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The paper “A random walk on water” by D. Koutsoyiannis discusses determinism and
randomness as two coexisting components of natural processes in time, identifying
stochasticity with unpredictability. This view is said to contradict the traditional notion
of determinism and randomness as two mutually exclusive components, associated
with understanding, science, cause-effect on the one hand and noise and evil on the
other hand. The points are demonstrated using a toy-model of a two dimensional (2D)
caricature hydrological system with chaotic dynamics. | think the paper by Koutsoyian-
nis raises some important points regarding predictability at long time horizons and the
absence of a clear distinction between deterministic and stochastic phenomena. | en-
joyed reading it a lot.

Reading the paper crystallized some of my thoughts about the way we make predic-
tions in hydrology. To my opinion, the example given is not describing the main cause
for uncertainty in natural systems we as hydrologists usually deal with. For this kind
of systems, the high dimensionality is a more natural explanation of uncertainty than
chaotic interaction in low-dimensional systems. | have tried to clarify these views and
contrast them to the notions brought forward by Koutsoyiannis. Apart from that, | have
a few points | would like to add to the discussion, regarding the real-number argument,
the principle of maximum entropy and the definition of understanding. This comment
concludes with an extra argument for using probabilistic forecasts, based on a decom-
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position of an information-theoretical measure of forecast quality.

1 randomness vs. determinism

| Agree that what we define as randomness is mainly epistemological and can be seen
as unpredictability. In other words, uncertainty is not a physical property of the system
but just reflects lack of knowledge. However, current views on quantum mechanics ac-
tually say there also is fundamental uncertainty. The way classical mechanics emerges
as a special case of quantum mechanics can thus be seen as “Emergence of determin-
ism from randomness”, in contrast to “Emergence of randomness from determinism
(6616:3). From this apparent determinism, apparent randomness can emerge again
(cf. the roll of dice, a coin toss). Maybe we just have to conclude that randomness and
determinism can emerge from eachother and which one dominates depends on scale
in general and not just on time, as is stated in (6612:14-15).

Actually, it does not matter whether the world it fundamentally deterministic or stochas-
tic (fundamental uncertainty). In practical applications, we deal with more complex
systems of interactions and enormous state-dimension than we could ever calculate,
so epistemological uncertainty dominates the fundamental uncertainty.

2 Real numbers vs. quantized variables

It is true that it is fundamentally impossible to calculate real numbers with infinite pre-
cision (6619:12), but | doubt if the example states given in the caricature system are
really real numbers, as is stated in (6619:13). The amount of soil water x; can be quan-
tized by the number of molecules present in the discrete volume and the flux v; is also
quantized by the number of molecules leaving the volume in one discrete timestep.
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Therefore, | think that the premise of incomplete precision is not something fundamen-
tal, but more of practical nature in this case. This is actually the case in many systems,
as fundamental building blocks are often quantized variables. | think it is not necessary
to bring in the real-number argument for showing that we can never precisely know the
initial state of a system.

3 Chaotic dynamics or large state dimension?

The paper focuses on chaotic dynamics and incomplete precision in the knowledge of
the initial state as main causes for unpredictability. However, | think it is more natural
to see the large state dimension of natural systems as a fundamental reason for un-
predictability and randomness. The paper presents it as somewhat surprising that ran-
domness emerges from determinism, even with precisely formulated system dynamics
(6618:20-26) and without the introduction of an explicit “agent” of randomness (6618:2-
4). In contrast to this, | would rather see hydrological systems as high-dimensional
complex systems, with surprising predictable macroscopic behaviour. The nature of
this “emergence of predictability” is elaborated below.

The caricature system in the example is one of few states and complex nonlinear in-
teractions. This leads to chaotic system behaviour, which in it’s turn leads to unpre-
dictability. It is then stated that “All alive natural systems behave in more or less this
way” (6621:1). In contrast to this, | think most natural systems, including the one that
the caricature system represents, are most accurately discribed as systems of a high
dimensional state and relatively simple interactions (far simpler than in eq. 2). The 2D
system can be seen as an approximation of the emergent behaviour of such a complex
system. The large number of interactions and feedbacks in the complex system make
it even more chaotic and unpredictable than the 2D complex interactions system.

However, the macro-states, which are for example sums or averages such as the water
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storage and vegetation cover, are far more predictable than the micro-states, such
as the position of all water molecules and the activity of the individual stomata in the
vegetation leaves. In this case one could speak of “emergence of (some degree of)
determinism from randomness” or the “emergence of predictability from randomness”.
| think this very fundamental mechanism of emergence, both visible in evolutionary
processes and the movement of systems towards maximum entropy, is the reason why
we can make hydrological predictions in the first place.

