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How nature works?   (my views …)

Does it ever obey power laws?
Does it reflect fractals or multifractals everywhere?
Does it just reflect chaos?
Or is it based on a principle of self organized criticality (a cooperative 
behaviour, where the different items of large systems act together in some 
concerted way)? 

{1, 2, 22}
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Nature is parsimonious

Example of a parsimonious natural law: 
Dogs bark.

Examples of non-parsimonious laws:
Black, white and spotted dogs bark.
Dogs bark on Mondays, Wednesdays and Fridays.

{3}

D. Koutsoyiannis, Entropy as an explanatory concept and modelling tool in hydrology 4

Nature conserves a few quantities

Conservation laws govern the following (macroscopic) quantities:
Mass (or matter);
Linear momentum;
Angular momentum;
Energy;
Electric charge.

Other quantities (e.g. temperature, velocity, acceleration) are not 
conserved.
Conservation laws refer to closed systems that do not exchange heat 
and mass with the environment (in open systems there is no 
conservation).
Mathematically, the conservation laws are formulated as equations 
(scalar for mass, energy and charge, vector for linear and angular 
momentum).
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Nature loves extremes: 
A first example …

Why light follows the red paths 
from A to B (AB, ACB, ADB) and 
not other (the black) ones (e.g. 
AEB, AFB)?

The red paths are those that 
(a) reach the mirror and (b) 
form an angle of incidence 
equal to the angle of 
reflection.
(True for most cases; not true 

for AB; not general or 
parsimonious).

The red paths have minimum 
travel time (or length).

(Fermat’s principle –
Not true for ADB).

The red paths have extreme 
(stationary, i.e. minimum or 
maximum) travel time (or 
length).

(True).A semi-cylindrical mirror

θ
1 > θ
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The light example – no mirror

 
Assume that light can travel from A to B 
along a broken line with a break point F 
with coordinates (x, y).   
(This is not restrictive: later we can add a 
second, third, … break points). 
The travel distance is s(x, y) = AF + FB 
where  

AF = (x – a)2 + y 2 

FB = (x + a)2 + y 2 

A: (-a,0)

B
aa

F: (x, y)

B: (+a,0)
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The light example with mirror

The mirror introduces an 
inequality constraint in the 
optimization: the point F should 
not be behind the mirror.
Two points of local optima emerge 
on the mirror surface (the curve 
where the constraint is binding).  
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A second example: a falling weight
Initial position 
(t = 0, x = 0, u = 0)

Position x at time t

Floor

Quantities involved
Potential energy: V = –m g x
Kinetic energy: T = (1/2) m u 2 = (1/2) m (dx/dt)2

Total energy: E = T + V
Lagrangian: L = T – V = E – 2V
Action: S = ∫ L dt

Alternative methodologies to find equations for the 
movement

1. Directly by integrating d 2x/dt 2 = g
2. From conservation of total energy
3. From minimization of action (more difficult)

All methodologies result in same solution 
(x = g t 2/2, u = dx/dt = g t)

Principle of least action (Hamilton’s principle –
applicable both in classical and in quantum physics)
From all possible motions between two points, the true 
motion has least action.
More correct to substitute “extreme” (or “stationary”) for 
“least”.

x

{23}
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How nature works?   (synthesis)
Property

She conserves a 
few quantities
(mass, momentum 
energy, ….).

She optimizes a 
single quantity
(dependent on the 
specific system; 
difficult to find what 
this quantity is).

She disallows some 
states
(dependent on the 
specific system; 
maybe difficult to 
find).

Mathematical formulation

One equation per conserved quantity:

gi (s) = ci i =  1, …, k
where ci constants; s the size n vector of state variables 
(n ≥ k, sometimes n = ∞).

A single “optimation”:

optimize f (s) 

[i.e. maximize/minimize f (s)] This is equivalent to 
many equations (as many as required to determine s)
Conversely, many equations can be combined into an 
“optimation”.

