in section 3.3, the dependence results in a dramatic increase of the total (but 

unconditional) uncertainty, especially on the climatic time scale. At the same time the 

dependence, combined with observation of the past, apparently has a reducing effect to the 

total uncertainty on a conditional setting. For long lead time (i ≥ k), the climatic quantity of 

interest is  

 X(k)
i |x0,n = [(Xi + …Xi – k + 1)/k]|x0,n = 

 1 
k  ∑

j = i – k +1

i
  Xj|x0,n (15) 



20 

and can be also be written as  

 X(k)
i |x0,n = 

 1 
k  ∑

j = 1

i
  Xj|x0,n – 

 1 
k  ∑

j = 1

 
i – k

  Xj|x0,n = 
 i 
k  X(i)

i |x0,n + ⎝⎜
⎛

⎠⎟
⎞1 – 

 i 
k  X(i – k)

i – k |x0,n (16) 

For shorter lead time (i < k), the quantity of interest is (cf. equation (13))  

 X(k)
i |x0,n  = 

 1 
k  ∑

j = 1

i
  Xj|x0,n + ⎝⎜

⎛
⎠⎟
⎞1 – 

 i 
k  x(k – i)

0  = 
 i 
k  X(i)

i |x0,n + ⎝⎜
⎛

⎠⎟
⎞1 – 

 i 
k  x(k – i)

0  (17) 

Thus, to assess the confidence limits of X(k)
i |x0,n we need to calculate the expected value and 

standard deviation of X(k)
i  conditional on the present and past being observed.  

 Based on the above decompositions, it is shown in the Appendix that the conditional 

climatic expectation is given by the following approximation (exact equations are also given 

in the Appendix but the approximation is good for our purpose): 

 E[X(k)
i |x0,n] = ⎣⎢

⎡ 
 
 i 
k  φi,n(H) + ⎝⎜

⎛
⎠⎟
⎞1 – 

 i 
k  φi – k,n(H)⎦⎥

⎤ 
  µ +  

  + 
⎩
⎨
⎧ 
 
 i 
k  [1 – φi,n(H)] + ⎝⎜

⎛
⎠⎟
⎞1 – 

 i 
k  [1 – φi – k,n(H)] 

⎭
⎬
⎫ 
 x

(n)
0 ,     i ≥ k (18) 

 E[X(k)
i |x0,n] = 

 i 
k  φi,n(H) µ + 

 i 
k  [1 – φi,n(H)] x(n)

0  + ⎝⎜
⎛

⎠⎟
⎞1 – 

 i 
k  x(k – i)

0 ,    i ≤ k (19) 

where φi,n(H) := 1 – ξí,n τ
–1
n  en; en is a size n vector with all its elements equal to 1; τn := 

Cov[Xi,n, Xi,n]/σ2 is the symmetric size n correlation matrix of the process whose (i, i ± j) item 

is the lag j autocorrelation of the process of interest at the scale 1 (annual), i.e. ρj := 

Cov[Xi, Xi + j]/σ2 ; and ξi,n is a size n vector defined as 

 ξi,n := 
 1 
i  ∑

j = 1

i
 ρ 

j,n  (20) 

whereas ρj,n := [ρj, …, ρj + n – 1]΄. Recall that in the SSS model the lag j autocorrelation is (e.g. 

Koutsoyiannis, 2002)  

 ρ(k)
j  = ρj = (1/2) [(|j + 1|)2H + (|j – 1|)2H ] – |j|2H (21) 
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 Clearly then, φi,n(H) is a function of the Hurst coefficient H, a lag i and the observation 

length n. A plot of φi,n(H) for varying i and H and a fixed n = 100, which is close to the 

sample sizes used in this study, is shown in Figure 7 (left panel). Approximate analytical 

relationships for φi,100(H) are given in the Appendix. As per the implementation of (19) in a 

Monte Carlo framework to obtain confidence limits, it should be noted that only i, k, x(n)
0  and 

x(k – i)
0  are known; all other parameters that appear are unknown. 

 Figure 8 depicts the evolution of conditional mean of the Boeoticos Kephisos runoff both 

at the annual and the climatic scale and also provides a comparison of the approximation  (19) 

with the exact equation given in the Appendix (equation (A.4)). It can be observed that the 

differences are small and that in a 30-year period the conditional mean approaches the true 

mean which to construct Figure 8 was assumed to be equal to the sample mean. The later 

assumption is only for demonstration purposes and used only for Figure 8. (The Monte Carlo 

simulation technique used in this study is consistent with the fact that the true mean is 

unknown; in fact, in an SSS process the sample mean can depart significantly from the true 

mean). The influences of the three terms involved in the calculation of the conditional mean 

are depicted in Figure 9. The first term, which is the coefficient of the true mean µ in (19) is 

an increasing function of the lead time i. The second term, which is the coefficient of the 

sample mean x(n)
0  in (19), is an increasing function of the lead time i up to i = k = 30 and then 

decreases. The third term, which is the constant term (the last term in (19)) divided by the true 

mean, is obviously a decreasing function of i and vanishes off at i = k = 30. For i > k, the sum 

of the first two terms is 1 and at about i = 2k = 60 both terms are equal to 0.50. Even for lead 

times as high as 100, the influence of the sample average, which is known, is significant and 

the influence of the true mean, which is unknown, is smaller than 60%. Certainly, this has an 

attenuating effect to the width of the confidence band. 