Even though it is impossible to predict the paths of individual water molecules with
accuracy, the macro-states of a large number of molecules interacting is surpisingly
predictable. Sometimes this predictability simply follows from the calculus of probabil-
ities. Given a large number of equally probable microstates, probability in a complex
system often concentrates in a small number of possible macrostates. An example is
the sum of the outcomes of a large number of dice. The uncertainty about the precise
microstate is equal to the sum of uncertainties of the individual dice, but the uncertainty
about the sum is far less.

If we recognize that the states used in the caricature system are in fact macro-states
of a more complex system, then we do not need the incomplete precision in describing
real numbers as an argument for not knowing the initial state precisely. The incomplete
precision simply follows from random fluctuations of the sum of “a very large number of
dice”. Or, as Grandy Jr (2008) puts it: “Effects of the microscopic dynamical laws can
only be studied at the macroscopic level by means of probability theory”.

4 The principle of maximum entropy

In this section of the commentary, the connection between maximum entropy thermo-
dynamics and the more general principle of maximum entropy as a tool for inference
of a distribution is explored. The key observation is that principle of maximum entropy
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as used by Koutsoyiannis (6625:12-6626:2) is not in itself a justification for the nor-
mal distribution of the probabilistic forecast at long time horizon. | am curious if there
would be some explanation for the constraints on mean and variance, which reflect the
information available about the state at long lead time.

Because of the large number of interacting particles in a full microscopic representation
of a hydrological system, it is also practically impossible to make predictions about the
precise full state even one timestep ahead. The only reason we can make predictions
about future behaviour of the world is the fact that patterns emerge from these com-
plex interactions (the most simple pattern being effects that average out, such as the
sum of dice). The patterns are far more predictable than the microstates themselves.
This is the result of constraints on the macro-states that follow from conservation laws
and quantities that are measurable on macro-scale. The most likely probability dis-
tribution of the micro-states is the one that maximally spreads out probability, given
these constraints on macro-states, which are usually expectation values of functions
of microstates. This principle is related to the fact that the most likely distribution of
micro-states is the one that can be realized in the largest number of ways, satisfying
constraints on macroscopic quantities, like the total energy in the system. A well-known
example is the pressure of gas in the atmosphere, which follows a exponential distri-
bution. This matches the maximum entropy distribution for a given mean and positive
values. The mean can be interpreted as a fixed potential height energy and the restric-
tion to positive values as the boundary of the earth’s surface. Whether the distribution
is a good estimate depends on whether the known macrostates are sufficient to char-
acterize the system. The distribution thus reflects a state of knowledge contained in
the constraints on the macrostates.

The principle of maximum (Shannon-)entropy, formulated by Jaynes (1957), gener-
alizes this to a method of statistical inference. It states that the best estimate for a
distribution of some variable is the one that has maximum entropy (uncertainty), con-
strained by what we do know. The principle of maximum entropy distributions is very
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applicable to the case of forecasting behaviour of large numbers of interacting particles
or processes and probably also for forecasting the probability distribution of the state
after a large number of timesteps.

However, a maximum entropy distribution should always be accompanied by con-
straints. In other words, simply maximizing uncertainty makes no sense, if we do not
constrain it by the information we do have. If we do not have any information and
maximize entropy, we end up with the a uniform distribution on (—oo, o).

In the example given (6625:12-22), the principle of maximum entropy is used as a
theoretical reason for the distribution becoming Gaussian after some time. However,
in itself, the principle is no justification for the Gaussian distribution. Also the fact that
the mean and variance are fixed should be justified theoretically (cf. the constraints on
the lower bound and mean for the exponential distribution for gas in the atmosphere).
In other words, it must be shown that the mean and standard deviation sufficiently
characterize the system to make a correct inference about distribution of micro-states.

Another point regarding the maximum entropy principle is the difference between the
tendency to thermodynamic equilibrium and the principle of maximum entropy as a
method of inference based on limited information. Although links exist, which are not
always straightforward, they are different concepts. | think the forecast distribution of
the state at long time-horizons is a typical example of inference with incomplete infor-
mation and | do not see an obvious connection with the concept of a thermodynamic
equilibrium of maximum entropy (as suggested in 6626:10). The thermodynamic equi-
librium is this system is only reached when it is in the dead state. The reason why
the system remains alive is the fact that it is not isolated and low-entropy (free) energy
flows in (sunlight). Although the energy is not explictly modeled, this is probably the
only way to explain the chaotic dynamics in equation 2 (page 6617).
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5 Prediction vs understanding

