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1. Abstract

Time series with long-range dependence appear in many fields including hydrology and
there are several studies that have provided evidence of long autocorrelation tails.
Provided that the intensity of the long-range dependence in time series of a certain
process, quantified by the self-similarity parameter, also known as the Hurst exponent
H, could not be falsified, it is then essential that the variable of interest is modelled by a
model reproducing long-range dependence. Common models of this category that have
been widely used are the fractional Gaussian noise (FGN) and the fractional ARIMA
(FARIMA). In case of a variable exhibiting skewness, the previous models can not be
implemented in a direct manner. In order to preserve skewness in the simulated series, a
normalizing transformation 1s typically applied in the real-life data at first. The models
are then fitted to the normalized data and the produced synthetic series are finally de-

normalized. In this paper, a different method is proposed, consisting of two parts. The

first one regards the approximation of the long-range dependence by an autoregressive
model of high order p AR(p), while the second one regards the direct calculation of the
main statistical properties of the random component, that is mean, variance and
skewness coefficient. The skewness coefficient calculation of the random component 1s
done using joint sample moments. The advantage of the method is its efficiency and

simplicity and the analytical solution.




2. Motivation

Since Hurst (1951) observed the long-term persistence phenomenon in the annual average
streamflows of Nile, the same behaviour has been identified in numerous natural processes while,
its importance has been underlined by scientists in many controversial disciplines. It seems that the
Hurst phenomenon is ubiquitous in nature and this makes it necessary to find adequate ways to
model it.

Many models have been proposed in the literature that preserve the Hurst behaviour, such as
Fractional Gaussian Noise (FGN) (1.e. Mandelbrot, 1969; Mandelbrot and Wallis 1969), fast FGN

(Mandelbrot, 1971), broken line models (i.e. Ditlevsen, 1971), fractional ARIMA (Hosking, 1981),
and recently symmetric moving average models (SMA) (Koutsoyiannis, 2000; 2002).

If the Hurst behaviour appears in a process, it needs to modeled as it affects dramatically the time
series structure. Another distinguished characteristic of hydrological processes, that needs to be
modeled, 1s asymmetry. In this direction have been made many attempts to adapt standard models
to preserve the skewness (i.e. Matalas and Wallis, 1970).

Some of the previous models are not easy to apply as the parameters are not easy to estimate. while
other can preserve the skewness but not the Hurst behaviour and vice versa. Other problems are
the narrow type of autocorrelation functions that those model can simulate (exception is the SMA

model).

In this study is proposed a general methodology to preserve both the Hurst behaviour and
skewness. The framework of the methodology 1s simple: the Hurst phenomenon is modeled from
an autoregressive model of high order, AR(p), while the skewness is preserved by evaluating the
skewness coefficient of the random component of the model. The model should be easy to apply
and suitable for any practical purposes such as hydrologic design or water resources management.




3. Modelling Approach

* In order to preserve the long-range dependence or the Hurst phenomenon in the simulated time
series, a high order autoregressive model 1s implemented. The long-range dependence behaviour, is
essentially the slow decay of the autocorrelation function with time. On the contrary, the AR(p)
models are considered to be short-range dependence models. Nevertheless, as this study reveals,
AR(p) models of high order can reproduce the Hurst phenomenon sufficiently enough for any
practical modelling purposes.

p

In the general case of order p, the AR(p) model takes the following form: X; = &+ Z Xi_j @
i=1

where ¢ is the innovation or the random component and a, are coefficients. In order to fit the

model to a dataset, the a, coefficients and the basic statistics (mean, standard deviation) of the ¢,
have to be estimated.

The auto-covariance function y, of the AR(p) model for lag k and for k>0 1s given by
p

Yk = Z @i Y\i-k|
i=1

The replacement of y, with the samples estimates and the implementation of the last equation p

times gives a linear system of equations that can be solved straightforwardly, evaluating therefore
the a, coefficients.

Finally, the mean and the variance of the ¢ _can be estimated using the following two equations.
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. Preserving the Skewness in an AR(p) Model

To preserve asymmetry in the simulated time series, it is necessary to evaluate the
skewness coefficient of the innovation, Csk_ . It can be shown that the third central

moment of the innovation of the AR(p) model is
(P )
Mg = M3y, ~ E'Zal Xt |)| (1)

Defining as multi-auto-covariance of order (#,, 7,,...,22,) and lag (4, b,..., 1),
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it can be proven that the following equation is valid,
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Replacing the multi-auto-covariance terms in the previous equation with the sample
estimates, given by
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it is then straightforward to estimate the z;_1n (1) and thus the Cu =—




