
58 Hydrological Sciences Journal – Journal des Sciences Hydrologiques, 55(1) 2010

ISSN 0262-6667 print/ISSN 2150-3435 online
© 2010 IAHS Press
doi:10.1080/02626660903526292
http://www.informaworld.com

THSJ

One decade of multi-objective calibration approaches in hydrological 
modelling: a review

Multi-objective calibration approaches in hydrological modellingAndreas Efstratiadis & Demetris Koutsoyiannis
Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 
Heroon Polytechneiou 5, GR-15780 Zographou, Greece
andreas@itia.ntua.gr

Received 30 July 2008; accepted 31 August 2009; open for discussion until 1 August 2010

Citation Efstratiadis, A. & Koutsoyiannis, D. (2010) One decade of multi-objective calibration approaches in hydrological modelling:
a review. Hydrol. Sci. J. 55(1), 58–78.

Abstract One decade after the first publications on multi-objective calibration of hydrological models, we
summarize the experience gained so far by underlining the key perspectives offered by such approaches to improve
parameter identification. After reviewing the fundamentals of vector optimization theory and the algorithmic issues,
we link the multi-criteria calibration approach with the concepts of uncertainty and equifinality. Specifically, the
multi-criteria framework enables recognition and handling of errors and uncertainties, and detection of prominent
behavioural solutions with acceptable trade-offs. Particularly in models of complex parameterization, a multi-
objective approach becomes essential for improving the identifiability of parameters and augmenting the
information contained in calibration by means of both multi-response measurements and empirical metrics (“soft”
data), which account for the hydrological expertise. Based on the literature review, we also provide alternative
techniques for dealing with conflicting and non-commeasurable criteria, and hybrid strategies to utilize the
information gained towards identifying promising compromise solutions that ensure consistent and reliable
calibrations.

Key words multi-objective evolutionary algorithms; multiple responses; uncertainty; equifinality; hybrid calibration; soft
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Une décennie d’approches de calage multi-objectifs en modélisation hydrologique: une revue
Résumé Une décennie après les premières publications sur le calage multi-objectifs des modèles hydrologiques,
nous résumons l’expérience acquise jusqu’ici en soulignant les perspectives clefs offertes par de telles approches
pour améliorer l’identification des paramètres. Après la revue des éléments fondamentaux de la théorie de
l’optimisation de vecteurs et des problèmes algorithmiques, nous relions l’approche de calage multi-critères avec
les concepts d’incertitude et d’équifinalité. Spécifiquement, le cadre multi-critères permet de reconnaître et de
gérer des erreurs et des incertitudes, et d’identifier les principales solutions comportementales selon des compromis
acceptables. En particulier pour des modèles ayant un paramétrage complexe, une approche multi-objectifs devient
essentielle pour améliorer l’identification des paramètres et augmenter l’information contenue dans le calage au
moyen de mesures à réponses multiples et de métriques empiriques (données “molles”), qui tiennent compte de
l’expertise hydrologique. Sur la base d’une revue de la littérature, nous fournissons également des techniques
alternatives pour gérer les critères contradictoires et incommensurables, et des stratégies hybrides pour utiliser
l’information obtenue durant l’identification de compromis prometteurs qui assurent des calages cohérents et
fiables.

Mots clefs algorithmes évolutifs multi-objectifs; réponses multiples; incertitude; équifinalité; calage hybride; données molles

1 INTRODUCTION

Even today, a common practice of parameter estima-
tion in hydrological modelling is built on the hypoth-
esis that a unique set of parameter values exists that
ensures a “global optimum” fitting of the computed
model responses to the observed ones. This involves

the formulation of a scalar performance criterion
(objective function) that measures the differences
between the two sets (i.e. simulated and observed
values), the determination of lower and upper bounds
for the model parameter values (control variables),
and the selection of a robust searching procedure
(algorithm) to optimize the parameters with respect
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to the aforementioned criterion. This automatic cali-
bration practice was significantly favoured by the
great improvement of computer capabilities (in terms
of both memory and processing speed), as well as by
the development of advanced nonlinear optimization
methods, most of which were implemented within
evolutionary schemes. Such methods have been
proved effective and efficient against the various
peculiarities (e.g. multiple peaks at all scales, discon-
tinuous first derivatives, extended flat areas, long and
curved multi-dimensional ridges, etc.) of the highly
non-convex response surfaces, which derive from the
typical fitting measures used within hydrological
calibration. These issues are thoroughly analysed in
the classic work of Duan et al. (1992; see also Beven,
2001, pp. 219–222).