 Furthermore, as derived in the Appendix, the conditional standard deviation of X(k)
i  can be 

approximated by  

 StD[X(k)
i |x0,n] = k H – 1 σ ψi/k(H),     i ≥ k (22) 
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 StD[X(k)
i |x0,n] =  

iH

k  σ ψ1(H),     i ≤ k (23) 

where ψi(H) := limn → ∞ ψi,n(H) and ψi,n(H) := 1 – ρí,n τ
–1
n  ρ 

i,n . Clearly, ψi(H) is a function of 

the Hurst coefficient H and a lag i, as plotted in Figure 7 (right panel); an approximate 

analytical expression is given in the Appendix. Although (22) is precisely valid for integral 

values if l/k, its use with fractional values is possible and can give approximate interpolations.  

 The variation with the lead time of the conditional standard deviation (divided by the 

unconditional standard deviation) of the Boeoticos Kephisos runoff at the climatic scale time 

is depicted in  Figure 9 (along with that of the terms involved in the calculation of the 

conditional mean, discussed earlier). It can be observed that the conditional standard deviation 

increases rapidly with the lead time, reaching 85% at i = k = 30. Then it increases more 

gradually and at a lead time 100 it becomes about 93% of the unconditional value. 

 The parameters whose conditional confidence limits are sought are the distribution 

quantiles  

 y(k)
b,i  = E[X(k)

i |x0,n] + ζb StD[X(k)
i |x0,n] (24) 

and y(k)
a,i , where the quantities E[X(k)

i |x0,n] and StD[X(k)
i |x0,n] are evaluated from (18)-(23); the 

first is a linear function of µ and a nonlinear function of H, the second is a linear function of σ 

and a nonlinear function of H, and both depend also on the lead time i, the climatic time scale 

k, the observed mean x(n)
0  of the entire observation period and the observed mean x(k – i)

0  of the 

most recent observations. Assuming that H is unknown, the nonlinear functions of it involved 

in the estimation of conditional expectation and standard deviation increase variability on a 

Monte Carlo calculation framework. For this reason, for a small H and long lead time, it may 

be anticipated that the conditional confidence limits may come up wider than the 

unconditional ones; in such a case the unconditional confidence limits should be used instead.     

 The results of the application of the method for all three processes examined here 

(temperature, rainfall and runoff with sample statistics as in Table 1) are depicted in Figure 10 

for a horizon up to 2049. For comparison the classical conditional confidence limits have been 
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plotted, along with the SSS confidence limits. It is observed that the SSS confidence bands 

are much wider (about 2.3 to 3 times) than the classical ones.  

4. Comparisons and validations  

4.1 Performance of GCM output time series in the past 

Even though the main target of this section is to inspect and compare the developed stochastic 

uncertainty framework of future climate with the deterministic GCM future projections, it is 

useful to compare first the performance of GCM past climate traces with observed climate. 

The performance of the GCM output time series in the past is indicated in Table 5 in terms of 

several performance indicators as well as in Figures 11-12 in graphical depictions. A first 

observation in Table 5 is the notable positive bias in all initial series of temperature and the 

significant negative bias on the rainfall. These, however, were expected in the three out of 

four cases because the grid points lie to the south of the catchment, in an area with higher 

temperature and lower rainfall; in the CCCma_A2 and B2 case this was rather unexpected as 

the grid point lies in the northern border of the catchment.  However, the most significant 

drawback of all model outputs is the underdispersion (negative overdispersion) both in 

temperature and rainfall. This is obvious both in Table 5 as well as in Figure 11 and has three 

components. First, in each month the standard deviation of temperature and rainfall (Figure 

11, right column) is much lower than the historical one (in some case less than half). Second, 

the periodic variation through the months within the year is lower than the historical; this is 

better visible through the profiles of the means (Figure 11 left column). And third, the annual 

and interannual variability is again lower than the historical as understood from the high 

negative overdispersion values in Table 5 at the annual scale, the small Hurst coefficients in 

Table 5 and the flat climatic plots in Figure 12. There is one exception, the temperature time 

series of MP01GG01, which as shown in Figure 12 is not flat and yields a Hurst coefficient 

0.76, even higher than the historical 0.72. The plots in Figure 12, however, simultaneously 

show that the evolution in the MP01GG01 temperature series is opposite to the historical one 

(overyear trends just opposite to the historical ones). In Table 5 it is also shown that the 
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temperature time series of the HADCM3_A2 and B2 cases has a large Hurst coefficient 

(0.86). This however is an artifact resulting from small sample (40 years in HADCM3_A2 

and B2), so it does not represent a high over-annual variability (see Figure 12). 

