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A walk on water is safer on water’s solid phase...

... but my family offers me a very warm solid ground.

... although somewhat cold ...
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Acheloos River: 
a watery origin

Acheloos @ Mesounta
(my village) 
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ITIA.NTUA.GR: A water loving plant with deep roots
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The Henry Darcy Medal...
My personal feelings (keywords)

luck

blessing

success

happiness

Assessment by friends

crash

accident

failure

misery

by chance

at random

any one

incident

Balanced approach

Assessment by friendsMy personal feelings (keywords)

κατά τύχηby chance

στην τύχηat random

τυχώνany one

τυχαίο συµβάνincident

Balanced approach

δυστύχηµαcrashτύχηluck

ατύχηµαaccidentευτύχηµαblessing

αποτυχίαfailureεπιτυχίαsuccess

δυστυχίαmiseryευτυχίαhappiness

and Tyche (Τύχη)

“The limits of my language 
mean the limits of my world ”. 

(Ludwig Wittgenstein, 1921, §5.6)
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Randomness 
& scientific 
discovery

Isaac Newton
hit on the head 
by the famous 
apple, which 
causes the 
discovery of 
the law of 
universal 
gravitation.

Comic strip by 
Marcel Gotlib, 
Rubrique-à-Brac
(1970-1974) 
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What is randomness? (Common reply)
The common reply is based on a dichotomous logic (+ reductionism):

on ontological grounds: there exist two mutually exclusive types of 
events or processes—deterministic and random (or stochastic);
on epistemological grounds: we separate the events into these 
two types—the random we do not understand nor explain.

Extended dichotomization: natural process are composed of two 
different, usually additive, parts or components—deterministic and 
random; 

each part may be further subdivided into subparts (e.g., 
deterministic part = periodic + aperiodic/trend).

The dichotomous logic is typically combined with a manichean
perception:

the deterministic part supposedly represents cause-effect 
relationships and, thus, is physics and science (the “good”);
the random part is noise, and has little relationship with science 
and no relationship with understanding (the “evil”). 

Naïve and incorrect view of randomness—false dichotomy.
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Does “random” mean “noise”?
Does Nature produce noises?

Itia’s research activities

A rainfall event in Iowa 
measured with a resolution 
of 10 seconds, transformed 
to sound. 
Credit: Simon Papalexiou
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What is randomness? (Alternative reply)
Randomness = unpredictability (in deterministic terms):
we may understand, we may explain, but we cannot predict.
Randomness and determinism:

coexist in the same process;
are not separable or additive components; and 
it is a matter of specifying the time horizon of prediction to decide 
which of the two dominates.

Unpredictability (in deterministic terms) = high uncertainty for the future.
Uncertainty is quantified by Probability:

Andrey Kolmogorov (1933) system: Probability is a normalized 
measure, i.e., a function that maps sets (areas where unknown 
quantities lie) to real numbers (in the interval [0, 1]).
Random variable: a variable associated with a probability distribution 
(or density) function.
Probabilization of uncertainty: axiomatic reduction from the notion of 
unknown to the notion of a random variable (typical in Bayesian
statistics). 

“Prediction is difficult, especially of the future ” (Niels Bohr).
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Historical references
Pierre Simon Laplace:

perhaps the most famous proponent of determinism in the history 
of philosophy of science (cf. Laplace’s demon); 
at the same time, one of the founders of probability theory:
«la théorie des probabilités n'est, au fond, que le bon sens réduit 
au calcul»
“Probability theory is, au fond, nothing but common sense 
reduced to calculus” (Laplace, 1812).

James Clerk Maxwell:
“the true logic for this world is the calculus of Probabilities ”
(Maxwell, 1850, in a letter to Lewis Campbell).

Edwin Thompson Jaynes’s recent book 
“Probability Theory: The Logic of Science ” (2003).
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Emergence of randomness from determinism: 
A toy model of a caricature hydrological system

The toy model is designed intentionally simple.
Only infiltration, transpiration and water storage are considered.
The rates of infiltration φ and potential transpiration τp are constant. 

Discrete time: i  (“years”).
Constants (per “year”)

Input: φ = 250 mm;
Potential output: 
τp = 1000 mm.

