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The forecast of the significant wave height is valuable in numerous coastal and offshore investigations 
and activities. This is currently accomplished numerically via the state of the art third generation 
deterministic wave models that solve the wave energy balance equation. In recent years, data 
assimilation and artificial neural network techniques have been used in a number of wave height 
forecast improvement efforts. In this work we present the application of linear and non-linear stochastic 
techniques to show that WAM background errors can be reasonably predicted by using a limited 
number of buoy observations and improve thus its forecasting robustness. Re-run of the wave model is 
not required.  
 
The first assessment, conducted in the Aegean Sea, refers to the improvement of the significant wave 
height prediction in deep water. The results were checked against four pilot-study monitoring stations. 
These stations are located in the open sea near the Athos peninsula and offshore Lesvos, Mykonos and 
Santorini islands. The assessment had a two-fold scope. First, a study was conducted in a time domain 
fashion employing these four locations and using four stochastic models whose explanatory variables 
are the WAM prediction and the measured wave height at previous steps. Two bivariate linear models, 
a trivariate linear model and two versions of a non-linear bivariate model were usedwith results shown 
in Fig.1. 
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 R2 
Athos 

R2 
Lesvos 

R2 
Mykonos

R2 
Santorini 

WAM 0.781 0.713 0.722 0.676 

S. Model 1 0.920 0.892 0.927 0.906 

S. Model 2  0.865 0.813 0.860 0.820 

S. Model 3 0.924 0.895 0.931 0.911 

S. Model 4a 0.929 0.897 0.936 0.909 

 S. Model 4b 0.929 0.898 0.935 0.908 

 
Figure 1: The improvement of the coefficient of determination in all stations using four stochastic 
models. An example of the improvement in Lesvos island: Scatter plot diagram 
 
These four models result in a significant forecast improvement, irrespectively of the application time 
period and of the location of the prediction. It is remarkable that this is accomplished via the same 
pattern of weighting factors in the equations. More specifically, the coefficients of determination, 
which show the model adequacy, increased from approximately 0.7 (WAM) to over 0.9, suggesting 
that this method may be suitable for operational use. The stochastic models improvement reduced with 
the increase of lead time and approaches WAM predictability after 72 hours (Fig 2) 
 

 
 
 
 
 
 
 
Figure 2: Coefficient of determination decay v.s. lead time 
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The second part of the Aegean application consists of a space-wise study including spatial stochastic 
modeling and wave information transfer aiming at expanding the improvement described above in 
space and especially in coastal regions. To accomplish this, the wind speed and direction effects were 
included. We found that wind information can help to improve the said prediction in time and space 
without using measurements or satellite observations, except for a calibration period. The applied 
stochastic methods show a somehow limited but steady improvement. This is due to the complexity of 
the Aegean Sea with its numerous islands and complicated shoreline.  
 
To avoid this peculiarity of the Aegean Sea, further examination was conducted in two locations of the 
Indian Ocean again via stochastic techniques. WAM cycle 4 without assimilation schemes together 
with the same data from two buoys were used. The scope was to improve the 9 hrs time step wave 
forecast at the second location which lies in intermediate waters. For this purpose, data of the first 
location, which lies 900 Km offshore India peninsula, along with the prediction of the WAM model 
represent the explanatory variables of the non linear stochastic method. Intermediate buoy data were 
used for validation. A non linear transformation in the stochastic models which is related to the swell 
content optimizes the improvement of the wave height prediction in intermediate waters using the 
offshore measurement. The improvement of the wave height prediction is remarkable (Fig.3). 
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Figure 3: Wave height time series in Indian Ocean intermediate waters. WAM v.s. buoy and stochastic 
model  
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