 The bias and the underdispersion caused by the former two reasons are corrected or 

significantly improved in the transformed series both at the monthly scale and at the annual 

scale. However, it is impossible to rectify this on the over-annual climatic scale. 

 Other measures of performance are the coefficients of determination (Cd) and efficiency 

(Ce) between model time series (xí ) and historical ones (xi). These are defined respectively by 

 Cd = 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

∑
i = 1

n
 (xi – x–) (xí  – x–΄)

 2

∑
i = 1

n
 (xi – x–)2 ∑

i = 1

n
 (xí – x–΄)2

,     Ce = 1 –  

∑
i = 1

n
 (xí – xi)2

∑
i = 1

n
 (xi – x–)2

 (25) 

where n is the length of the time series and x– and x–΄ are their averages. The former is a 

relative fitting measure between the time series xi and xí postulating a linear regression 

between them (xí = a + b xi) and its values are between 0 and 1. The latter is a fitting measure 

over an equality postulate and its values are smaller than 1 and can be also negative in case of 

poor agreement. Obviously, the latter is more appropriate in our case as the two time series 

ideally should be identical, not just linearly related.  

 The values of these indicators are shown in Table 5. For the monthly temperature time 

series the two coefficients are good enough in the initial series and become almost perfect in 

the transformed ones. This, however, is not seen in rainfall, where, because of the high 

variation, the fitting measures are poor even after transformation. At the annual scale, these 

coefficients are very poor for both temperature and rainfall. Finally, at the climatic (30-year) 

scale, Figure 12 shows that the GCM outputs did not capture the general climatic trends in the 

past. In the intermediate period 1990-2003, which for the GCM model runs was ‘future’ but 

now is past (observed), the model projections do not agree with observations (except in 

ECHAM4/OPYC3). 
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 The performance of the combination of GCM and hydrologic model outputs at the annual 

scale is given in Table 6. Initially, it can be observed that the hydrological model alone with 

historical temperature and rainfall performs well, as indicated from the low bias and 

overdispersion and the high coefficients of determination and efficiency in this case (first row 

in Table 6). However, the hydrological model with temperature and rainfall data from GCM 

outputs, transformed as described above, does not reproduce the past (high negative bias, high 

underdispersion, low coefficients of determination and efficiency). It is interesting, however, 

that the Hurst coefficients of runoff from all GCM scenarios are high, even though those of 

the rainfall input are low. This can be explained as the combined effect of several factors such 

as (a) the dominance of groundwater processes in runoff, which introduces strong temporal 

dependence, (b) the increasing groundwater abstractions through the historical period, which 

result in a monotonic downward trend, (c) the enhancement of this trend by the temperature 

increase predicted by GCM for the last years, and (d) the significant underdispersion of the 

resulting runoff at the annual scale, combined with smaller underdispersion at larger scales 

because of the effect of the downward trends. 

4.2 GCM future projections 

For the future, the GCM rainfall falls within the SSS uncertainty limits for the whole 

examined period up to 2049 (Figure 12; some departures in the period 1990-2000 just indicate 

that the projections of these models were not validated by the historical evolution). This 

means that traces such as the ones projected by the GCM can be readily obtained by 

stochastic simulation assuming stationarity. This is not the case, however, for temperature, 

where all model projections agree that sooner or later the temperature will depart from the 

uncertainty limits. The future runoff estimated by the hydrological model for GCM future 

temperature and rainfall appears to be almost constant for all scenarios and models. All 

climatic traces of runoff are concentrated into a narrow band around the current climatic 

value. This more or less harmonizes with some earlier studies; for example Georgakakos and 

Smith (2001) in a comprehensive climatic study for the United States based on GCM output 

concluded that the soil moisture deficits (which are closely related to runoff) in most areas are 
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of the same order of magnitude as the soil moisture field of standard deviations arising from 

historical natural variability. The stochastic method developed in this study suggests that the 

variability and uncertainty of runoff, even assuming natural conditions, is in fact very high as 

becomes evident from the confidence band in Figure 12, whereas GCM projections fail to 

reproduce even the natural variability.  

4.3 Further validation 

One may argue that the 20th century data that were used in this study are already affected by 

anthropogenic influences, that the natural variability would be less than observed in the 20th 

century and that, as a consequence, the uncertainty limits estimated by the proposed method 

are artificial (not representing the natural variability) and too wide. To investigate such 

eventualities, data of earlier centuries would be needed which are unavailable for the case 

study area. Besides, the usual technique of splitting the data period into two subperiods and 

using the early subperiod for model construction and the later subperiod for validation is not 

applicable in this case because the SSS framework needs long data periods to estimate the 

Hurst coefficient (96/2= 48 years would be too few). However, we tried to shed light to these 

questions using a longer data set, not associated to the above case study in terms of 

geographical location but closely related in terms of observed statistical behavior. This is the 

mean annual temperature record of Berlin/Tempelhof, one of the longest series of 

instrumental meteorological observations going back to 1701. The data set prior to 1993 are 

made available on the web by the Wetterzentrale/Klimadaten (http://www.wetterzentrale.de/ 

klima/ tberlintem.html); the most recent data up to 2003 were found from monthly bulletins 