Inequality constraints:

hj (s) ≥ 0,      j =  1, …, m
In conclusion, we  may find how nature works solving the 
problem:

optimize f (s)
s.t. gi (s) = ci i =  1, …, k

hj (s) ≥ 0      j =  1, …, m

D. Koutsoyiannis, Entropy as an explanatory concept and modelling tool in hydrology 10

The typical “optimizable” quantity in complex systems …
… is entropy – entropie – Entropie – entropia – entropía – entropi –
entrópia – entroopia – entropija – энтропия – ентропія – 熵 – エント
ロピー – مقياس – –אנטרופיה  εντροπία.
The word is ancient Greek (εντροπία, a feminine noun meaning: 
turning into; turning towards someone’s position; turning round and
round).
The scientific term is due to Clausius (1850).
The entropy concept was fundamental to formulate the second law of 
thermodynamics.
Boltzmann (1877), then complemented by Gibbs (1948), gave it a 
statistical mechanical content, showing that entropy of a 
macroscopical stationary state is proportional to the logarithm of the 
number w of possible microscopical states that correspond to this 
macroscopical state.
Shannon (1948) generalized the mathematical form of entropy and 
also explored it further. At the same time, Kolmogorov (1957) founded 
the concept on more mathematical grounds on the basis of the 
measure theory.
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What is entropy?
Entropy is defined on grounds of probability theory.
For a discrete random variable X taking values xj with probability mass 
function pj ≡ p (xj), j = 1,…,w, the Boltzmann-Gibbs-Shannon (or extensive) 
entropy is defined as

For a continuous random variable X with probability density function f (x), the 
entropy is defined as

In both cases the entropy φ is a measure of uncertainty about X and equals 
the information gained when X is observed.
In other disciplines (statistical mechanics, thermodynamics, dynamical 
systems, fluid mechanics), entropy is regarded as a measure of 
order/disorder and complexity.
Generalizations of the entropy definition have been introduced more recently 
(Renyi, Tsallis).

φ := Ε[–ln f(Χ)] = –⌡⌠
–∞

∞

 f(x) ln f(x) dx,     where ⌡⌠
–∞

∞

 f(x) dx = 1 

 

φ := Ε[–ln p(Χ)] = – ∑
j = 1

w

 pj ln pj ,        where ∑
j = 1

w

 pj = 1 

 

{21}
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Entropy maximization: The die example
What is the probability that the outcome of a 
toss of a die will be i ? (i = 1, …, 6)
The entropy is: 

φ := Ε [–ln p(Χ)] = –p1 ln p1 – p2 ln p2 – … –p6 ln p6

The equality constraint (mass preservation) is
p1 + p2 + … + p6 = 1

The inequality constraint is pi ≥ 0.
Solution of the optimization problem (e.g. by the Lagrange 
method) yields a single maximum: p1 = p2 = … = p6 = 1/6.
This method, the application of the Maximum Entropy 
Principle (mathematically, an “optimation” form) is 
equivalent to the Principle of Insufficient Reason 
(Bernoulli-Laplace; mathematically, an “equation” form).
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Entropy maximization: The loaded die example

What is the probability that the outcome of a 
toss of a die will be i (i = 1, …, 6) if we know 
that it is loaded, so that p6 – p1 = 0.2?
The principle of insufficient reason does not 
work in this case.
The maximum entropy principle works. We simply pose an 
additional constraint: 

p6 – p1 = 0.2
The solution of the optimization 
problem (e.g. by the Lagrange 
method) is a single maximum:

0
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0.2

0.3

0.4

1 2 3 4 5 6
i

p i Fair
Loaded
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Entropy maximization: The temperature example
What will be the temperature in my house (TH), compared to that of the 
environment (TE)? (Assume an open window and no heating equipment). 
Take a space of environment (E) in contact to the 
house (H) with volume equal to that of the house.
Partition the continuous range of kinetic energy of 
molecules into several classes i = 1 (coldest), 
2, …, k (hottest).
Denote pi the probability that a molecule belongs to class i, and partition 
it to pHi and pEi, if the molecule is in the house or the environment, 
respectively.
Form the entropy in terms of pHi and pEi .
Maximize entropy conditional on pHi + pEi = pi .
The result is pHi = pEi .
Equal number of molecules of each class are in the house and the
environment, so TH =TE .
This could be obtained also from the principle of insufficient reason.
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Is the principle of maximum entropy 
ontological or epistemological?

