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1. Abstract

It has been a common practice in geophysical research to characterize
observed time series as nonstationary and to apply statistical tools to detect
nonstationarity. However, in many cases the logic of such detections is
flawed, principally because stationarity and nonstationarity are not
properties of the time series (phenomena) but of the mathematical processes
(noumena) devised to model the phenomena, and also depend on our
current knowledge of the system state. One of the most common flaws is
the rejection of a stationarity hypothesis based on a classical statistical test
which assumes that the process is independent in time, whilst it is well
understandable that time independence is not an appropriate assumption
for geophysical processes. In the case that a scaling behaviour is verified or
assumed, one of the most common misuses of statistics is the
characterization of a time series as nonstationary based on an estimate of a
Hurst exponent greater than 1. Among the tools used for such estimations is
the spectral representation of the time series. To demonstrate common
flaws, several examples are synthesized, using data generated from
hypothesized models, known a priori to be stationary or nonstationary. The
examples aim to demonstrate that erroneous conclusions are very probable
and to locate the origin of flawed results.

2. Is this time series nonstationary?

e Who could bet on “yes”?

* Note that the time series
was generated from a
simple scaling stochastic
model (SSS) with Gaussian
distribution, mean u =4,
standard deviation 0 =1 and
Hurst coefficient H = 0.9 (the
three-component generator
in Koutsoyiannis, 2002, was
used). Thus, the process x, is
stationary.

However, the correlation
coefficient of the time series
with time is 0.65
(statistically significant
according to classical
statistics).

3. Does this time series contain trends?
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This is the same time series as before, extended over time (up to 1024).
It was generated by a stationary SSS model.

The term “trend” can be acceptable in a loose setting, to indicate that at some time a
smoothed (e.g. time averaged) transformation of a time series increases or decreases.

An attempt to use the term “trend” in a more rigorous setting (e.g. using
mathematical functions) and combine it with nonstationarity may be disastrous.

The fluctuations of the mean are common for an SSS process or, more generally, for a
process with autocorrelation (Koutsoyiannis, 2006).

4. What is stationarity and nonstationarity?

A stochastic process X(t)is called strict-sense stationary if all its statistical properties are
invariant to a shift of time origin: the distribution function of any order of X(t + 7) is

identical to that of X(t) (Papoulis, 1991).

A process is called wide-sense stationary if its mean is constant and its autocovariance
depends only on time differences, i.e. (Papoulis, 1991)

E[X()]=p,  E[(X(7) =) (X(t+7) — )] = C(7)
A strict-sense stationary process is also wide-sense stationary (the inverse is not true).

A process that is not stationary is called nonstationary. In a nonstationary process one or
more statistical properties depend on time.

To characterise a process nonstationary, it suffices to show that some statistical property
is a deterministic function of time.

It has been a common practice to make such a characterization inspecting the data, i.e.
detecting upward or downward “trends”, fitting functions (e.g. linear expressions of
time) to the trends and performing statistical tests to assess their significance.

Such practices most of the times simply manifest misuse of probability and statistics,
(Koutsoyiannis, 2006) because:

Stationarity and nonstationarity are properties of a process, not of time series (i.e.
sample functions or series of observations).

A deterministic function is a function that can be produced by deduction,
independently of the data (a priori; e.g. by a model that could predict them).

In contrast, according to this practice, the “trends” and “shifts” in the means are
inferred by induction based on the data (a posteriori).

Hence such fitted lines are not “deterministic” and do not represent nonstationarity.

5. Are cumulative processes nonstationary?

A typical case of a nonstationary process is a cumulative process that in discrete time 7 can be
expressed as Y; =Y, + X, where X, is any stationary process,i=1, 2, ..., and Y, = 0. Examples:

— A random walk and a Wiener process in which consecutive X, are independent (white
noise) with zero mean (u = 0). The resulting mean of Y is E[Y,] =0 (not a function of time);
yet they are nonstationary because Var[Y] oc i.

— A Brownian motion, in which consecutive X; are dependent with Markovian
autocorrelation; for large time i, it has essentially the same properties with the Wiener
process (E[Y,] =0, Var[Y,] o).

— A self-similar process, also known as the fractional Brownian motion, in which
consecutive X; are members of an SSS process (E[Y,] =0, Var[Y;] « i?H, where H is the
Hurst coefficient).