Despite the progress of the “algorithmic” com-
ponent of the parameter estimation procedure, it was
soon recognized that the above approach has many
drawbacks, since it may result in a black-box mathe-
matical game that fails to ensure satisfactory predic-
tive capacity and realistic parameter values. Thus,
many researchers demonstrated the necessity for
establishing a more powerful paradigm that takes
into account the inherent multi-objective nature of
the calibration problem and the major role of model
errors and uncertainties (Gupta et al., 1998). This
issue became more imperative due to the expansion
of complex modelling schemes (semi- or fully-
distributed) to represent multiple fluxes and reflect
the spatial heterogeneities of the hydrological mech-
anisms and their related attributes across a river
basin. Several studies (e.g. Mroczkowski et al., 1997;
Refsgaard, 1997; Gupta et al., 1998; Kuczera &
Mroczkowski, 1998; Franks et al., 1999) revealed the
utility of conditioning hydrological models on multi-
ple responses (or various aspects of each single
response), in order to reduce uncertainties and pro-
vide more faithful predictions. Moreover, the
hypothesis of parameter set uniqueness, where the
global calibration paradigm is founded, has been
intensively disputed in favour of the so-called “equi-
finality” concept (Beven & Binley, 1992; Beven,
1993), where multiple model and parameter configu-
rations are considered as acceptable simulators of the
real-world system.

Accordingly, during the past years, much atten-
tion has been given to employing vector (instead of
scalar) search techniques to optimize the model
parameters. This allows for incorporating multiple
criteria within calibration to provide a number of

alternative parameter sets that are optimal, on the
basis of the Pareto-dominance concept explained
below (Section 2.1). Madsen & Khu (2002) report
that early attempts are found in the work of Harlin
(1991), who formulated an iterative procedure that
focuses on different process descriptions and associ-
ated performance measures. However, the use of
automatic routines employing Pareto-based calibra-
tion was only established in the last decade, after the
pioneering work by Yapo et al. (1998), while multi-
objective optimization approaches appeared in water
resources technology a few years earlier (Ritzel et al.,
1994; Cieniawski et al., 1995; Halhal et al., 1997).

Here we review the recent history of multi-
objective hydrological calibration and its usefulness
towards establishing more faithful and consistent
models. The following section presents the mathe-
matical background of multi-objective optimization
and the relevant computer tools. Next, we introduce
the concepts of uncertainty and equifinality as well
as their relationship with the parameter estimation
procedure. In the following section we investigate
five key issues of multiple objective model fitting,
taking into account the experience obtained from
characteristic examples from literature. The possible
drawbacks as well as the future perspectives of
multi-objective calibration are discussed in the
closing section.

2 MULTI-OBJECTIVE SEARCH: 
MATHEMATICAL BACKGROUND 
AND COMPUTER TOOLS

2.1 Fundamental notions

A multi-objective search problem involves the simulta-
neous optimization (for convenience, minimization) of
m numerical measures that represent the components
(criteria) of a vector objective function f(x) = [f1(x),
f2(x), … fm(x)], with respect to a vector of control varia-
bles x ∈ X, where X ⊆ Rn is the feasible control space;
assuming unconstrained optimization, except for the
control variable bounds (which is the typical configura-
tion in hydrological calibration problems), the feasible
space becomes a hyper-rectangle in Rn.

When the criteria are conflicting, there is no fea-
sible point that optimizes all of them simultaneously.
In that case, we look for acceptable trade-offs rather
than a unique solution, according to the fundamental
concept of Edgeworth-Pareto optimality (commonly
referred to as Pareto optimality), introduced within
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welfare economics theory at the end of 19th century.
In particular, we define a vector of control variables
x* to be Pareto optimal if there does not exist
another feasible vector x such that fi(x) ≤ fi(x*) for all
i = 1, …, m and fi(x) < fi(x*) for at least one i. The
above definition implies that x* is Pareto optimal if
there is no feasible vector that would improve some
criterion without causing a simultaneous deteriora-
tion of at least one other criterion.

The concept of Pareto optimality leads to a set
of feasible vectors, called the Pareto set and sym-
bolized as X* ⊂ X; all Pareto optimal vectors x* ∈ X*
are called non-inferior or non-dominated. The
image of the non-dominated set in the objective
space is called the Pareto front, denoted as F*. In
the absence of further information, all non-
dominated solutions are assumed equivalent or,
according to the formal mathematical terminology,
indifferent. However, within real-world decision-
making, it is usually required to determine a single
solution from the Pareto set; the latter is called the
best-compromise solution and is either selected by
“intuition” or systematically, i.e. on the basis of
external criteria or by maximizing a utility function,
which allows the comparison of all alternative solu-
tions, even the indifferent ones, on the basis of a
scalar measure (Cohon, 1978, pp. 164–173).