In thermodynamics and statistical physics the principle of 
maximum entropy is clearly ontological:

It determines (macroscopic thermodynamical) actual states 
of physical systems.

Jaynes (1957) introduced the principle of maximum entropy 
as an epistemological principle in a probabilistic context:

It is used to infer unknown probabilities from known 
information.
The (unknown) density function f (x) of a random variable 
X is the one that maximizes the entropy φ, subject to any 
known constraints.

Are these two different principles or one? 
If Nature aligns itself with the (ontological) principle, why not 
use the same principle in logic for inference about Nature?
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Formalization of the principle of maximum entropy
In both physics and logical inference, the principle of maximum 
entropy postulates that the entropy of a random variable should be 
at maximum, under some conditions, formulated as constraints, 
which incorporate the information that is given about this variable.
Typical constraints used in a probabilistic or physical context are:

In statistical physics, if X denotes the momentum of molecules or 
atoms in a gas volume, the mean and variance constraints 
correspond precisely to the principles of preservation of momentum 
and energy.

⌡⌠
–∞

∞

 f(x) dx = 1,    Ε[Χ] = ⌡⌠
–∞

∞

 x f(x) dx = μ   

Ε[Χ 2] = ⌡⌠
–∞

∞

 x2 f(x) dx = σ2 + μ2,  Ε[Χi Xi + 1] = ⌡⌠
–∞

∞

  xi xi + 1 f(xi, xi + 1) dxi dxi + 1 = ρ σ2 + μ2 

Mass Mean/Momentum

Dependence/StressVariance/Energy

x ≥ 0 

Non-negativity

{18, 19}
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Typical results of entropy maximization
Constraints Result

a ≤ X ≤ b Uniform distribution, f (x) = 1 / (b – a)

X ≥ 0, fixed mean µ Exponential distribution, f (x) = exp(–λ0 – λ1x)
or f (x) = (1/µ) exp(–x/µ)

Fixed mean µ and 
standard deviation σ

Normal distribution, f (x) = exp(–λ0 – λ1x – λ2x 2) 
or f (x) = (2π σ)–1/2 exp{(–1/2)[(x – µ )/σ]2}

X ≥ 0, fixed µ and σ Truncated normal distribution
f (x) = exp(–λ0 – λ1x – λ2x 2)

Two variables, X, Y with 
fixed µΧ, σX, µΥ, σΥ and 
ρXY (correlation)

Bivariate normal distribution
f (x, y) = exp(–λ0 – λ1x – λ2x 2 – λ3y – λ4y 2

– λ5xy) 

Many variables Xi with 
fixed µ, σ, and ρ1 (lag 1 
autocorrelation)

Multivariate normal distribution
Markovian dependence 

Note: In all cases with X ≥ 0, the above solutions exist only if σ/µ ≤ 1.
{21}

Application 1: The distribution of 
hydrological variables – An example 
for rainfall at a fine time scale
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Step 1
Let Xi denote the rainfall rate at time i discretized at a fine time scale (tending to
zero).
What we definitely know about Xi is Xi ≥ 0.
Maximization of entropy with only this condition is not possible.
Now let us assume that rainfall has a specified mean µ.
Maximization of entropy with constraints 

Xi ≥ 0, E [X ] = x f (x) dx = µ

results in the exponential distribution: f (x) = exp(–x/µ)/µ.