Such cumulative process are abstract constructions, whose materialization can be done in
several cases, i.e. in motion of molecules and in storing of inflows X, in a reservoir; in the later
case, the inflows are nonnegative so that x4 := E[X.] > 0; hence the mean of storage Y, is
proportional to time (E[Y,] = u 7).

However, when these are materialize in real world processes, they change from

nonstationary to stationary:

— A Brownian motion occurs within boundaries (e.g. the glass containing water); bound
Brownian motion is stationary (except in a transition period; Papoulis, 1991).

— In a real world storage process, there are always some losses (e.g. evaporation, leakage,
spills), so that the cumulative process should write Y;=aY;; + X, where 0 <a <1 (with
(1 -a)Y,, representing the losses). It is easily proved that Y, is a stationary process.

Thus, abstract cumulative processes (without bounds and losses) are nonstationary, whereas
real world cumulative processes (with bounds or losses) are stationary.

6. Can spectral methods detect nonstationarity?

A common yet sophisticated method to detect nonstationarity has been based on the
power spectrum (or spectral density) of a process.

An SSS process (stationary) with Hurst coefficient H has a power spectrum s(w) « w!~ 24,
where w is the frequency. In a double logarithmic plot of s vs. w, this results in a constant
slope =1 -2H (for a purely random process, H =0.5, f = 0; for a persistent process, 0.5 <
H<1,-1<p<0; for an antipersistent process, 0 <H <0.5,0<<1)

In a nonstationary process (e.g. abstract cumulative), the power spectrum is clearly a
function of time s(w). Hence, estimation of a time-invariant power spectrum based on a
time series x. (e.g. using the periodogram) is not possible.

However, such a nonstationary processes can be transformed to stationary by filtering it
with an ideal bandpass filter (cutting frequencies below a specific w,; or above a specific
wy) and hence it can have a time invariant power spectrum (Keshner, 1982; Wornell,

1993).

In this case, a stationarized self-similar process has a power spectrum s(w) oc w2 thus
the slope in a double logarithmic of s vs. w is f =—-1 — 2H (for a Wiener generating
process, H = 0.5, f = -2; for a process with persistent intervals, 0.5 <H <1, -3 < <-2; for
a process with antipersistent intervals, 0 <H < 0.5, -2 < <-1).

This result has been given the interpretation that a linear arrangement of the power
spectrum in a double logarithmic plot with slope < -1 manifests nonstationarity; this
has been used as a technique to deem the time series that produces this power spectrum
as nonstationary.

However, this technique may yield erroneous results (particularly in short samples that
are the rule in hydrology and geophysics) as demonstrated below using synthetic
examples with a priori known properties.

/. False spectral estimation due to small sample
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* Lengths of geophysical time series are usually

small, and thus estimation of the slope in the
power spectrum plot is highly uncertain.

The upper figure demonstrates this estimation
for the time series of panels 2-3 and for the
indicated sample sizes n (the theoretical power
spectrum is also known because the stochastic
model is fully known).

The slopes estimated from the empirical
spectra for n = 1024, 256 and 64 are
respectively -0.84, -0.90 and -1.66; the first two
correspond to SSS (stationary) with H = 0.88§,
0.95 (true value H = 0.90) whereas the last
case erroneously deems the process as
nonstationary with H = 0.33. (Note: here and
in subsequent cases slopes are estimated for
w =0.2).

The lower figure, depicting results of Monte
Carlo simulations, shows that for sample sizes
64 and 128 the method erroneously deems the
stationary process as nonstationary (8 <-1) for
34% and 26% of the cases, respectively. A time
scale-based method (using the standard
deviation over several scales; Koutsoyiannis,
2003) is much more appropriate (P{B < -1} = 0).
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8. Spectral estimation for (abstract) cumulative processes

For a Wiener process (H = 0.50) the spectral =~ For the cumulative SSS time series of panels 2-3 (H = 0.90) after
method estimates slopes -2.11, -2.42 and removal of the mean, the spectral method estimates slopes -1.98,
-1.71 for n = 1024, 256 and 64, respectively. -2.15 and -3.49 for n = 1024, 256 and 64, respectively. Thus, in
Thus the method correctly identifies the the first two cases, the method correctly deems the processes as
nonstationarity of the process and nonstationary but estimates incorrect H values (0.49 and 0.58,
estimates H as 0.56, 0.71, 0.36, respectively respectively). The third case (f =-3.49 does not have a meaning,.
(relatively close to the true value 0.50) (Notice the increase of s(w) with n due to nonstationarity).
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9. A cumulative processes of natural type (stationary)

* A good example for a natural cumulative (storage) process is given by

Y,=aY +X,;, 1=1,2,...;Y,=0

where the inflows X, can be assumed as SSS (stationary) and 4 is a constant slightly
smaller than 1 (to account for losses). Clearly then, X, is also stationary.

