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Premise 1/3

What is long term persistence (LTP)?

LTP has a long history — It dates back to the pioneering work of Hurst (1951) who first
detected his presence when analysing flow records of the Nile River.

Definition of “LTP” (Beran, 1994):
—QL .
p(k)~ c‘k‘ with O<a <1

By contrast, short term persistence (STP, the traditional persistence) is characterised by:

plk)~c™*

In the presence of LTP “The dependence between events that are far apart in time
dimishes very slowly with increasing distance”.

Overall the time series looks stationary. When one only looks at short time periods, then
there seems to be cycles or local trends.




Premise 1/3

Example of series generated by a LTP model

LTP has a significant influence on
trend estimation. Classical statistics
needs to be revisited to account for
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Premise 2/3

Mandelbrot (1968, 1977, 1983a) detected the possible presence of LTP in several
geophysical records. In reference to the famous statement in the Genesis (41, 29-30):

“Seven years of great abundance are coming throughout the land of Egypt, but seven
vears of famine will follow them”

Mandelbrot proposes to name the presence of long term cycles in a river flow record
(which can be given by LTP) as “Joseph Effect”. Indeed, the flows of the Nile River were
found to be possibly affected by LTP by many authors (Hurst, 1951; Beran, 1994;
Montanari et al., 2000; Montanari, 2003).

PROBLEM: to detect LTP is not easy. It is a long term behavior and therefore very long
records are needed.

BUT: LTP is very important in the detection of climate change. It induces a significant
uncertainty in the long term.




Premise 3/3

The intensity of LTP can be measured through the value of the Hurst coefficient /, which
varies between 0 and 1.

0<H<0.5=>noLTP
0.5 < H<1 =>» LTP with increasing intensity.

For positively correlated processes H > 0.5.
Many methods are available for computing H. We do not go into details here.

Effect of LTP on statistical uncertainty:
a classical example

Denote with the symbol p, the estimator of the mean of a record X, = (X}, X, ... X)) of
size n. The standard deviation of the estimator, in the presence of LTP, is:

O'(X )

o'(lu ) = where 6(X) is the standard deviation of the process X
n nl—H

Ifn=10%, c=1and H= 0.5 we obtain: 6(n,) = 0.1 | |In practice the situation is even worse
Ifn=10'" 6 =1and H=0.9 we obtain: o(p,) = 0.1 as H is estimated from the sample
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(b) Nile data set

The Nilometer series
indicating the annual
minimum water level of
the Nile river for the years
622 to 1284 A.D.

(663 years; Beran, 1994)

Nilometer index
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(d) Vostok data set

G 10
. o
The Vostok ice core = |~ 400 year scale — 2000 year scale = 10000 year scale |
deuterium data set going g 5.
back to 422 766 years S
before present (Petit et al., 0
) 2
Temperature difference g 5
with reference to the mean §
. = 210
recent time value ‘ ‘ ‘ ‘
400000 300000 200000 100000 0
Years before present
This temperature difference is calculated based ol ®®
on the deuterium content of the ice using a '
deuterium/temperature gradient of 9%o/°C, 0.42
after accounting for the isotopic change of sea-
water. - 04
i c
The temporal resolution ranges from 17 years 5038

(present time) to 631 years. Here the series was
re-interpolated using a constant 400 year 0.36
temporal resolution.

A
0 025 05 075 1 125 15 175
log( k)

034
032 )
0 025 05 075 1 125 15 175
log( k)
(e) Vostok data s«
°; 400 year scale —— 2000 year scale
Set ad a ted g 5 - —10000 year scale — Harmonic |
P g
o
©
g
Vostok data series of 2
temperature difference g
L C £
Identification of periodicity € oLl | | |
Plot of the principal 400000 300000 200000 100000 0
harmonic roughly Years before present
corresponding to the Equation of harmonic P
period of orbital stretch X;=3.917 cos (2m t/T +
0.2146) — 4.856 Subtraction
. 7 =103 598 years of the
038 ¢ Explains 25% of variance harmonic
O 10
036 <
>
©
0.34 g 5
o
< ]
2 032 o
< £°
S o3 o
é 5
0.28 ki 400 year scale — 2000 year scale = 10000 year scale‘
_10 T T T T
026 400000 300000 200000 100000 0
0.24 Years before present