In addition, let us assume that there is some time dependence of Xi, quantified by 
E[Xi Xi + 1] = γ ; this will introduce an additional constraint for the multivariate 
distribution  

E [Xi Xi+1] =     xi xi+1 f (xi , xi+1) dxi dxi+1 = γ = ρ σ 2 + µ 2

(for the exponential distribution σ = µ and thus γ = ρ σ 2 + µ 2 = (ρ + 1) µ 2 > µ 2).

Entropy maximization in multivariate setting will result in Markovian dependence.

∫
∞

∞−

∫
∞

∞−
∫
∞

∞−

{14}
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Step 2
The constant mean constraint in rainfall modelling does not result from a natural 
principle – as for instance in the physics of an ideal gas, where it represents the 
preservation of momentum.
Although it is reasonable to assume a specific mean rainfall, we can allow this to 
vary in time.
In this case we can assume that the mean at time i is the realization of a random 
process Mi which has mean µ and lag 1 autocorrelation ρ M > ρ.
Application of the maximum entropy principle will produce that Mi is Markovian 
with exponential distribution.
Then application of conditional distribution algebra results in

f (x) = 2 K0(2 (x/µ)1/2)/µ, F (x) = 1 – 2 (x/µ)1/2 K1(2 (x/µ)1/2)/µ

where Kn(x) is the modified Bessel function of the second kind (important 
observation: f (0) = ∞, whereas in the exponential distribution f (0) = µ < ∞).
The moments of this distribution are E [X n] = µ n n!2 (note: in exponential 
distribution E[X n] = µ n n!) so that 

E[X] = µ,     Var[X] = 3 µ2 → CV = σ/µ = √3 > 1 

The dependence structure becomes more complex than Markovian (difficult to find 
an analytical solution).
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Step 3
Proceeding in a similar manner as in step 2, we can now replace the 
constant mean µ of the process Mi with a varying mean, represented by 
another stochastic process Ni with mean µ and lag 1 autocorrelation ρ N

> ρ M > ρ.
In this manner we can construct a chain of processes, each member of 
which represents the mean of the previous process.
By construction, the lag 1 autocorrelations of these processes form a 
monotonically increasing sequence, i.e. …. > ρ N > ρ M > ρ.
The scale of change or fluctuation of each process of the chain is a 
monotonically increasing sequence, i.e. …. > q N > q M > q, where 
q := (–ln ρ)–1; the scale of fluctuation represents the time required for 
the process to decorrelate down to an autocorrelation 1/e.
The (unconditional) mean of all processes is the same, µ.
All moments except the first form an increasing sequence as we proceed 
through the chain; higher moments increase more.
Analytical handling of the marginal distribution and the dependence 
structure is very difficult.
However we can easily inspect the idea using Monte Carlo simulation.
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A demonstration using a chain with 3 processes
Simulation of a Markovian process with exponential distribution is easy and precise; 
there are several methodologies to implement it.
Here we implement an Exponential Markov (EM) process as 

Xi = µ [–ln G (Yi)]
where µ is the mean, Yi is a standard AR(1) process with standard normal 
distribution and G ( ) is the standard normal distribution function. 
Simulations with a length 10 000 were performed for the following cases (for 
comparison).

Case 1 EM 2 EM 3 EM

Process X M X N M X

Mean 1 1 - 1 - -

0.85 0.2

0.626.2

0.25

0.72

Lag 1 autocorrelation* 0.48 0.9 0.99

Processes 
in chain

Scale of fluctuation 1.37 9.5 99.5

Mean 1 1 1Final 
process
(Χ )

Standard deviation 1 1.73 3.30

Lag 1 autocorrelation 0.48 0.48 0.48

* Autocorrelation coefficients refer to the standard AR(1) process but are approximately equal in the EM process.
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Simulation results – distribution function

As the number of processes in the chain increases, the right tail of the distribution moves 
toward higher “rainfall intensity” values and its shape changes; simultaneously the 
probability density becomes infinite for x = 0. 
The probability plot of the “3 EM” case seems to suggest a long tail (a power type law, 
instead of the exponential type of model “1 EM”), which in a double logarithmic plot is 
depicted as a constant nonzero slope (κ = 0.40) of the empirical distribution (or an 
asymptotic relationship of the form x ~ T κ for large x).