Given the statistical characteristics of the process X, i.e. the mean u, the standard
deviation o and the Hurst coefficient H, which fully describe the process autocovariance

= Cov[X, X,

Z+]

m = E[Y,] = /(1 ~ a); g, = Var[Y] = (by + a by)/(1 - 2%);

g =CovlY, Y, 1=b+ag;_,; whereb,:=Cov[Y, X, ;]=y;+ab,

], the statistical characteristics of the process Y, are easily derived as:

This allows theoretical derivation of the autocorrelation of Y, (see figure on the right)
and its power spectrum (see panel 10). The process Y, is asymptotically scaling with

same Hurst coefficient H.

The figure on the left shows a time series of Y, if the time series of X is that of panels 2-3

(H=0.80, u=4,0=1)and a=0.95.
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10. Spectral estimation for (natural) cumulatwe processes
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e The upper figure shows the periodograms of the Y;
time series of panel 10 for the indicated sample sizes
n, starting from the first point of the time series. The
slopes are -1.63, -1.81, -1.89 for n = 1024, 256, 64,
respectively. This would represent a nonstationary
self similar process with H =0.32, 0.41, 0.44,
respectively. Such conclusions are totally incorrect
because the process is stationary with H = 0.90. 0

The lower figure shows the same periodograms but Theoretica
omitting the first 100 points to exclude the transition . Empirical, n = 1024
period. The slopes have become -2.35, -2.30, -2.09 for Emp?r?%‘:’ n= 226
n =924, 256, 64, respectively. These would represent a oq P
nonstationary self similar process with H =0.68, 0.65, 0.001 0.01
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0.54, respectively. The conclusions are again incorrect ;55000
because the process is stationary with H = 0.90. s(w)

The theoretical power spectrum is also shown in both 10000
figures. The slope of the main part is -2.75, indicating
a nonstationary process with H = 0.88. This is
incorrect (it would be almost correct if the parameter 100
a in the model was 1 rather than 0.95). If we used the

slope at the lower end of the power spectrum, i.e. 10 -
-0.91, we would conclude that the process is |
stationary with H = 0.96. This is close to reality but " Theoretical
cannot be seen unless the theoretical power spectrum o, |~ Emical n= 924
is known (it cannot be derived from data). | smpinoal, n = 256

1000 -

— — — - Empirical, n = 64
In conclusion, in all cases the empirical analyses lead 0.01 i
to the incorrect conclusion of a nonstationary process. 0.001 0.01

11. Conclusions and discussion

* In the last years, statements such as “Physical processes are mostly nonstationary” have
become very common and widely accepted.

Such statements do not respect the definition of nonstationarity, according to which
observed changes should be deterministic functions of time; deterministic functions
should be be produced by deduction, independently of the data, and not by
induction, based on the data.

Furthermore, such statements are inconsistent with the fact that stationarity and
nonstationarity are properties of a stochastic model (a mathematical model implying
an ensemble of an unlimited number of potential realizations) and not of a natural
time series (a unique realization of a physical process).

A more consistent replacement of this type of statements would be “Physical processes
are different from purely random processes and even from Markovian processes” .

One of the more sophisticated tools to detect nonstationarity has been the spectral
analysis, according to which a possible linear arrangement of the power spectrum in
a double logarithmic plot with slope f < -1 manifests nonstationarity.

It is demonstrated here that slopes f steeper than —1 can emerge for processes that
are a priori known to be stationary, either because of sampling inaccuracy (for small
sample sizes) or because of high and complex dependence (autocorrelation) of the
process, even if the number of points is large.

Hence, the stationarity or nonstationarity of a process should be studied using
reasoning rather than processing data.
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“He who loves practice without theory is like the
sailor who boards ship without a rudder and
compass and never knows where he may cast”

Leonardo da Vina