(Monthly Climatic Data for the World  made available on the internet by the National Oceanic 

and Atmospheric Administration/National Climatic Data Center (http://www1.ncdc.noaa.gov/ 

pub/data/mcdw/). During the period 1756-2003 (248 years) there are no missing data (apart 

from a few sporadic months which were filled in using the averages for the same month of the 

closest 4 years). The period 1711-1727 (17 years) and 1752-1754 (3 years) are characterized 

by complete absence of data. Therefore, all calculations were done based on the continuous 

period with complete data (1756-2003) but for completeness, approximate climatic values at 
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the 30-year scale were also calculated for the earlier period by linear interpolation of climate 

throughout the missing years. The Hurst coefficient for the period 1756-2003 is 0.77; if we 

split this period into three equal (83-year) subperiods, the Hurst coefficients are 0.83, 0.53 and 

0.81 (from the earliest to latest subperiod), which indicates the large uncertainty in the 

estimation of the Hurst coefficient (this variation is typical of the Hurst behavior; see e.g. 

Koutsoyiannis, 2003). 

 The following exercise was done with this data set. The data of the period 1908-2003 

(exactly the same with that of the Boeoticos Kephisos case study) were used to estimate the 

parameters of the scaling model (in this case, H = 0.78) and then climatic hindcasts (backward 

forecasts, prior to 1938 = 1908+30) were calculated in terms of conditional point estimates 

and confidence intervals (for α = α΄ = 95% and climatic time scale of 30 years). This was 

done for both the scaling and the classical statistical model. The unused part of the series back 

to 1731 (= 1701+30) was compared with the confidence limits. The results are depicted in 

Figure 13. For the comparisons of historical values to confidence limits we should have in 

mind that the confidence coefficient α΄ = 95% allows, on the average, one climatic outlier 

(point outside of the confidence limits) every 20 × 30 = 600 years (corresponding to the 30-

year time scale); therefore in a single record of about 300 years an outlier is not quite likely; if 

we also count the parameter uncertainty, which widens confidence intervals, an outlier 

becomes even less unlikely. However, if the classical model is used, several outliers emerge 

(the climatic evolution gets out of the confidence limits); even during the model fitting period, 

the climatic evolution gets out of the unconditional confidence limits. In contrast, the SSS 

confidence limits capture the historical climatic evolution and simultaneously do not look too 

wide for the case. This example provides some validation to the method proposed.  

5. Conclusion and discussion 

A first conclusion of this study is that classical statistics, applied to climatology and 

hydrology, describes only a portion of natural uncertainty and underestimates seriously the 

risk if long range dependence, also known as long-term persistence or the Hurst phenomenon, 

is present.  Simple scaling stochastic (SSS) processes offer a sound basis to adapt hydro-
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climatic statistics so as to capture interannual variability. The SSS framework, which is 

developed in this study and is applied to past hydro-climatic records, is a feasible step towards 

making more reliable estimates of future uncertainty and risk for hydrological studies and 

water resources management. The uncertainty bands obtained from the SSS framework are 

about three times wider than those obtained by classical statistics. The detailed case study 

involving three important hydrometeorological processes (temperature, rainfall and runoff) in 

a catchment in Greece provides evidence that the SSS, rather than the classical, uncertainty 

bands are applicable. This was verified further using a much longer instrumental 

meteorological record (mean annual temperature at Berlin).  

 However, in this manner the uncertainty estimate is based indirectly on the assumption that 

past hydroclimatic data are representative for the future, which may not be true if 

anthropogenic climate changes will be significant compared to natural climatic variability. 

Therefore, climatic model outputs should be incorporated in an uncertainty analysis and it can 

be anticipated that future uncertainty is even greater than produced by the SSS framework. In 

this study, several GCM outputs were examined, which generally agree that temperature will 

increase significantly, i.e. beyond stationary uncertainty bands, even though different models 

(rather than different scenarios) predict different levels of temperature increase. At the same 

time the GCM outputs for rainfall and the resulting (using a hydrological model) runoff do 

not display significant future changes as the projected time series lie well within SSS 

confidence limits. 

 In the case study examined here, a common drawback of the GCM models is the fact that 

they do not capture past climatic variability, i.e. they result in monthly, annual and over-

annual variability that is too low. Obviously, this raises questions for their performance in 

predicting future climate variability. In this study, a remediation was done to match the 

historical monthly and annual variability. However, a different procedure should be used for 

over-annual variability, which as demonstrated is very important for the determination of 

future uncertainty. This should be the subject of future research. The general idea of such a 

research would be the representation of the variability of processes in stochastic terms using 

the historical data and the representation of changes in the mean of the processes based on 
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GCM results. In other words, GCM would be used to establish causative relationships for 

mean levels of processes. The establishment of such causative relationships would probably 

require steady-state GCM runs, with stable forcing conditions (e.g. different CO2 and SO4 

concentrations) rather than varying scenario-based conditions.   
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Appendix: Derivation of the equations for the conditional climatic expectation 

and its variance  

Using a known result (Koutsoyiannis, 2000), it is easily shown that the conditional mean of a 

process Xi at the scale 1 is given as 

 E[Xi|x0,n] = µ + ρí,n  τ–1
n  (x0,n – en µ)  = µ(1 – ρí,n τ

–1
n  en) + ρí,n  τ–1

n  x0,n (A.1) 

where the notation is explained in section 3.4. Consequently, at scale i, 

 E[X(i)
i |x0,n] = µ(1 – ξí,n  τ–1

n  en) + ξí,n  τ–1
n  x0,n (A.2) 