Goal of the study: analyse the influence of LTP
on trend detection in mean annual global
temperature series

Record for case study

*  Climatic Research Unit record (Observed in the period 1880-2005; CRU);
Additional information extracted from:

Reconstruction by Jones et al (1998, J98);

Reconstruction by Mann et al. (1999, M99);

Reconstruction by Briffa (2000, B00);

Reconstruction by Esper et al. (2002, E02);

Reconstruction by Mclntyre and McKitrick (2003, M03);

Reconstruction by Moberg et al. (2000, M0S).
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Goal of the study: analyse the influence of LTP
on trend detection in mean annual global
temperature series
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Is LTP present in the temperature records ?

Data series CRU | 798 M99 B0O E02 Mo03 MO05

Sample size 150 | 992 981 994 1162 581 1979
Estimated standard

deviation 027 | 023 0.13 0.14 0.14 0.17 0.22

Hby R/S 1.07 | 0.90 0.89 0.89 0.93 0.97 0.92

Hby ASD 0.93 | 0.88 0.91 0.91 0.94 0.92 0.94

p 0.84 | 0.53 0.65 0.64 0.81 0.66 0.91

Information contained in reconstructed series

* All reconstructed series indicate strong long term persistence (H = 0.88-
0.94), which complies with the instrumental series (H = 0.93)

» Redoing all analyses for the pre-instrumental period (1400-1855) the
statistical characteristics, including H, are almost the same

However:

» The different series show different evolutions of temperature even
though all are supposed to represent the same physical quantity

» Their uncertainty increases progressively as we move toward the past

Conclusion:
» These series are good to obtain a rough picture of the temperature evolution
and a general statistical behaviour - but not good for statistical testing




Trend test statistic

Ribsky et al. (2006) proposed to use the following statistic for detecting the presence of
trend:

i i il
D In — Iun - lun
* Compute the mean of a sub-sample of size n starting from time 1.
* At time i-/, repeat the same computation.
*  Compute the difference between the two computed means.
» Compare the computed statistic with a confidence interval of the zero value.

Standard deviation of the test statistic
vgh(elr?ef,n)= V2o (u, W1-p},

£, 1s the correlation coefficient of u,, i.e. the process X averaged at scale n, at lag I/n,
which can be theoretically estimated from the autocorrelation function at scale 1
(annual)

The null hypothesis (no trend) is not rejected if Y, , < 2.58 o(D,,) for 1% significance level

Test statistic: an example

Let’s assume that a time series of sample size equal to 150 is available and that, under the
assumption of no correlation, the test was computed by assuming n» = 30 and //n = 3. Let’s
also assume that the null hypothesis (no trend) has been rejected with a very low risk
(10-15). (This in practice means that a trend is likely to be present).

Let’s investigate the effect of the presence of correlation in the original time series. The
picture below shows the risk associated to the rejection of the null hypothesis as a function
of the lag 1 autocorrelation (p) of the original data.
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Trend detection on the CRU series
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* As noted before, a real test would be even less likely to reject the null hypothesis.
* This result agrees with Cohn and Lins (2005).

* Rybski et al. (2006) arrived at an opposite conclusion. However, they may have
underestimated some uncertainty factors.

Summary of the tests

Statistical uncertainty is dramatically increased in the presence of dependence, especially
if this dependence is LTP.

Before conclusions can be drawn, a rigorous methodological framework, based on both
physical and statistical arguments, should be built.

Quoting from Cohn and Lins (2005): “From a practical standpoint ... it may be
preferable to acknowledge that the concept of statistical significance is meaningless
when discussing poorly understood systems.”




http://www.costruzioni-idrauliche.ing.unibo.it/people/alberto

More information in
Koutsoyiannis, D. & Montanari, A.: Statistical Analysis of Hydroclimatic Time Series:
Uncertainty and Insights, Water Resources Research, 43(5), W05429.1-9, 2007.
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