5. The Generalized AutoCorrelation Function (GACF)

The major criticism of a high order AR(p) model would focus on the lack of parsimony,
as estimation of the autocorrelation function up to lag p is required to fit the model.
Moreover, it 1s well known that the estimator of the ACF is highly variable and that it
increases its variability with increasing lag (Bras and Rodriquez, 1985). Consequently, the
uncertainty in the estimation of the ACF would lead to uncertain validation of the model
parameters. To overcome this disadvantage, it is proposed to fit a generalized ACF, ¢©),

n
P =(api’+1)”
to the first few empirical ACF values (where a, j, J are positive parameters and ; is the

lag). Subsequently, the fitted GACF can be
used to extrapolate ACF values for

1

® Empirical ACF
high ;. 08| — Fitted GACF

The figure depicts the empirical
autocorrelation function of the
Nilometer dataset (analysis follows)
and the fitted GACF. The GACF
has been fitted to the first 10
empirical values of the ACF by
minimizing the square error.
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6. The Generalized Lambda Distribution (GLD)

In order to preserve the skewness in the simulated series, the innovation ¢, must be sampled from a
distribution with variable skewness . Such a flexible distribution is the GLD family.

The GLD(\,, A, A5, A,) family distributions originated from the one-parameter lambda distribution
proposed by John Tukey (1960) and was generalized for Monte Catlo simulation purposes by John
Ramberg and Bruce Schmeiser (1974). Although the GLD has been applied in many fields since the early
1970s (Karian and Dudewicz, 2000), 1t has never been used in hydrology.

The GLD family with parameters A, A,, A; and A,, is defined in terms of its percentile function,

A3 _ 1— A4
Q= -4
%9)

where 0 <y < 1. The parameters A, and A, are, respectively, location and scale parameters, while A, and
A, determine the skewness and kurtosis of the distribution.

The GLD probability density function is
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The restrictions on Ay, A, A; and A, that yield a
valid GLD distribution, the parameter space
and the skewness—kurstosis space are
discussed in detail by Karian and Dudewicz
(2000). In the next figure GLD pdfs are 0.2

plotted with mean = 0, variance = 1 and ﬁ

skewness coefficient Csk ranging from 0—4.5
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7. Fitting the GLD and Sampling

If Xis GLD(, A, A5, A,) with 4,>-1/4 and A,>-1/4, then its first four moments (Ramberg et al., 1979),

Uy 1y 11, 14 (ean, variance, skewness coefficient, and kurtosis coefficient), are given by
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and B is the Beta function defined as B(a, b) = f 2l - t)b_1 dt
0

If we consider the innovation ¢ as a random variable with known estimation of the mean, the variance,
the skewness and the kurtosis coetficient, a GLD distribution can be fitted by solving numerically the
previous nonlinear system. The mean, the variance and the skewness coefficient of ¢, can be analytically
estimated as described in slide four. At the moment there is no analytical way to estimate the kurtosis
coefficient of ¢, but heuristically for this study was taken the minimum so as 4;<0 and 1,<0, which
implies that the fitted GLD ranges form -0 to o0 (Karian and Dudewicz, 2000).

Once the parameters 4, 4,, A, and A, of the GLD are estimated, the sampling is very easy as the
percentile function has a simple and analytical formulae.




8. Simulation Organogram
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9. Original Data I: Nilometer Index

Standardized Nilometer series Annual scale
indicating th ] minimum 7 — 30year scale
indicating the annual m: u — 100 year scale
water level of the Nile river for the

years 622 to 1284 A.D.

(663 years; Beran, 1994)

w

N

=

o

|
=

A data with small positive skewness
but with a large Hurst exponent value
that verifies the multiscale
fluctuations.

Standardized Nilometer Index
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10. Original Data II: Annual Temperatures

Annual scale
- 30 year scale
= 100 year scale

Northern Hemisphere temperature
anomalies in °C with reference to 1961-
1990 mean (Standardized in the figure
on the right).

(2000 years, Moberg et al., 2005)

KA highly variable Northern Hemisphere\
temperature reconstruction that reveals
the large natural variability of the
climate in multiple scales. The
multiscale variation is verified by the

Qarge Hurst exponent value. )

Standardized Average Temperature

Annual Temperatures
Sample size 1979
Average 0
St. deviation 1
Skewness -0.13
Hurst Exponent 0.9

-4 -3 -2 -1 0 1 2
Standardized Annual Average Temperature




11. Original Data III: Daily Average Temperatures

Daily scale
41 - 10 day scale
== Monthly scale

Standardized average daily
temperatures in July recorded at Den
Helder station in Netherlands, from
1901 to2005.

(source: Royal Netherlands
Meteorological Institute)

3 L

/The histogram below depicts the A

positive asymmetry of the dataset,
while the long-range dependence is
manifested from the high Hurst =00 1000 1500 2000 2500 3000

kexponent value. ) Time (day)

Standardized Average Temperature

Daily Temperatures
Sample size 3069
Average 0
St. deviation 1
Skewness 0.93
Hurst Exponent  0.72

-2 -1 0 1 2 3 4
Standardized Daily Average Temperature




12. Original Data IV: Daily Average Dew Points

Standardized average daily dew point
in January recorded at Den Helder
station in Netherlands, from 1901 to
2005.