State variables (a 2D 
dynamical system):

Vegetation cover, vi
(0 ≤ vi ≤ 1) ;
Soil water (no distinction 
from groundwater): xi 
(– ∞ ≤ xi ≤ α = 750 mm). 

Actual output: τi = vi τp
Water balance

xi = xi – 1 + φ – vi – 1τp

Nothing in the model is random.

φ : 
Infiltration

τ : 
Transpiration

Datum

x :
Soil water

v :
Vegetation 

cover
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The toy model at equilibrium
If at some time i – 1: 

vi – 1 = φ /τp = 250/1000 = 0.25
then the water balance results in 

xi = xi – 1 + φ – vi – 1τp = xi – 1

Continuity of system dynamics demands that for some xi – 1, vi = vi – 1. 
Without loss of generality we set this value xi – 1 = 0 (this defines a 
datum for soil water).

φ = 250 mm:
Infiltration

τ = 250 mm: 
Transpiration

Datum

x = 0:
Soil water 
at datum 

v = 0.25:
Vegetation 

cover

Thus the system state:
vi = vi – 1 = 0.25 
xi = xi – 1 = 0 

represents the 
equilibrium of the 
system.
If the system arrives at 
equilibrium it will stay 
there for ever.
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Non-equilibrium state – conceptual dynamics 
of vegetation

The graph is described by the 
following equation (with β= 100 mm 
—a standardizing constant): 1
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System dynamics

Water balance + Vegetation cover dynamics

xi = min(xi – 1 + φ – vi – 1τp, α)
for finite storage ≤ α
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φ = 250 mm, τp = 1000 mm, α = 750 mm, β = 100 mm.
Easy to program in a hand calculator or a spreadsheet.
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Interesting trajectories produced by simple 
deterministic dynamics

These trajectories of s and v, for time i = 1 to 100 were produced assuming 
initial conditions x0 = 100 mm (≠ 0) and v0 = 0.30 (≠ 0.25); they can be 
easily reproduced using a spreadsheet (or even a hand calculator).

-1000

-800

-600

-400

-200

0

200

400

600

800

0 10 20 30 40 50 60 70 80 90 100

i

x i

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
v i

Soil water, x Equilibrium: x = 0
Vegetation cover, v Equilibrium: v = 0

The system state 
does not converge 
to the equilibrium.
The trajectories 
seem periodic.
Iterative 
application of the 
simple dynamics 
allows prediction 
for arbitrarily long 
time horizons (e.g., 
x100 = -244.55 mm; 
v100 = 0.7423).
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Understanding of mechanisms and system 
dynamics

System understanding—causative relationships:
There is water balance (conservation of mass);
Excessive soil water causes increase of vegetation;
Deficient soil water causes decrease of vegetation;
Excessive vegetation causes decrease of soil water;
Deficient vegetation causes increase of soil water.

System dynamics are:
Fully consistent with this understanding;
Very simple, fully deterministic;
Nonlinear, chaotic.
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Science vs. understanding
Science < Latin Scientia < translation of Greek Episteme (Επιστήµη) 

< Epistasthai (Επίστασθαι) = to know how to do 
< [epi (επί) = over] + [histasthai (ίστασθαι) = to stand]
= to overstand.

Understanding is not identical, nor a prerequisite, to overstanding.

“I think I can 
safely say that 
nobody 
understands 
quantum 
mechanics ”.

Richard 
Feynman (1965)

Credit for 
sketches: 
Demetris Jr.
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Does deterministic dynamics allow a reliable 
prediction at an arbitrarily long time horizon?

Axiomatic premise: A continuous (real) variable that varies in time cannot be 
ever known with full (infinite) precision.
It is reasonable then to assume that there is some small uncertainty in the 
initial conditions (initial values of state variables).
Sensitivity analysis allows to see that a tiny uncertainty in initial conditions 
may get amplified.

Bold blue line 
corresponds to 
initial conditions 
s0 = 100 mm, 
v0 = 0.30.

All other lines 
represent initial 
conditions slightly 
(< 1%) different.

