EXTENDING THE LEAD-TIME OF REAL-TIME FLOOD FORECASTS BY USING A STOCHASTIC RAINFALL GENERATOR

P. Lardey (Water Resources Systems Research Unit, Department of Civil Engineering, University of Newcastle upon Tyne, NE1 7RU, UK), Ch. Obled (Laboratoire d’Etude des Transferts en Hydrologie et Environnement, Institut National Polytechnique de Grenoble, BP 53 X, Grenoble, France)

The problem of extending the lead-time of flood forecasts on small catchments has been tackled by linking a stochastic rainfall generator to a lumped rainfall-runoff model - "Topmodel". This linked system was applied to the Mediterranean catchment of the Cardon d'Ancre (area 545 km²), which is a mountainous region famous for very intense rainfall and flash-floods. This work formed part of the CEC-EPOCH-AFORSUM study of flood mitigation, which focuses on integrated forecasting systems. Parameters of the stochastic rainfall generator, which is based on renewal processes, were determined by fitting CDF's of physical variables, such as storm duration, volume, inter-storm duration etc. The generator was then used in real-time and its ability to take into account past rainfall made it possible to generate realistic future scenarios for the 12 forthcoming hours. Thus, the linked system - rainfall generator to rainfall-runoff model "Topmodel" - provided future discharge scenarios conditioned by past observed rainfall. A confidence interval for the flood forecasts was fitted and showed that the system was reliable 4 hours ahead but could be useful for decision-making beyond this period - up to 12 hours ahead. Furthermore, it was shown that the system would be greatly improved if better rainfall forecasts were available.

THE OBSERVER'S PROBLEM IN MULTIFRACTALS: RAINFALL MODELS AND SPURIOUS SCALE BREAKS

C. Landier, S. Lelievre (Physics dept., McGill University, 3600 University St., Montreal, P.Q., H3A 2T8, Canada), D. Schertzer (L. M. D., BP 99, Université Pierre et Marie Curie, 4 Place Jussieu F-75252 Paris Cedex 05, France)

Detector limitations present fundamental problems in the observation of multifractals. First, establishing the scaling behaviour demands a that a wide range of scales be investigated, while the highly intermittent nature of most multifractals requires a wide dynamic range in detector response. This double requirement places large demands on the detector's capabilities. The typical case will be that the detector cannot record all of the available information, missing either the extreme events or the small input signal. It is of fundamental importance to understand what multifractals "look like" when viewed through a detector with finite dynamic range and finite range of scales.

A new framework and (theoretical) techniques are developed for handling these fundamental difficulties. The most common situation, a non-zero minimum detectable signal level that "thresholds" out the low amplitude signal information, is developed and solved theoretically. This framework provides exact formulae for predicting the errors and biased estimates resulting from thresholding. The results will be discussed in the context of rainfall measurements.

RAINFALL CLASSIFICATION TO IMPROVE THE THRESHOLD METHOD FOR ESTIMATING MEAN AREAL RAINFAIL

T. Lebel (FORSTOM-LTHIE, BP 83X, 38041 Grenoble Cedex, France), A. Amani (Ecole Polytechnique Montréal, Département Génie Civil)

An objective classification technique is proposed to build homogeneous rainfall samples to which areal rainfall algorithms can be applied. This technique is an extension to the rainfall spatial distribution of a crossing method applied earlier to characterise rainfall temporal distributions. A profile curve for the spatial distribution is defined and the area under this curve is shown to allow for a classification of rainfall events in the Sahel, based on their spatial intermittence. The relevance of this classification is then tested for estimating areal rainfall over a GRID mesh area using the so-called threshold method. Comparing the results of the estimation before and after classification, one can conclude that, at least for Sahelian rainfields, a proper classification is able to reduce rainfall estimation errors based on radar or satellite data.

PDS-MODELLING AND REGIONAL BAYESIAN ESTIMATION OF EXTREME RAINFAILS

H. Madsen and D. Rosbjerg (Institute of Hydrodynamics and Hydraulic Engineering, Building 115, Technical University of Denmark, DK-2800 Lyngby, Denmark)

The Partial Duration Series method is employed in the modelling of extreme rainfall data from a country-wide system of rain gauges in Denmark. The method is applied to two variables: the total precipitation depth and the maximum 10 minutes rain intensity of individual storms. It is shown that the previous assumption of spatial homogeneity of extreme rainfalls in Denmark cannot be justified. In order to obtain an estimation procedure at non-monitored sites and to improve at-site estimates a regional Bayesian approach is adopted. The empirical regional distributions of the parameters in the Partial Duration Series model are used as prior information. The application of the Bayesian approach is derived in case of both exponential and generalized Pareto distributed exceedances.