Thus, 

 E[X(k)
i |x0,n] =  ⎣⎢

⎡ 
 
 i 
k  (1 – ξí,n  τ–1

n  en) + ⎝⎜
⎛

⎠⎟
⎞1 – 

 i 
k  (1 – ξí – k‚n τ

–1
n  en)⎦⎥

⎤ 
  µ  

  + ⎣⎢
⎡ 
 
 i 
k  ξí,n  + ⎝⎜

⎛
⎠⎟
⎞1 – 

 i 
k  ξí – k‚n⎦⎥

⎤ 
  τ

–1
n  x0,n,         i ≥ k (A.3) 

 E[X(k)
i |x0,n] = 

 i 
k  (1 – ξí,n τ

–1
n  en) µ + 

 i 
k  ξí,n  τ–1

n  x0,n + ⎝⎜
⎛

⎠⎟
⎞1 – 

 i 
k  x(k – i)

0 ,    i ≤ k (A.4) 

 Recall that 1 – ξí,n τ
–1
n  en =: φi,n(H) is a function of the Hurst coefficient H, a lag i and the 

observation length n. For fixed n = 100, which is close to the sample sizes used in this study 

the function φi,n(H) (shown in Figure 7, left panel), is almost perfectly approximated by the 

following equations, which were derived by an extended numerical investigation:  

 φi,100(H) = 1 – (2H – 1)c1 [1 – c2 (1 – H)]) (A.5) 

where 

 c1 = 0.75 + 0.1 ln i,      c2 = 2 – 3.3 exp[–(0.18 ln i)3.7] (A.6) 

It can be observed that: (a) for H = 0.5, φ = 1 as expected (no effect from the past which is 

consistent with independence); (b) for i → ∞, c1 → ∞ and since (2H – 1) < 1, again φ = 1 (no 



31 

effect from the past because of large lag). However, the convergence of φ to 1 is very slow, 

unless H is close to 0.5.  

 It is observed from (A.3)-(A.4), which are exact equations, that the conditional mean in 

addition to µ and φ, depends, on a linear combination of the entire observation vector x0,n. To 

make the expression simpler (which is important for the Monte Carlo simulation) and more 

insightful (thus allowing the explanations given in section 3.4), we can set x0,n ≈ x(n)
0  e (where 

x(n)
0  is the sample mean). In this manner, we readily obtain (18) and (19). 

 For the conditional variance of the climatic process, we start from a known result 

(Koutsoyiannis, 2000) that the conditional variance of a variable Xi at the scale 1 is given as 

 Var[Xi|x0,n] = σ2(1 – ρí,n  τ–1
n  ρ 

i,n ) (A.7) 

Recall that 1 – ρí,n τ
–1
n  ρ 

i,n  =: ψi,n(H) is a function of the Hurst coefficient H, a lag i and the 

observation length n. As n → ∞, it tends to a function ψi(H) (plotted in Figure 7, right panel); 

numerical investigation shows that the convergence is fast, so that for n as low as 5 to 10, 

ψi(H) is a good approximation for ψi,n(H). Therefore, in all analyses we use the asymptotic 

function ψi(H) only. By a further numerical investigation, we were able to obtain the 

following approximate expression of ψi(H), which is almost perfect  

 ψi(H) = 1 – (2H – 1)2 + ln i [1 – (2 – 1.28 / i 0.25) (1 – H)] (A.8) 

For H = 0.5 it can be directly verified that ψi(H) = 1 (no attenuation, because of  temporal 

independence). Furthermore, for i → ∞, it can be again verified that ψi(H) → 1 (no 

attenuation because of large lag, despite the high temporal dependence; however, the 

convergence to 1 is very slow, unless H is close to 0.5). Finally, for i = 1 the obtained ψ1(H) is 

identical to an expression derived in Koutsoyiannis (2005b).  

 In the SSS model the autocorrelation function is invariant to the reference time scale (e.g. 