Short time horizons: good predictions.
Long time horizons: extremely inaccurate 
and useless predictions.
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From determinism to stochastics 
Probabilization of uncertainty: axiomatic reduction from the notion of an 
uncertain quantity to the notion of a random variable.
Any value xi is a realization of a random variable xi and is associated with 
a probability density function f (xi ).
Stochastics (modern meaning): probability + statistics + stochastic 
processes.
Stochastics (first use and definition) is the Science of Prediction, i.e., 
the science of measuring as exactly as possible the probabilities of events 
(Jakob Bernoulli, 1713—Ars Conjectandi, written 1684-1689).
Stochastics (etymology): < Greek Stochasticos (Στοχαστικός) < 
Stochazesthai (Στοχάζεσθαι) < Stochos (Στόχος)

Stochos = target
Stochazesthai = (1) to aim, point, or shoot (an arrow) at a target; (2) to 
guess or conjecture (the target) (3) to imagine, think deeply, bethink, 
contemplate, cogitate, meditate.

If one 'stochazetai' (thinks deeply), eventually he goes 'stochastic' (with the 
probability-theoretical meaning) and he will hit 'stochos' (the target).

Stochastics does not necessarily mean ARMA models.
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The stochastic formulation of system 
evolution

We fully utilize the deterministic dynamics: xi = S (xi - 1), where 
xi := (xi , vi) is the vector of the system state and S is the vector function 
representing the known deterministic dynamics of the system.
We assume that f (x0 ) is known, e.g. a uniform distribution extending 1% 
around the value x0 = (100 mm , 0.30).
Given the probability density function at time i – 1, f (xi - 1), that of next time 
i, f (xi ), is given by the Frobenius-Perron operator FP, i.e. 
f (xi ) = FPf (xi - 1), uniquely defined by an integral equation (e.g. Lasota and 
Mackey, 1991), which in our case takes the following form, where
A := {x, x ≤ (x, v)} and S -1(A) is the counterimage of A:

Iterative application of the equation can determine the density f (xi ) for any 
time i — but we may need to calculate a high-dimensional integral.

uux
S

d)()(FP
)(∫ −=

A
f

vx
f 1∂∂

∂2

Stochastics does not disregard the deterministic dynamics: it is included in the 
counterimage S -1(A).
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Difficulties in applying the stochastic framework 
and their overcoming using stochastic tools

The stochastic representation has potentially an analytical solution that 
behaves like a deterministic solution, but refers to the evolution in time of 
admissible sets and densities, rather than to trajectories of points.

From xi = S (xi - 1) to

In the iterative application of the stochastic description of system evolution 
we encounter two difficulties:

Despite being simple, the dynamics is not invertible and the counterimage
S -1(A) needs to be evaluated numerically → numerical integration.
The stochastic formulation is more meaningful for long time horizons 
→ high dimensional numerical integration.

For a number of dimensions d > 4, a stochastic (Monte Carlo) 
integration method (evaluation points taken at random) is more accurate 
than classical numerical integration, based on a grid representation of the 
integration space (e.g., Metropolis and Ulam, 1949; Niederreiter, 1992).
In our case the Monte Carlo method bypasses the calculation of S -1(A).

uux
S

d)()(
)(∫ − −=

A ii f
vx

f 1 1

2

∂∂
∂

Monte Carlo integration is very powerful, yet so easy that we may elude that
we are doing numerical integration.
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Results of Monte Carlo integration: Time 100
We assume f (x0) to be a uniform density extending 1% around the value x0
= (100 mm , 0.30).
From 1000 simulations we are able to numerically evaluate f (x100). 

0.00001

0.0001

0.001

0.01

0.1

1

-1000 -800 -600 -400 -200 0 200 400 600 800 1000
x

f (x )
Time i = 0
Time i = 100, estimated by Monte Carlo
Gaussian fitted to time i = 100

The figure shows 
the density of 
the soil water, 
x.
Moving from 
time i = 0 to 
i = 100, the 
density changes: 

from 
concentrated 
to broad;
from uniform 
to Gaussian.
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Why is the distribution of soil water, after a 
long time, Gaussian? 