Logarithmic
plot of “rainfall 
intensity” (x ) vs. 
empirically 
estimated return 
period 
T (x) := 1/F *(x) = 
1/[1 – F (x)]
where F (x) is the 
distribution 
function and F *(x) 
the exceedence 
probability 

Slope = 0.40
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Simulation results – dependence structure

As the number of processes in the chain increases, the shape of the 
autocorrelation function changes from Markovian (exponential decay – short 
range dependence) to power type (long range dependence).
The latter type is characteristic of the Hurst-Kolmogorov behaviour, which can 
be represented by a simple scaling stochastic process (SSS process).

Logarithmic
plot of 
autocorrelation 
coefficient ρj
vs. lag j

{6, 7, 12, 15}
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Simulation results – variation of the aggregated 
process

The slope of the logarithmic plot (as k→∞) is H – 1 where H is the Hurst coefficient.
The slope in the “1 EM” case is –0.5, i.e. H = 0.5, meaning no Hurst-Kolmogorov 
behaviour.
The slope in “3 EM” is –0.20, i.e. H = 0.80, suggesting a Hurst-Kolmogorov 
behaviour.

Logarithmic
plot of 
standard 
deviation σ (k)

of the process 
aggregated at 
scale k, vs. 
scale k

{6, 7, 12, 15}
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Simulation 
results –
visual 
assessment

As the number of 
processes in the chain 
increases the general 
shape changes:

From monotony to 
rich patterns 
From steadiness to 
intermittency

Plots of parts of the 
generated time 
series (selected so 
as to include the 
maximum over 
10 000 generated 
values)
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Can entropy maximization be performed in a single 
step? (The Tsallis entropy)

A generalization of the Boltzmann-Gibbs-Shannon entropy has been proposed 
by Tsallis (1998, 2004)

with q = 1 corresponding to the Boltzmann-Gibbs-Shannon entropy.
Maximization of Tsallis entropy with known µ yields

f (x) = [1 + κ (λ0 + λ1 x)] –1 – 1/κ,    x ≥ 0

where κ := (1 – q)/q and λ0, λ1, λ2 and are parameters. 
Clearly, this is the Pareto distribution and has an over-exponential (power-
type) distribution tail.
Whilst this approach succeeds in producing a long tail to the right, it fails in 
reproducing the tail to the left (it underpredicts the probability of very low 
values).
Furthermore, a single-step approach based on the Tsallis entropy cannot 
reproduce the Hurst-Kolmogorov behaviour.

1

)]([1

−

−
=

∫
∞

∞−

q

xf

φ

q

q

{10, 24, 25}
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Verification of results based on real world, high 
resolution rainfall data

Event # 1 2 3 4 5 6 7 All 
Sample size 9697 4379 4211 3539 3345 3331 1034 29536
Average (mm/h) 3.89 0.50 0.38 1.14 3.03 2.74 2.70 2.29
St. deviation (mm/h) 6.16 0.97 0.55 1.19 3.39 2.20 2.00 4.11
Coefficient of variation 1.58 1.95 1.45 1.04 1.12 0.81 0.74 1.79
Skewness 4.84 9.23 5.01 2.07 3.95 1.47 0.52 6.54
Kurtosis 47.12 110.24 37.38 5.52 27.34 2.91 -0.59 91.00
Hurst coefficient 0.94 0.76 0.92 0.95 0.90 0.87 0.97 0.94

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

R
a

in
fa

ll 
in

te
n

si
ty

 (
m

m
/h

)

Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Ev 7

Plot of a high 
resolution (10 s) data 
set consisting of seven 
storms occurred in 
Iowa in 1990-91

Statistics of the seven 
storms and the compound 
record of all storms
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Scaling in state

The probability plot of the compound record of all events seems to suggest a long 
distribution tail. 
In five of the seven events (1 to 5 – those with the largest durations) the variation 
σ/µ is higher than 1, which suggests non applicability of standard entropy theory.
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Logarithmic
plots of rainfall 
intensity (x) vs. 
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Weibull formula) 
exceedence 
probability, 
F *(x) := 1 – F (x), 
for the seven 
events

{10, 16}
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Scaling in time

Each of the events separately indicates a Hurst-Kolmogorov behaviour with 
Hurst coefficient ranging form 0.76 to 0.97.
The Hurst-Kolmogorov behaviour is very clear in the compound record of all 
events, with Hurst coefficient 0.94.

Logarithmic plots 
of standard 
deviation σ (κ) of 
rainfall intensity vs. 
time scale k for the 
seven events and 
the compound 
record

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Log k

Lo
g 
σ

(k
)

H  = 0.92 (Event 3)

H  = 0.76 (Event 2)

H  = 0.95 (Event 4)

H  = 0.97 
(Event 7) H  = 0.87 (Event 6)

H  = 0.90 (Event 5)
H  = 0.94 
(All)

H  = 0.94 
(Event 1)



D. Koutsoyiannis, Entropy as an explanatory concept and modelling tool in hydrology 31

Verification based on extreme daily rainfall worldwide

Data set: Daily rainfall from 168 stations worldwide each having at 
least 100 years of measurements; series above threshold, 
standardized by mean and unified; period 1822-2002; 17922 
station-years of data.

0.1

1

10

0.1 1 10 100 1000 10000 100000

T  (years)

x

Empirical Pareto
Exponential Truncated Normal
Normal

{8, 9, 10}

µ = 0.28 
(mean minus 
threshold)

σ/µ = 1.19 > 1

Maximum entropy 
distribution tail: 
Pareto, κ = 0.15

Scaling behaviour
exist only for 
T > ~50 yr

Application 2: Normalizing 
transformations
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General framework

The normal distribution is very convenient in building a stochastic model.
The maximum entropy framework can help establish a normalizing 
transformation which could preserve the distribution behaviour at its tails.
When only the right tail is of interest, the following transformation (1) can 
result from application of the result of the Tsallis entropy maximization:

Here c is a translation parameter with same units as x, κ the tail-
determining dimensionless parameter, and λ a scale parameter with same 
units as x, which enables physical consistency of the transformation. It is 
easily seen that: (a) z has the same units as x; (b) for x/λ ranging in [0, ∞), 
z/λ also ranges in [0, ∞ ); and (c) for κ = 0, z is identical to x. 
When the right tail (for x → 0) is also of interest, the following modification 
(2) with additional parameter α (with same unit as x) and ν (dimensionless) 
yields a power-type right tail for f (x) simultaneously infinitizing it for x → 0:

g (x) = ⎣
⎢
⎡

⎦
⎥
⎤

⎝⎜
⎛

⎠⎟
⎞x
α

-ν

 + 1
⎩
⎨
⎧ 
 
 c + sgn(x – c) λ ⎝⎜

⎛
⎠⎟
⎞

1 + 
1
κ  ln ⎣

⎢
⎡

⎦
⎥
⎤

1 + κ ⎝⎜
⎛

⎠⎟
⎞x – c

λ

 2

⎭
⎬
⎫ 
 

z = g (x) – g (0),    g (x) = c + sgn(x – c) λ ⎝⎜
⎛

⎠⎟
⎞

1 + 
1
κ  ln ⎣

⎢
⎡

⎦
⎥
⎤

1 + κ ⎝⎜
⎛

⎠⎟
⎞x – c

λ

 2
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Application to high resolution rainfall