Koutsoyiannis, 2003). Thus, the function ψi(H) does not depend on scale; consequently for a 

scale k and a lag i assumed to be an integer multiple of k, i.e. i = l k, where l = 1, 2, …, from 

(A.7) we obtain 
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 Var[X(k)
l k |x(k)

0,∞ ] = [σ(k)]2 ψl(H) (A.9) 

where x(k)
0,∞  is the vector of realization of the present and the entire past. Obviously, the entire 

past x(k)
0,∞  cannot be known and only x0,n is observed. However, given the already mentioned 

fast convergence of ψi,n(H) to ψi(H) and assuming that the time scale of observation of the 

past does not significantly influence the information for predictions in the future, we may 

substitute the condition x0,n for x(k)
0,∞  to obtain an approximation of the conditional variance 

for the actually observed past. If we also substitute σ(k) from (6) we obtain the approximation 

 StD[X(k)
l k |x0,n] = k H – 1 σ ψl(H) (A.10) 

  For l ≥ 1 (or i = l k ≥ k), (A.10) gives directly the required standard deviation of the 

climatic variable X(k)
i  conditional on the observations of the past. For i ≤ k, by virtue of (17) 

we obtain from (A.10) 

 StD[X(k)
i |x0,n] = 

 i 
k  StD[X(i)

i |x0,n] = 
iH

k  σ ψ1(H) (A.11) 

From (A.10) and (A.11) we readily obtain (22) and (23), respectively. 
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Figure captions 

Figure 1 The Boeoticos Kephisos River basin (left) and location key (right), in which 

triangles indicate the grid points of GCMs nearest to the catchment; their coordinates are: 

(37.6731oN, 22.50oE) for M1 (MP01GG01 and MP01GS01); (38.9666oN, 22.50oE) for M2 

(CCCma_A2 and B2); and (37.50oN, 22.50oE) for M3 (HADCM3_A2 and B2).  

Figure 2 Explanation sketch for the total uncertainty of a climatic variable. 

Figure 3 Logarithmic plots of standard deviation versus scale for the time series of (upper 

left) Aliartos temperature (oC) (upper right) Aliartos rainfall (mm) (lower left) Boeoticos 

Kephisos annual runoff (mm) ; (lower right) a synthetic time series with length and statistical 

characteristics equal to those of Boeoticos Kephisos annual runoff but assuming 

independence. 

Figure 4 Return periods of the minimum and maximum values of the average runoff, over 

scale k = 1 to 10 years, for the Boeoticos Kephisos 96-year runoff record; the return periods 

were calculated assuming that the distribution is normal for all scales and that the standard 

deviation over scale k is given by (5) and (6) for the classical and SSS model, respectively. 

Figure 5 Point estimates and confidence limits (for α = 95%) of distribution quantiles of 

(upper) annual and (lower) climatic (30-year) runoff of Boeoticos Kephisos. (PE: point 

estimate; MCCL/classical: Monte Carlo confidence limits assuming independence as in 

classical statistics; MCPL/SSS 1: Monte Carlo confidence limits assuming scaling and known 

H; MCPL/SSS 2: : Monte Carlo confidence limits assuming scaling and unknown H). 
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Figure 6 Point estimates and confidence limits (for α = 95%) of distribution quantiles of the 

climatic (30-year) values of (upper) rainfall at Aliartos and (lower) runoff of Boeoticos 

Kephisos (see Figure 5 for explanation of abbreviations). 

Figure 7 Functions φi,n(H) and ψi(H) involved in the estimation of conditional climatic 

confidence limits (for definitions see text). 

Figure 8 Annual and climatic means conditional on observations for the Boeoticos Kephisos 

runoff. Year 0 corresponds to hydrologic year 2002-03. The true parameters were assumed 

equal to their sample estimates. Exact quantities are estimated from (A.4) and approximate 

quantities are estimated from (19). 

Figure 9 Ratios of conditional mean and standard deviations to the unconditional quantities. 

The true parameters were assumed equal to their sample estimates. Three additive 

components are given for the mean corresponding to the influences of the true mean, the 

sample mean and the constant term, as derived in equation (19). 

Figure 10 Historical climate and (conditional) point estimates and confidence limits of future 

climate (for α = α΄ = 95% and climatic time scale of 30 years) for (upper) temperature at 

Aliartos, (middle) rainfall at Aliartos and (lower) runoff of Boeoticos Kephisos. 

Figure 11 Comparison of GCM modeled and historical temperature (upper) and rainfall 

(lower) for period 1960-89 in terms of their monthly means and standard deviations. 

Figure 12 GCM predictions of past and future evolution of hydroclimatic processes at the 

Boeoticos Kephisos river basin vs. the uncertainty limits; “Historical 1” is measured data 

whereas “Historical 2” in the lower panel was produced by the hydrological model with 

historical rainfall and temperature inputs. 