There are a number of theoretical reasons resulting in Gaussian
distribution; see Jaynes (2003). 
Among them the most widely known is the Central Limit Theorem, 
which does not apply here (there are no sums of variables).
Here applies the Principle of Maximum Entropy: for fixed mean 
and variance the distribution that maximizes entropy is the normal 
distribution (or the truncated normal, if the domain of the variable is 
an interval in the real line).
Entropy [< Greek εντροπία < entrepomai (εντρέποµαι) = to turn 
into] is a probabilistic concept, which for a continuous random 
variable x is defined as

Entropy is a typical measure of uncertainty, so its maximization
indicates that the uncertainty spontaneously becomes as high as 
possible (this is the basis of the Second Law of thermodynamics).

∫
∞

∞−

−=−= dxxfxfxfExφ )(ln)()](ln[:][
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exact trajectory for x[0] = 100, v[0] = 0.3

95% prediction limits - deterministic forecast

High uncertainty :Low uncertainty 

Propagation of uncertainty in time
The propagation of uncertainty is completely determined using stochastics. 
In summary, the stochastic representation:

incorporates the deterministic dynamics—yet describes uncertainty;
has a rigorous 
analytical 
expression 
(Frobenius-
Perron);
provides and 
utilizes a 
powerful 
numerical 
integration
method 
(Monte Carlo).

The so-called ensemble forecasting in weather and flood prediction does not 
differ from this stochastic framework.
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Do we really need the deterministic 
dynamics to make a long-term prediction?

Working hypothesis: A set of observations contains enough information, 
which for long horizons renders knowledge of dynamics unnecessary.
Here we use 100 “years” of “past observations”, for times i = -100 to -1. 
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-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0
i

x i

Initial conditions:
x-100 = 73.99 and 
v-100 = 0.904.
At time i = 0, the 
resulting state is 
x0 = 99.5034 ≈ 100; 
v0 = 0.3019 ≈ 0.30.
Interpreting 
“observations” as a 
statistical sample, we 
estimate: 
mean = -2.52; 
standard deviation = 
209.13.

In further investigations, we will refer to the state x0 = 99.5034; v0 = 0.3019 as 
the exact initial state and x0 = 100; v0 = 0.30 as the rounded off initial state.
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Deterministic forecast

Naïve statistical forecast

Expected deterministic forecast
error assuming independence

Better skill of 
deterministic forecast 

Better skill of naïve 
statistical forecast 

A naïve statistical prediction vs. deterministic 
prediction

We compare two different predictions:
That derived by immediate application of the system dynamics;
A naïve prediction: the future equals the average of past data. 

For long horizons use of deterministic dynamics gives misleading results. Unless 
a stochastic framework is used, neglecting deterministic dynamics is preferable.

For long prediction times 
the naïve prediction is 
more skilful. 
Its error ei is smaller than 
that of deterministic pre-
diction by a factor of √2. 
This result is obtained 
both by Monte Carlo 
simulation and by 
probability-theoretic 
reasoning (assuming 
independence among 
different trajectories).
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Past data and ergodicity
Ergodicity (< Greek εργοδικός < [έργον = work] + [οδός = path]) is an 
important concept in dynamical systems and stochastics.
By definition (e.g. Lasota and Mackey, 1994, p. 59), a transformation is 
ergodic if all its invariant sets are trivial (have zero probability [= measure]). 
In other words, in an ergodic transformation starting from any point, a 
trajectory will visit all other points, without being trapped to a certain subset. 
(In contrast, in non ergodic transformations there are invariant subsets, such 
that a trajectory starting from within a subset will never depart from it).
An important theorem by George David Birkhoff (1931) says that for an 
ergodic transformation S and for any integrable function g the following 
property holds true:

For instance, for g (x) = x, setting x0 the initial system state, observing that 
the sequence x0, x1 = S (x0), x2 = S 2(x0), ..., n represents a trajectory of the 
system and taking the equality in the limit as in approximation with finite 
terms, we obtain that the time average equals the true (ensemble) average:

Ergodicity allows estimation of the system properties using past data only.