(source: Royal Netherlands
Meteorological Institute)

This dataset is suitable for the _
purposes of this study as it shows — ?;’ ggjgi"je
high negative asymmetry and a high : — Monthly scale
Hurst exponent value. ‘ |

Standardized Average Dew Points
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Time (day)

Daily Dew Points
Sample size 3069
Average 0

St. deviation 1
Skewness -1.10
Hurst Exponent  0.75
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13. Simulated Data I: Nilometer Index

Annual scale
- 30 year scale
e 100 year scale

An auto-regressive model of order
30, AR(30), was fitted to the original
dataset in order to preserve the Hurst
behaviour. The skewness coefficient
of the innovation was evaluated,
according to the methodology
analysed in this study, to Csk, = 0.46.
A simulated series with statistics in
close proximity to the observed ones

is presented here. /
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14. Simulated Data II: Global Temperatures

An auto-regressive model of order 21

40, AR(40), was fitted to the original
dataset in order to preserve the Hurst
behaviour. The skewness coefficient
of the innovation was evaluated,
according to the methodology
analysed in this study, to Csk, =-0.48.
A simulated series with statistics in
close proximity to the observed ones

is presented here. /

1 L

Annual scale
- 30 year scale
e 100 year scale

Standardized Average Temperature

500 1000 1500 2000
Time (Y ear)

Annual Temperatures

Sample size 1979
Average 0.04
St. deviation 1.07
Skewness -0.12 ¢ _0.05 |
Hurst Exponent  0.91
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Standardized Annual Average Temperature




15. Simulated Data III: Daily Average Temperatures

6

Daily scale
= 10 day scae
== Monthly scale

An auto-regressive model of order
20, AR(20), was fitted to the original
dataset in order to preserve the Hurst
behaviour. The skewness coefficient
of the innovation was evaluated,
according to the methodology
analysed in this study, to Csk, =1.94.
A simulated series with statistics in
close proximity to the observed ones

is presented here. / 7 |
1000 1500 2000 2500 3000

Time (Day)

Standardized Average Temperature

Daily Temperatures
Sample size 3069
Average 0.02
St. deviation 1
Skewness 0.94
Hurst Exponent  0.71

2 4
Standardized Daily Average Temperature




16. Simulated Data IV: Daily Average Dew Points

o[

An auto-regressive model of order
20, AR(20), was fitted to the original
dataset in order to preserve the Hurst
behaviour. The skewness coefficient
of the innovation was evaluated,
according to the methodology
analysed in this study, to Csk, =-2.65.
A simulated series with statistics in S
close proximity to the observed ones Z 100y wale

is presented here. / = Monthly scale

500 1000 1500 2000 2500 3000
Time (Day)

Standardized Average Dew Points

Daily Dew Points
Sample size 3069
Average 0.01
St. deviation 1
Skewness -1.12
Hurst Exponent  0.75

-5 -4 -3 -2 -1 0 1
Standardized Daily Average Dew Points




17. Simulated Mean and Standard Deviation

The box plots below depict the estimated mean ¢  The box plots below depict the estimated
values of the 1000 simulated series. Blue dots standard deviation values of the 1000
represent the observed means of each dataset (0 simulated seties. Blue dots represent the

as the sertes were standardised). The effect of standardized values. The variability of the

the Hurst behaviour is clearly manifested by classic standard deviation estimator, is larger in
larger variability of the estimator in the series the series with larger values of Hurst

with the larger Hurst exponent values. exponent, and it is also negative biased.
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18. Simulated Skewness and Hurst Exponent

*  The box plots below depict the estimated *  The box plots below depict the estimated
skewness coefficient values of the 1000 simulated

series. Blue dots represent the observed values of
each dataset. Given that the estimation of the Csk
is highly uncertain, as its value is sensitive to

Hurst exponent values of the 1000 simulated
series. Blue dots represent the observed
values. Again the model, as the plot reveals,
manages to reproduce sufficiently the Hurst
outliers, it is encouraging  that the model behaviour, with the mean Hurst exponent
reproduces Csk values in proximity with the

observed ones and with low variability.
15

value of the simulated series in agreement with
the observed ones.
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19. Conclusions

While the autoregressive models are considered to be short range
persistence models, it 1s concluded in this study that a higher order AR
model preserves adequately the Hurst behaviour, for Hurst exponent
values as high as 0.9. It seems that the model can preserve even more
intense long-term persistence but this needs to be further examined.

To preserve the asymmetry, an analytical expression for the estimation of
the skewness coefficient of the innovation is given. Subsequently, the
innovation sequence 1s sampled from a flexible skewed distribution, the
so-called Generalized Lambda Distribution. The model manages to
preserve sufficiently the skewness as the mean skewness coetficient of the
simulated series is in proximity with the observed ones.

As the simulated seties are in accordance with the observed ones, the

model can be used for any practical modeling purposes.

Overall, the proposed methodology 1s simple and robust.
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