The transformation (2) effectively transforms the observed data to 
normal, also implying a power type tail for X.
The parameters of the transformation can be estimated by minimizing 
the square error of the model and the empirical distribution function.
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Application 3: Type of dependence 
of hydrological processes
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Modelling approaches 
and underlying concepts

In a deterministic approach, a relationship of any 
two variables (see the example in figure, referring to 
lagged flows of the Nile) should be described by an 
“exact” function which should be a non-intersecting 
nonlinear curve (as in the caricature case shown in 
the figure) passing from all points (e.g. the 78 points of 
the ‘fitting’ period – but the points of  the ‘validation’
period lie outside the curve).
In a stochastic approach:

The variables are modelled as random variables.
There is no need to assume an “exact” relationship. 
To each variable a normalizing transformation 
could be applied.
Entropy maximization for the transformed two 
variables simultaneously will result in bivariate 
normal distribution.
Bivariate normal distribution entails a linear
relationship between the two variables (Linear 
model 1 in figure).
This explains why stochastic linear relationships 
are so common.
Even without normalizing transformation, the 
dependence between two variables is virtually 
linear (Linear model 2 in figure).

{17}
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Verification of linearity in high resolution rainfall

The figures refer to the Iowa high temporal resolution rainfall data set after 
normalization by transformation 2.
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Application 4: Autocorrelation 
structure of hydrological processes
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Entropic quantities of a stochastic process
The order 1 entropy (or simply entropy or unconditional entropy) refers to the 
marginal distribution of the process Xi :

The order n entropy refers to the joint distribution of the vector of variables
Xn = (X1, …, Xn) taking values xn = (x1, …, xn):

The order m conditional entropy refers to the distribution of a future variable 
(for one time step ahead) conditional on known m past and present variables 
(Papoulis, 1991):

φc,m := Ε [–ln f (Χ1|X0, …, X–m + 1)] = φm – φm - 1

The conditional entropy refers to the case where the entire past is observed:

φc := limm → ∞ φc,m

The information gain when present and past are observed is:

ψ := φ – φc

Note: notation assumes stationarity.

 

φ := Ε[–ln f(Χi)] = –⌡⌠
–∞

∞

 f(x) ln f(x) dx,     where ⌡⌠
–∞

∞

 f(x) dx = 1 

 
 

φn := Ε[–ln f(Χn)] = –⌡⌠
Dn

 

 f(xn) ln f(xn) dxn 

 

{11}
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Entropy maximization for a stochastic process  
The minimum time scale considered is annual (to avoid periodicity).
The purpose is to determine the dependence structure.
The typical five constrains are used (mass/mean/variance/dependence/non-
negativity).
The lag one autocorrelation (used in the dependence constraint) is determined 
for the basic (annual) scale but the entropy maximization is done on other 
scales as well.
The variation on annual and over-annual scales is low (σ/µ << 1) and thus the 
process can be approximated as Gaussian (except in tails). 
For a Gaussian process the n th order entropy is given as
where δn is the determinant of the autocovariance matrix cn := Cov[Xn, Xn].
The autocovariance function is assumed unknown to be determined by 
application of the maximum entropy principle. Additional constraints for this are:

Mathematical feasibility, i.e. positive definiteness of cn (positive δn);
Physical feasibility, i.e. (a) autocorrelation function positive and (b) 
information gain not increasing with time scale.
(Note: periodicity that may result in negative autocorrelations is not 
considered here due to annual and over-annual time scales).