( ) ∫∑
∞

∞−

−

=∞→
= dxxfxgxSg

n

n

i

i

n
)()()(lim

1

0

1

∫∑
∞

∞−

−

=

≈ xxfxx
n

n

i
i d)(

1

0
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A more informative prediction
Reduction of uncertainty for long time horizons: No way!

No margin for better knowledge of dynamics (full knowledge already).
Indifference of improved knowledge of initial conditions (e.g. reduction of 
initial uncertainty from 1% to 10-6 results in no reduction of final 
uncertainty at i = 100 (try it!).
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-1000 -800 -600 -400 -200 0 200 400 600 800 1000
x

f (x )
Time i = 0

Time i = 100, estimated by Monte Carlo

Gaussian fitted to time i = 100

Approximation for time i = 100 based
on past data assuming ergodicity

Stochastic inference using (a) past data, (b) ergodicity, and (c) maximum 
entropy provides an informative prediction.
Knowledge of dynamics does not improve this prediction.

Informative prediction 
= point prediction + 
quantified uncertainty.

Past data: temporal 
mean & variance at 
times i = -100 to 0. 
Ergodicity: ensemble 
mean & variance at 
time i = 100.
Principle of maximum 
entropy: Gaussian 
distribution.
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Stochastics for ever...

The stochastic representation is good for both short and long horizons, and helps 
figure out when the deterministic dynamics should be considered or neglected.
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Further exploration of the system properties:
Is the system evolution periodic? 

A longer simulation of the system (10 000 terms) using the rounded-off 
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0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14
δ

ν

The trajectories of the system state do not resemble a typical periodic 
deterministic system—nor a purely random process.

initial conditions 
shows that the 
period δ
between 
consecutive 
peaks is not 
constant but 
varies between 
4 and 10 
“years”.
The period with 
maximum 
frequency ν is 6 
“years”.
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A stochastic tool to detect periodicity: Periodogram
The square absolute value of the Discrete Fourier Transform (a real function 
p (ω) where ω is frequency) of the time series (here 10 000 terms) is the 
periodogram of the time series.
p (ω) dω is the fraction of variance explained by ω and thus excessive values 
of p (ω) indicate strong 
cycles with period 1/ω.
Here we have large
p (ω) at 1/ω between 
4 and 12 “years”
without a clearly 
dominant frequency.
Rather the shape 
indicates a 
combination of 
persistence (short 
periods) and 
antipersistence
(long periods).

Antipersistence is often confused with periodicity—however, the two are 
different.
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Decay

A stochastic tool to detect periodicity and 
dependence: Autocorrelation function

The Finite Fourier Transform of the periodogram is the empirical
autocorrelation function (autocorrelogram), which is a sequence of values ρj , 
where j is a lag. It is more easily determined as ρj = Cov[xi , x i – j ] / Var [xi ].
The positive ρ1
is expected 
because of 
physical 
consistency.
The existence 
of negative 
values is an 
indication of 
antipersistence.
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A different perspective of long-term predictability 
and the key consequence of antipersistence

Arguably, when we are interested for a prediction for a long time horizon, we 
do not demand to know the exact value at a specified time but an average 
behaviour around that time (the “climate” rather that the “weather”). 
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Annual storage
Moving average of 30 values

Antipersistence enhances climatic-type predictability (prediction of average).

The plot of the soil 
water for a long 
period (1000 
“years”) indicates: 

High variability 
at a short 
(annual) scale—
with peculiar 
variation 
patterns; 
A flat time 
average at a 
30-year scale 
(“climate”). 
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An index of variability
To study the peculiar variability of the soil water xi we introduce the random 
variable yi := |xi – xi – 6| where the lag 6 was chosen to be equal to the most 
frequent period appearing in the time series of xi . 
We call yi the variability index.

The frequent and long excursions of the local average from the global average 
indicate long-term persistence. 
Persistence is often confused with nonstationarity—but the two are different.