On (6618:27-29) the following statements are made: “Science is not identical to under-
standing” and “Nobody understands quantum mechanics”. | fully agree with the two
statements, but for different reasons, because | would like to propose another view
on defining understanding. | think this definition of understanding is closer to what
Feynman was arguing in the second quote. At this point, | do think the distinction be-
tween understanding and overstanding, as brought forward by Koutsoyiannis (6618:15
- 6619:9), is another issue here. That distinction refers to making inferences based
on observed emergence behaviour versus deduction from first principles. However,
the first principles are also inferred from observed behaviour. The difference is just
a matter of scale and uncertainty and both are valuable tools for improving predic-
tions. | therefore think that even the statement that “prediction ... is a crucial target in
science-with even higher importance in engineering” (6619:7-9) does understate the
importance of predictions in science. | would say that prediction is the fundamental
goal and understanding is just a means. This is clarified in the following section, along
with some discussion of the relation between prediction and data-compression.

| think science is nothing more and nothing less than trying to make good predictions.
The way we can make predictions is to see patterns in what we observe and assume
these patterns are the result of some physical laws that are generally applicable. |If
we describe the pattern in a way longer than necessary, including more parameters to
be estimated, we miss part of the pattern, because the description allows for a wider
range of patterns to be represented and extra information is necessary to specify which
applies to the future.

Therefore, the best way to make predictions is to find some form of minimum descrip-
tion length (MDL) for all observations (model + data). Formal approaches to the MDL
principle can be found in Rissanen (2007). In other words, we try to codify observed be-
haviour in laws as much as possible (leave little noise) and a shorter code is preferred
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over a larger one. Laws should therefore be as general as possible and re-use of laws
for various problems is encouraged. This is view is strongly related to data compres-
sion, information theory and model complexity control (see for example Schoups et al.
(2008)). In science, a good set of models is the set of models that best describes all
observations so far and with the smallest total complexity (there is a trade-off between
describing data and limiting complexity). This set of models coincides with the one
that makes the best predictions, given our state of knowledge. Whenever it is possible
to unify two parts of physics into one and it yields a shorter MDL, progress has been
made. Sometimes this progress is visible in terms of prediction of thus far unobserved
phenomena (this progress is cashed at the moment when it is observed, for example if
the Higgs Boson is found). Another way to advance science is to observe phenomena
that cannot be explained by the current set of models, forcing the models to become
more complex in order to make good predictions of the phenomena causing these new
observations.

Of course, scientific progress is not limited to fundamental physics and explaining the
unexplained. Sometimes the emergent behaviour of a complex system can be de-
scribed in a much shorter way than the reductionist explanation, avoiding the need
to specify the full micro-state. Especially because the full micro-state is impossible
to observe anyway, it has no value trying to predict it. Modeling relations between
macro-states is what we mainly try to do in hydrology (referred to by Koutsoyiannis as
‘overstanding’), but in a way also in Newtonian mechanics (With the difference that it
almost perfectly describes the emergent behaviour in many conditions).

If science is just about compressing observations to get good predictions, where is
the understanding? | think that what is usually seen as understanding is nothing more
than seeing analogies between the mathematical relations that give good predictions
and our intuition based on observations in everyday life. We intuitively understand
conservation of mass because we see it everyday. We understand the movement of
molecules in a gas because it is analogous to bouncing marbles in some way. We
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understand the concept of waves by picturing the movement of ripples when we throw
a stone in the water.

Understanding is thus nothing more than picturing the predictive model in terms of sim-
ilar relations in our observable world. This is also the reason why “Nobody understands
quantum mechanics” (Feynman, 1965). If the way the world behaves at a certain scale
does not have analogous counterparts on a human-observable scale, it is impossible
to understand, given this notion of understanding.

Furthermore, | think that understanding is often overrated. It is often stated as an
objective as such. From an aesthetic point of view it is of course nice if a model is
understandable in the sense that it has analogies to observable behaviour on a human
scale. An example is to picture a catchment as a series of interconnected buckets.
However, in many cases, the system we try to model simply does not behave in such a
way. In those cases, the understandable model structure compromises prediction ac-
curacy and is not closer to how the actual system works than a black-box model fitted to
the data. The advantage of conceptual models is that knowledge that has been gained
from past observations, like conservation of momentum and mass, is easily added to
the model in the form of constraints on the structure. Data that has been previously
transformed into knowledge of laws is helping predictions. The fact that we have an
extra constraint on the structure helps the model to learn more from the information in
the data and improves predictions. So again, the overall goal of good predictions al-
ready captures the benefits of physically understandable parameters. Also, by keeping
the formulation of the relations for prediction restricted to the known physical laws, we
do not unnecessarily extend the description length with extra relations, that are only
usable in one specific hydrological system.