2.2 Classical approaches through aggregating 
schemes

Optimization problems involving multiple and con-
flicting objectives have been traditionally handled by
combining the objectives into a scalar function and,
next, solving the equivalent single-optimization
problem to identify the best-compromise solution.
The combination schemes, usually referred to as
aggregating functions, are the oldest mathematical
programming approaches, since they originate from
the Kuhn-Tucker conditions for non-dominated
solutions (Cohon, 1978, pp. 77–82). The character-
istics of the optimal solution are expressed using
multipliers (e.g. the weighting method), target-
values (e.g. goal-programming, goal-attainment and
e-constraint methods) or priorities (e.g. lexico-
graphic ordering). By changing the arguments of
the aggregating function (e.g. the weighting coeffi-
cients), one can obtain alternative solutions from
the Pareto set.

The above approach to multi-objective optimiza-
tion has some serious disadvantages. The major

problems are its subjectivity (e.g. in choosing
weights) and the fact that it hides the competitions
among the conflicting criteria. Additionally, a step-
by-step approximation of representative trade-offs is
computationally inefficient or even, in the case of
non-convex Pareto fronts, infeasible. Finally, when
incommensurate criteria are involved, the use of
aggregation schemes without appropriate scaling
results in extremely rough response surfaces.

2.3 Multi-objective evolutionary algorithms 
(MOEAs)

Evolutionary algorithms (EAs) are well-established
tools for handling nonlinear optimization problems
of any complexity. Their key feature is the parallel
search of the feasible space, through a set (popula-
tion) of randomly generated points that evolves on
the basis of stochastic transition schemes, e.g. the
genetic operators. Their multi-objective versions aim
to spread the population along the Pareto front
instead of converging around a single optimum. For
this purpose, some essential adaptations are imple-
mented with the original selection mechanisms of
EAs, by assigning dummy fitness values to the indi-
viduals, to guide the search mechanism towards well-
distributed non-dominated solutions.

Early multi-objective evolutionary attempts
appeared in the mid-1980s. The first is the Vector
Evaluated Genetic Algorithm (VEGA) by Shaffer
(1984), where the population is divided into sub-sets,
each one evolving according to a different criterion;
thus, for a problem with m objectives, m sub-popula-
tions, each of size N/m, are generated, assuming a
population of N points. These sub-populations are
then shuffled together to get a new population, on
which the genetic operators are employed. However,
clear Pareto approaches (commonly referred as first-
generation techniques), using the dominance con-
cept, were developed in the mid-1990s. The most
representative were the Multi-Objective Genetic
Algorithm (MOGA; Fonseca & Fleming, 1993), the
Nondominated Sorting Genetic Algorithm (NSGA;
Srinivas & Deb, 1994) and the Niched-Pareto
Genetic Algorithm (NPGA; Horn et al., 1994). Their
common strategy involves the assignment of dummy
fitness functions on the basis of Pareto ranking or
slight variations of it (Goldberg, 1989, pp. 99–101),
and fitness sharing, which enables diversity to be
maintained and avoids convergence to single solu-
tions (Coello Coello, 2005).



Multi-objective calibration approaches in hydrological modelling 61

More recent advances on MOEAs, known as
second-generation approaches, introduce the notion
of elitism that denotes the use of an archive or exter-
nal population to retain the non-dominated individu-
als found so far that eliminate the risk to be lost due
to random effects. In addition, they aim to provide
more efficient ranking and clustering schemes used
within the fitness evaluation procedure. Some of the
most popular algorithms, according to the state-of-
the-art review of Coello Coello (2005), are the
Strength Pareto Evolutionary Algorithm (SPEA;
Zitzler & Thiele, 1999) and its successor SPEA II
(Zitzler et al., 2001), the Pareto Archive Evolution
Strategy (PAES; Knowles & Corne, 2000), the Non-
dominated Sorting Genetic Algorithm II (NSGA II;
Deb et al., 2002), the Pareto Envelope-based Selec-
tion Algorithm (PESA; Corne et al., 2001) and the
Micro Genetic Algorithm (Coello Coello & Pulido,
2001). An extended and systematically updated
repository containing MOEA references and tools is
available at www.lania.mx/∼ccoello/EMOO/.