The plot of the time 
series of yi for a long 
period (1000 “years”) 
indicates: 

High variability 
at a short 
(“annual”) scale; 
Long excursions of 
the 30-“year”
average (“the 
climate”) from the 
global average 
(of 10000 values).
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The autocorrelation of the variability index

The consistently positive autocorrelations ρj for high lags j indicate long-term 
persistence.
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Multi-scale stochastics and the Hurst-
Kolmogorov dynamics

A discrete-time random variable xi refers to a specific time scale.
A multi-scale stochastic representation defines a process at any scale k ≥ 1 by:

A key multi-scale characteristic is 
the standard deviation σ (k) of xi

(k)

which is a function of the scale k, 
typically depicted on a log-log plot.
The quantity H = 1 + slope in this 
plot is termed the Hurst coefficient. 
H = 0.5 indicates pure randomness.
H between 0 and 0.5 indicates 
antipersistence.
H between 0.5 and 1 indicates 
persistence.
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A process with constant slope and H between 0.5 and 1 is a Hurst-Kolmogorov
process (after Hurst, 1951, and Kolmogorov, 1940) with long term persistence.
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Multi-scale stochastics and predictability
For an one-step ahead prediction, a purely random process xi is the most 
unpredictable. 
Dependence enhances one-step ahead predictability; e.g. in a Markovian 
process with ρ1 = 0.5 (comparable to that of our series xi and yi) the 
conditional standard deviation is 
√(1 – ρ1

2) times the unconditional,
i.e. by 13% smaller.

Contrary to what is believed, positive dependence/persistence substantially 
deteriorates predictability over long time scales—but antipersistent improves it.

However, in the climatic-type 
predictions, where we are 
interested on the average 
behaviour rather than on exact 
values, the situation is different.
In the example shown, at the 
30-“year” climatic scale, 
predictability is deteriorated by a 
factor of 3 for the persistent 
process yi (thus eliminating the 
13% reduction due to 
conditioning on the past).
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Demonstration of unpredictability of 
processes with persistence 

The plot shows 
1000 “years” of 
the time series 
yi (variability 
index) at the 
annual and the 
climatic, 
30-“year” scale 
and for initial 
conditions

exact, and
rounded.

The departures 
in the two cases 
are evident. 
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Even a fully deterministic system is fully unpredictable at a long (climatic) 
time scale when there is persistence.
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Recovery of dynamics from time series
Stochastics—the concept of entropy in particular—provides a way to recover 
the dynamics of a system, if the dynamics is deterministic and unknown and 
if a long time series is available.
Forming time delayed vectors with trial dimensions m and calculating the 
multidimensional entropy of vector trajectories we are able to recover the 
unknown dynamics (employing Takens, 1981, theorem).
In the example we find that the dimensionality of our toy system is 2.

Recovering of unknown deterministic dynamics does not enhance long-term 
predictability.
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From the toy model to the real world
In comparison to our simple toy model, a natural system (e.g., the 
atmosphere, a river basin, etc.):

is extremely more complex;
has time-varying inputs and outputs; 
has spatial extent, variability and dependence (in addition to temporal); 
has greater dimensionality (virtually infinite);
has dynamics that to a large extent is unknown and difficult or impossible 
to express deterministically; and
has parameters that are unknown.

Hence uncertainty and unpredictability are naturally even more prominent in 
a natural system. 
The role of stochastics is even more crucial:

to infer dynamics (laws) from past data;
to formulate the system equations;
to estimate the involved parameters;
to test any hypothesis about the dynamics. 

Data offer the only solid grounds for all these tasks, and failure of founding 
on, and testing against, evidence from data renders the hypothesized 
dynamics worthless.



D. Koutsoyiannis, A random walk on water 41

Some questions related to the real world:
(i) Physically-based modelling in hydrology

What is physically-based modelling of hydrological (and other geophysical) 
systems?

Is physics synonym to determinism?
Is physically-based synonym to mechanistic?
Are first principles mechanistic principles? 
Is not statistical physics part of physics?
Is not entropy maximization a first principle?
In not stochastic modelling part of physical modelling?

Will it ever be possible to achieve such a physically-based modelling of 
hydrological systems that will not depend on data or stochastic 
representations?

Can detailed representations and reduction to first principles render 
hydrologic measurements unnecessary?
What level of detail is needed in such reductionist modelling for a 
catchment of, say, 1000 km2? 