Another distinction that can be made is the prediction of simple systems of few states
(like in particle physics) and prediction of the macro-states in far larger systems (like in
hydrology). In the paper by Koutsoyiannis this difference is referred to as the difference
between understanding and “overstanding”. Indeed this is an important distinction,
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because in the former case we aim at perfect predictions, while in the latter, we know
beforehand that our model gives approximate predictions of macroscopic behaviour of
complex systems. In this case, the understanding of deterministic dynamics does not
get us far if we are to predict future behaviour.

In these cases intuitive understanding (through “overstanding”) can sometimes still be
achieved if one realizes that there are analogies with many systems in nature where an
“‘intention” of the system emerges from randomness. Examples are adaptations and
optimality that emerge from evolution and maximum entropy distributions that emerge
from microscopic randomness, deterministic dynamics and macroscopic constraints.
Especially under idealized assumptions, the relations between the macro-quantities
can sometimes be of the same form as some of the relations between micro-quantities,
which even enhances the idea of understanding.

However, it is dangerous to generalize this kind of understanding. Heterogeneity, for
example, can completely change the relation between the macro-states into a form that
has no relation with similar processes on micro-scale. Fitting a model structure that still
assumes that the form of the relation is “understandable” in terms of simple mechanics
will yield bad predictions and thus is bad science.

6 Why we should not make deterministic predictions

It is stated that quantification of uncertainty is a useful target (6615:14). | think it is
important here to make a formal distinction here between quantification of uncertainty,
which is putting a number to the amount of uncertainty, and “probabilization” of uncer-
tainty, which is specifying the distribution. The quantification of uncertainty within the
framework of probability theory amounts to calculating the entropy of the distribution
that reflects both our knowledge and our uncertainty about the variable under question.
| think the real target is finding that distribution, which is the same as making a proba-
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bilistic prediction. In fact there is a relation between specifying the forecast distribution
as accurately as possible and minimizing the uncertainty about the truth. Below, this
relation is given for the case of forecasts of an event with a discrete number of possible
outcomes.

K
ZDKL ol f) = anDKL ok |.fr) — anDKL orllo) +H(0) (D

k

In which N is the number of forecast-observation pairs, K the number of unique fore-
casts, n; the number of forecasts of one unique type and o, o, 6 and f; are proba-
bility mass functions of respectively one single observation, the average observation
(climate), the conditional observation given one particular forecast and the forecast
distribution.

The remaining uncertainty about the truth can be measured in hindsight by the
Kullback-Leibler divergence (relative entropy) from the observations (assuming they
are perfect) to the forecast distribution (the left hand side (LHS) of the equation).
This remaining uncertainty can be mathematically decomposed into three components
(Weijs et al., 2009). The first term on the RHS is measures the divergence (in terms of
information) between the forecast distribution and the real conditional distribution of the
variable, given the information on which the forecast was based. Although not formu-
lated in information-theoretical terms before, this concept is known in meteorological
forecast verification as reliability, although a better term would be unreliability. One can
easily see that in order to minimize the LHS, the first divergence term should be as
small as possible. The second term is expectation of the information distance from the
conditional distributions given a forecast to the climate. This expectation is also known
as the mutual information between the forecasts and the observations. The last term
is the uncertainty (Shannon-entropy) of the climatological distribution, which measures
the uncertainty knowing only past observations and assuming ergodicity.

C2744

HESSD
6, C2733-C2745, 2009

Interactive
Comment

Full Screen / Esc
Printer-friendly Version
Interactive Discussion

Discussion Paper


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/6/C2733/2009/hessd-6-C2733-2009-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/6/6611/2009/hessd-6-6611-2009-discussion.html
http://www.hydrol-earth-syst-sci-discuss.net/6/6611/2009/hessd-6-6611-2009.pdf
http://creativecommons.org/licenses/by/3.0/

From the decomposition we can see that the uncertainty about the outcome is first
determined by the average properties of the past data (3rd term). Then it can be re-
duced by using the mutual information between the actual state and the future state
(2nd term) and some of this information is lost again by not properly converting it into
a probability estimate. This information-loss (1st term) is measured as the average
divergence of the forecasted distribution to the conditional distribution, given the infor-
mation available. In deterministic forecasts, this reliability-term goes to infinity for a
non-perfect forecast, indicating an infinite information loss. This can be seen as the
penalty for pretending to be certain in an uncertain world. In other words, deterministic
forecasts give an infinite information loss and therefore increase uncertainty about the
truth in a information-theoretical sense. We are currently working on a paper further
exploring this issue.
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