Figure 13 Historical climatic temperature at Berlin/Tempelhof and stochastic model hindcasts 

before 1938, based on the annual data of the period 1908-2003. The hindcasts are in terms of  

conditional point estimates and confidence limits (for α = α΄ = 95% and climatic time scale of 

30 years). 
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Figure 1 The Boeoticos Kephisos River basin (left) and location key (right), in which 

triangles indicate the grid points of GCMs nearest to the catchment; their coordinates are: 

(37.6731oN, 22.50oE) for M1 (MP01GG01 and MP01GS01); (38.9666oN, 22.50oE) for M2 

(CCCma_A2 and B2); and (37.50oN, 22.50oE) for M3 (HADCM3_A2 and B2). 
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Figure 2 Explanation sketch for the total uncertainty of a climatic variable. 
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Figure 3 Logarithmic plots of standard deviation versus scale for the time series of (upper 

left) Aliartos temperature (oC) (upper right) Aliartos rainfall (mm) (lower left) Boeoticos 

Kephisos annual runoff (mm) ; (lower right) a synthetic time series with length and statistical 

characteristics equal to those of Boeoticos Kephisos annual runoff but assuming 

independence.  
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Figure 4 Return periods of the minimum and maximum values of the average runoff, over 

scale k = 1 to 10 years, for the Boeoticos Kephisos 96-year runoff record; the return periods 

were calculated assuming that the distribution is normal for all scales and that the standard 

deviation over scale k is given by (5) and (6) for the classical and SSS model, respectively.  
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Figure 5 Point estimates and confidence limits (for α = 95%) of distribution quantiles of 

(upper) annual and (lower) climatic (30-year) runoff of Boeoticos Kephisos. (PE: point 

estimate; MCCL/classical: Monte Carlo confidence limits assuming independence as in 

classical statistics; MCPL/SSS 1: Monte Carlo confidence limits assuming scaling and known 

H; MCPL/SSS 2: : Monte Carlo confidence limits assuming scaling and unknown H).  
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Figure 6 Point estimates and confidence limits (for α = 95%) of distribution quantiles of the 

climatic (30-year) values of (upper) rainfall at Aliartos and (lower) runoff of Boeoticos 

Kephisos (see Figure 5 for explanation of abbreviations).  
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Figure 7 Functions φi,n(H) and ψi(H) involved in the estimation of conditional climatic 

confidence limits (for definitions see text).  
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Figure 8 Annual and climatic means conditional on observations for the Boeoticos Kephisos 

runoff. Year 0 corresponds to hydrologic year 2002-03. The true parameters were assumed 

equal to their sample estimates. Exact quantities are estimated from (A.4) and approximate 

quantities are estimated from (19).  
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Figure 9 Ratios of conditional mean and standard deviations to the unconditional quantities. 

The true parameters were assumed equal to their sample estimates. Three additive 

components are given for the mean corresponding to the influences of the true mean, the 

sample mean and the constant term, as derived in equation (19).  
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Figure 10 Historical climate and (conditional) point estimates and confidence limits of future 

climate (for α = α΄ = 95% and climatic time scale of 30 years) for (upper) temperature at 

Aliartos, (middle) rainfall at Aliartos and (lower) runoff of Boeoticos Kephisos.  
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Figure 11 Comparison of GCM modeled and historical temperature (upper) and rainfall 

(lower) for period 1960-89 in terms of their monthly means and standard deviations.  
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Figure 12 GCM predictions of past and future evolution of hydroclimatic processes at the 

Boeoticos Kephisos river basin vs. the uncertainty limits; “Historical 1” is measured data 

whereas “Historical 2” in the lower panel was produced by the hydrological model with 

historical rainfall and temperature inputs.  
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Figure 13 Historical climatic temperature at Berlin/Tempelhof and stochastic model hindcasts 

before 1938, based on the annual data of the period 1908-2003. The hindcasts are in terms of  

conditional point estimates and confidence limits (for α = α΄ = 95% and climatic time scale of 

30 years).  
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Table 1. Observed sample statistics of the three long time series of the case study on an 

annual basis. 

Sample statistic Temperature (oC) Rainfall (mm) Runoff (mm) 

Size, n 96 96 96 

Mean, x(n)
0  17.0 658.4 197.6 

Standard deviation, s  0.72 158.9 87.6 

Variation, Cv= s/m 0.04 0.24 0.44 

Skewness, Cs 0.34 0.44 0.36 

Lag-1 autocorrelation, r1 0.31 0.10 0.34 

Hurst coefficient, H 0.72 0.64 0.79 
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Table 2. IPCC scenarios for future climatic projections used in the study (from Leggett et al., 

1992; Nakicenovic and Swart, 1999; Carter et al., 1999). 

Label Name Description Population 

in 2100 

(billion) 

CO2 concen-

tration in 2100 

(cm3/m3) 

S1 SRES 

A2 

High population growth; high CO2 

emissions 

15.1 834 

S2 SRES 

B2 

Lower population; energy system 

predominantly hydrocarbon-based but with 

reduction in carbon intensity 

10.4 601 

S3 IS92a In between S1 and S2 11.3 708 
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Table 3 Main characteristics of the GCM coupled atmosphere-ocean global models 

(http://cera-www.dkrz.de/IPCC_DDC/IS92a/Max-Planck-Institut/echam4opyc3.html; Flato 

and Boer, 2001; Gordon et al., 2000). 