103 cells of 1 km2 each?
109 cells of 1 m2 each?
1015 cells of 1 mm2 each?

How far can current research trend toward detailed “physically-based”
models advance hydrology and water resources science and technology?
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(ii) Hydrological uncertainty and its reduction
To what extent can hydrological uncertainty be reduced?

Can uncertainty be eliminated by uncovering the system’s deterministic 
dynamics? 
Is uncertainty epistemic or structural?

When there is potential for reduction of uncertainty, what are the most 
effective means for reduction?

Better understanding?
Better deterministic models?
More detailed discretizations?
Better data?

When the limits of uncertainty reduction have been reached, what are the 
appropriate scientific and engineering attitude?

Confession of failure—no action?
Quantification of uncertainty and risk through stochastics—action under 
risk?

Is there potential to improve current stochastic methods in hydrology?
Are current methods consistent with observed natural behaviours? 
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(iii) Uncertainty and water resources engineering 
and management 

Can there be risk-free hydraulic engineering and water management?
Can deterministic methods provide solid scientific grounds for water 
resources engineering and management? 
Are there deterministic upper limits in extreme hydrological phenomena, 
such as precipitation and flood, and can they be determined with certainty?
Are the concepts of probable maximum precipitation (PMP) and probable 
maximum flood (PMF) scientific?
Are the so-called hydrometeorological methods for determining PMP and 
PFM deterministic or statistical? 
Are there stochastic alternatives to PMP and PMF, able to quantify the risk?
Do PMP and PFM remove risk by implying existence of upper deterministic 
limits?
Do PMP and PFM remove responsibility for a decision as to the degree of 
acceptable risk or protection by implying that there is no risk?

“Ignorance is preferable to error and he is less remote from the truth who 
believes nothing than he who believes what is wrong ”.
Thomas Jefferson (1781)
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(iv) Hydrology, water resources and climate
Is the current interface between hydrology and climate satisfactory? 
Should hydrology and water resources planning rely on climate 
model outputs?
Are climate models properly validated (i.e., for periods and scales 
not used in calibration)? 
Is the evolution of climate and its impacts on water resources 
deterministically predictable?
What is Climate and Climate Science?

A definition: Climate [is] the long-term statistics describing the conditions in the 
atmosphere, ocean, and ice sheets and sea ice, such as means and extremes.
U.S. Global Change Research Program, Climate Literacy: The Essential Principles of Climate Sciences
(www.climatescience.gov/Library/Literacy/default.php).

A remark for the definition: “Gotta love Climate Science … a scientific field 
with no agreed-upon subject of study.

• What is the climate, Daddy?
• Son, if I knew that, I wouldn't be a Climate Scientist.”

Willis Eschenbach (comment in “Koutsoyiannis et al 2008: On the credibility of climate predictions”, Climate Audit, by 
Steve McIntyre; www.climateaudit.org/?p=3361#comment-291922).
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Long term climate predictions are trendy...
From 2100 AD 
(Battisti and Naylor, 
Science, 2009)...

...to 100 000 AD 
(Shaffer et al., 
PNAS, 2009)

... to 3000 AD 
(Solomon et al., 
Nature 
Geoscience, 2009)
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Is there any indication that climate is 
predictable in deterministic terms?
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Is climate predictability in stochastic terms better 
or worse than in a purely random process?
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NoYesAre deterministic predictions of climate possible?
NoYes

Does positive autocorrelation (i.e. dependence), 
improve long term predictions?

NoYes

Are the popular climate “predictions” or “projections”
trustworthy and able to support decisions on water 
management, hydraulic engineering, or even 
“geoengineering” to control Earth’s climate? 

NoYes
Can uncertainty be eliminated (or radically reduced) 
by discovering a system’s deterministic dynamics?

NoYes
Are deterministic systems deterministically 
predictable?

NoYes
Is stochastics a collection of mathematical tools, 
unable to give physical explanations?

NoYes
Are probabilistic approaches unnecessary in systems 
with known deterministic dynamics?

NoYes
Can natural processes be divided in deterministic and 
random components? 