φn = ln (2 πe)nδn

{11}
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Demonstration: 
Maximization of 
unconditional 
entropy 
averaged over 
ranges of scales
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Conclusion: 

As the range of time 
scales widens, the 
dependence 
tends to Hurst-
Kolmogorov type
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Application 5: Clustering of rainfall 
occurrences  
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Clustering in rainfall explained by maximum entropy
Rainfall at small scales is 
intermittent.
The dependence of the 
rainfall occurrence process is 
not Markovian neither 
scaling but in between; it 
has been known as 
clustering or overdispersion.
The models used for the 
rainfall occurrence process 
(point processes) are 
essentially those describing 
clustering of stars and 
galaxies.
The maximum entropy 
principle, applied to the 
binary state rainfall process 
in more or less the same 
way as in the continuous 
state process, explains this 
dependence.
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Application 6: Parsimonious 
stochastic modelling for stochastic 
prediction
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Stochastic model formalism
The problem of the prediction of the monthly Nile flow is studied.
The prediction W of the monthly flow one month ahead, conditional on a number s of 
other variables with known values that compose the vector Z, is based on the linear 
model:

W = aT Z + V
where a is a vector of parameters (the superscript T denotes the transpose of a 
vector or matrix) and V is the prediction error, assumed independent of Z; for 
simplicity, all elements of Z are assumed normalized and standardized with zero 
mean and unit variance.
For the model to take account of both long-range and short-range dependence, an 
optimal composition of Z was found to be the following:

All available flow measurements of the same month on previous years (78 
variables = monthly flows for each of the 78 years of the calibration period).
The flows of the two previous months of the same year (2 variables).

The model parameters are estimated from (Koutsoyiannis, 2000)
aT = ηT h –1,   Var[V ] = 1 – ηT h –1 η = 1 – aT η

where η := Cov[W, Z ] and h := Cov[Z, Z ].
In forecast mode, V = 0 (to obtain the expected value of W conditional on Z = z); in 
simulation mode V is generated from the normal distribution independently of Z.

{4, 5, 17}
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11. Parameter estimation
Both a and Var[V ] are estimated from the vector η := Cov[W, Z ] and the matrix h := 
Cov[Z, Z ] that contain numerous items (in our case 80 + 80 × 80 = 6480 for each 
month; such a number of parameters cannot be estimated from 78 monthly data values).
However, most covariances in η and h depend on:

2-3 parameters (same for all months) expressing the long-range dependence, as 
estimated by application on the maximum entropy principle on a multi-time scale 
setting (a stationary component);
2 parameters (per month) expressing the monthly autocovariances at the monthly 
scale (a cyclostationary component).

All other covariances that cannot be 
derived from these parameters are left 
‘unestimated’ (in terms of statistics) 
and are calculated by the maximum 
entropy principle, applied on a single scale.
The entropy maximization in this case 
has an easy analytical solution that can 
be formulated as a generalized Cholesky
decomposition (assuming that h = b bT).
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12. Results of stochastic model (validation 
period)

The graphical 
depiction of 
monthly 
predictions in 
comparison to 
historical values, 
indicates good 
performance of 
the model.
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Conclusions
The successful application of the maximum entropy principle in nature offers 
an explanation for of a plethora of phenomena (e.g. in thermodynamics) and 
statistical behaviours including:

the emergence of normal distribution (independently of the central limit 
theorem) in some cases;
the emergence of the exponential distribution in other cases;
the linearity of most stochastic laws (including the time dependence of 
natural processes);
the scaling behaviour in state in cases with high variation (which is only a 
consequence of the maximum entropy principle for special cases and just 
an approximation, good for high return periods);
the scaling behaviour in time, i.e. the Hurst-Kolmogorov behaviour;
the clustering behaviour in rainfall occurrence.

All these can be interpreted as dominance of uncertainty in nature.
They harmonize with the Socratic view: «Ἕν οἶδα, ὃτι οὐδέν οἶδα» (One I 
know, that I know nothing).
This view was not a confession of modesty – Socrates regarded the 
knowledge of ignorance as a matter of supremacy.
In this respect, the knowledge of the dominance of uncertainty can assist to 
better (stochastic) prediction of natural processes as well as in safer design 
and management of hydrosystems.
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