Label Name Developed by Resolution (o) 

in latitude 

and longitude 

Grid points, 

latitudes ×  

longitudes 

M1 ECHAM4/ 

OPYC3 

Max-Planck-Institute for Meteorology  

& Deutsches Klimarechenzentrum, 

Hamburg, Germany 

2.81 × 2.81 64 × 128 

M2 CGCM2 Canadian Centre for Climate 

Modeling and Analysis 

3.75 × 3.75 48 × 96 

M3 HADCM3 Hadley Centre for Climate Prediction 

and Research 

2.5 × 3.75 73 × 96 
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Table 4 General description of GCM output time series used in the study. 

Label Name Model Model inputs 

T1 MP01GG01 M1 historical for 1860-1989; from S3 beyond 1990 

T2 MP01GS01 M1 as in T1 but also considering the sulphate 

concentration 

T3 CCCma_A2 M2 historical for 1900-1989; from S1 beyond 1990 

T4 CCCma_B2 M2 historical for 1900-1989; from S2 beyond 1990 

T5 HADCM3_A2 M3 historical for 1950-1989; from S1 beyond 1990 

T6 HADCM3_ B2 M3 historical for 1950-1989; from S2 beyond 1990 
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Table 5 Performance of climatic models before and after transformation  

 

Period of 

compari-

son* Bias (%)† 

Overdisper-

sion (%)‡ 

Coefficient 

of determ-

ination  

Coefficient 

of 

efficiency  

Hurst 

coefficient 

Monthly temperature 

MP01GG01 1908-89 10.5 / -2.7 -19.7 / -2.7 0.90 / 0.91 0.72 / 0.90 – 

MP01GS01 1908-89 9.7 / -1.1 -20.6 / -0.9 0.90 / 0.92 0.72 / 0.91 – 

CCCma_A2 & B2 1908-89 3.8 / -0.5 -45.9 / 1.0 0.58 / 0.92 -0.63 / 0.92 – 

HADCM3_A2 & B2 1950-89 5.9 / -0.3 -40.7 / -1.8 0.76 / 0.92 0.04 / 0.91 – 

Monthly precipitation 

MP01GG01 1908-89 -36.5 / -5.9 -53.2 / -7.4 0.06 / 0.17 -4.1 / -0.3 – 

MP01GS01 1908-89 -36.7 / -5.7 -49.8 / -5.7 0.06 / 0.17 -3.6 / -0.3 – 

CCCma_A2 & B2 1908-89 -15.7 / -7.3 -34.4 / -1.0 0.15 / 0.17 -1.2 / -0.2 – 

HADCM3_A2 & B2 1950-89 -26.2 / 0.3 -22.2 / 0.2 0.16 / 0.12 -0.7 / -0.3 – 

Annual temperature 

MP01GG01 1908-89 10.4 / -2.7 -30.1 / -3.2 0.00 / 0.00 -19.3 / -1.5 0.76 / 0.80

MP01GS01 1908-89 9.6 / -1.1 -27.1 / -1.1 0.00 / 0.00 -15.4 / -1.2 0.72 / 0.71

CCCma_A2 & B2 1908-89 3.5 / -0.5 -59.5 / 23.0 0.00 / 0.00 -12.1 / -0.7 0.51 / 0.49

HADCM3_A2 & B2 1950-89 5.6 / -0.5 -13.3 / 28.9 0.06 / 0.06 -5.9 / -1.0 0.86 / 0.86

Annual precipitation  

MP01GG01 1908-89 -36.5 / -5.9 -46.7 / -8.6 0.00 / 0.00 -12.5 / -1.3 0.47 / 0.50

MP01GS01 1908-89 -36.6 / -5.8 -34.6 / -2.3 0.01 / 0.01 -8.2 / -0.9 0.52 / 0.46

CCCma_A2 & B2 1908-89 -15.9 / -7.6 -36.9 / 0.8 0.01 / 0.00 -4.1 / -1.1 0.45 / 0.45

HADCM3_A2 & B2 1950-89 -26.0 / 0.4 -25.3 / 4.8 0.01 / 0.00 -4.5 / -0.8 0.42 / 0.49

* With historical time series 
† Ratio of difference of means to historical mean 

‡ Ratio of difference of standard deviations to historical standard deviation 
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Table 6 Performance of runoff estimated by the hydrological model using temperature and 

rainfall data, either historical or from transformed GCM outputs; annual scale. 

 

Period of 

comparison* 

Bias 

(%)† 

Overdisper-

sion (%)‡ 

Coefficient 

of determ-

ination 

Coefficient 

of 

efficiency 

Hurst 

coefficient 

Historical§  1908-2003 2.4 -9.9 0.68 0.59 0.81 

MP01GG01 1908-2003 -22.7 -38.9 0.02 -3.0 0.91 

MP01GS01 1908-2003 -17.3 -42.4 0.01 -3.3 0.89 

CCCma_A2 & B2 1908-2003 -7.3 -38.3 0.12 -1.6 0.86 

HADCM3_A2 & B2 1950-2003 -23.6 -43.1 0.01 -13.4 0.80 

* With historical time series 
† Ratio of difference of means to historical mean 

‡ Ratio of difference of standard deviations to historical standard deviation 

§ Hydrologic model output with historical temperature and rainfall 

 

 