Less 
common 

reply

More 
common 

reply

Concluding questions & answers
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Who is right?
Αἰών παῖς ἐστι παίζων πεσσεύων. 
Παιδός ἡ βασιληίη.
Time is a child playing, throwing 
dice. The ruling power is a child's.
(Heraclitus; ca. 540-480 BC; 
Fragment 52) 

I am convinced that He does 
not throw dice. 
(Albert Einstein, in a letter to 
Max Born in 1926) 



D. Koutsoyiannis, A random walk on water 50

References
Anagnostopoulos, G., D. Koutsoyiannis, A. Efstratiadis, A. Christofides and N. Mamassis, Credibility of climate predictions revisited, 
European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 11, Vienna, 611, European Geosciences 
Union, 2009.
Battisti, D.S. and R.L. Naylor, Historical warnings of future food insecurity with unprecedented seasonal heat, Science 323, 240-244, 
2009.
Bernoulli, J., Ars Conjectandi, Thurnisii fratres, 306+35 pp., Basel, 1713.
Birkhoff, G.D., Proof of the ergodic theorem, Proceedings of the National Academy of Sciences, 17, 656-660, 1931.
Feynman, R., The Character of Physical Law, MIT Press, Cambridge, MA, 1965.
Hurst, H.E., Long term storage capacities of reservoirs, Trans. Am. Soc. Civil Engrs., 116, 776–808, 1951.
Jaynes, E.T., Probability Theory: The Logic of Science, Cambridge Univ. Press, 2003.
Jefferson, T., Notes on Virginia, 1781. Reprinted in A. Koch and W. Peden (eds.), The Life and Selected Writings of Thomas 
Jefferson, Theivlodern Library, New York, 1944. Reprinted by Random House, Inc., 1972.
Kolmogorov, A. N., Grundbegrijfe der Wahrscheinlichkeitsrechnung, Ergebnisse der Math. (2), Berlin, 1933; 2nd English Edition:
Foundations of the Theory of Probability, 84 pp. Chelsea Publishing Company, New York, 1956.
Kolmogorov, A. N., Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum, Dokl. Akad. Nauk URSS 26, 
115–118, 1940.
Koutsoyiannis, D., A. Montanari, H. F. Lins, and T.A. Cohn, Climate, hydrology and freshwater: towards an interactive incorporation 
of hydrological experience into climate research—DISCUSSION of “The implications of projected climate change for freshwater 
resources and their management”, Hydrological Sciences Journal, 54 (2), 394–405, 2009.
Laplace, P.-S., Théorie Analytique des Probabilités / par M. le Comte Laplace. 1812. Oeuvres complètes de Laplace VII. 1-2. Publiées 
sous les auspices de l'Académie des sciences, par MM. les secrétaires perpétuels, Paris, Gauthier-Villars, 1878-1912.
Lasota, A., and M.C. Mackey, Chaos, Fractals and Noise, Springer-Verlag, 1994.
Maxwell, J. C., A letter to Lewis Campbell, 1850; quoted in: Campbell, L. and W. Garnett, The Life of James Clerk, Maxwell, p. 143, 
London, 1882, Reprinted by Johnson Reprint Corporation, 1969.
Metropolis, N., and S. Ulam, The Monte Carlo method, Journal of the American Statistical Association, 44(247), 335-341, 1949.
Niederreiter, Η., Random Number Generation and Quasi-Monte Carlo Methods, Society for Industrial and Applied Mathematics, 
Philadelphia, 1992.
Shaffer, G., S.M. Olsen and J.O.P. Pedersen, Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil 
fuels, Nature Geoscience, DOI: 10.1038/NGEO420, 2009.
Solomon, S., G.-K. Plattner, R. Knutti and P. Friedlingstein, Irreversible climate change due to carbon dioxide emissions, Proceedings 
of the National Academy of Sciences, 106(6), 1704–1709, 2009.
Takens, F., Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, D.A. Rand and L.-S. Young (eds.), 
336–381, Lecture Notes in Mathematics no. 898, Springer-Verlag, New York, USA, 1981.
Wittgenstein, L., Tractatus Logico-Philosophicus, 1921 (http://www.uweb.ucsb.edu/~luke_manning/tractatus/tractatus-jsnav.html).