The contribution of hydrologists in the develop-
ment of MOEAs is not negligible. Significant
progress was made at the University of Arizona, ini-
tially with the Multi-objective Complex Evolution
(MOCOM) algorithm (Yapo et al., 1998) and the
Multi-objective Shuffled Complex Evolution
Metropolis algorithm (MOSCEM; Vrugt et al.,
2003a). The former is a first-generation multi-objec-
tive optimizer that employs Pareto ranking within a
simplex-based pattern in the objective space. The
MOSCEM algorithm is an extended version of the
SCEM-UA method for uncertainty assessment
(Vrugt et al., 2003b), and merges the strength of
complex shuffling with the probabilistic covariance-
based search strategy of the Metropolis algorithm
and the fitness assignment procedure employed
within the SPEA algorithm (Zitzler & Thiele, 1999).
Reed et al. (2003) proposed an enhanced version of
the NSGA-II method, called e-NSGA-II, where they
employ e-dominance archiving, adaptive population
sizing and automatic termination to minimize the
need for extensive parameter calibration. Notably,
the concept of e-dominance allows users to specify
the precision with which they want to quantify each
objective to optimize. The procedure was also built
within a parallelization framework, which radically
improves the efficiency and reliability of the multi-
objective search (Tang et al., 2007). Another example
is the Multi-objective Evolutionary Annealing-Simplex
method (MEAS; Efstratiadis & Koutsoyiannis, 2008),

which implements a generalized definition of domi-
nance to effectively handle problems with more than
two criteria, and also imposes feasibility bounds on the
objective space. This allows rejection of non-dominated
solutions that lie on the outer ends of the Pareto front,
thus focusing only on trade-offs with practical interest.

3 UNCERTAINTY, EQUIFINALITY AND 
MULTI-OBJECTIVE CALIBRATION OF 
HYDROLOGICAL MODELS

3.1 The concepts of uncertainty and equifinality 
in hydrological modelling

Uncertainty is a structural and inevitable characteris-
tic of all hydrological processes, arising from the
intrinsic complexity of the related natural systems. In
water resources engineering, the management of
uncertainty is of major interest, and necessary to
account for the risk within planning (e.g. uncertainty
in the design variables) and decision-making (e.g.
uncertainty in the forecasts; Montanari, 2007). Yet,
the wide use of deterministic tools for hydrological
predictions introduces additional burden to uncer-
tainty handling. Uncertainty originates from the
inherent complexity of natural mechanisms, as well
as from errors and inappropriate assumptions within
the entire modelling procedure. These errors or
assumptions, forming the so-called “epistemic”
uncertainty, span from the field observations to the
conceptualization of processes and the parameter
estimation strategy. Specifically, epistemic uncer-
tainty is related to the following factors: (a) measure-
ment errors; (b) use of over-parameterized model
structures, whose complexity is inconsistent with the
available information about the system behaviour;
(c) inappropriate representation of the temporal and
spatial variability of model inputs, which are
obtained either from processed data (e.g. discharge
records based on stage information) or point observa-
tions (e.g. precipitation, temperature); (d) poor identi-
fication of initial and boundary conditions; (e) non-
informativeness of calibration data with regard to the
entire system regime; (f) use of statistically inconsist-
ent fitting criteria (e.g. error metrics not accounting for
heteroscedasticity); (g) weaknesses of nonlinear opti-
mization algorithms on rough and high-dimensional
response surfaces; and (h) inconsistent assumption of
parameters constant in time whilst the environment is
changing, e.g. due to urbanization, deforestation,
stream lining and other human interventions (Beven
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& Binley, 1992; Wagener & Gupta, 2005; Rosbjerg
& Madsen, 2005; Engeland et al., 2005; Efstratiadis
et al., 2008; Beven et al., 2008). Evidently, models
are, by nature, imperfect representations of the real
world and thus model uncertainty, even though it
may be decreased in some of the above components,
will be always present.

The classical paradigm of model fitting on obser-
vations through automatic optimization based on a
single performance criterion conceals all above issues,
since the entire procedure degenerates to a “computa-
tional trick” of recycling errors and uncertainties
(Fig. 1). Yet, non-expert users often adopt such a
black-box approach, which may result in: (a) ostensi-
ble best-fitted parameter values that are inconsistent
with their physical interpretation; (b) poor predictive
model capacity against an independent control period
(validation); and (c) unreasonable regimes of model
responses that are not controlled by measurements
(e.g. evapotranspiration, underground losses) as well
as internal model variables (e.g. soil and groundwater
storage) (Refsgaard, 1997; Wagener et al., 2001;
Rozos et al., 2004; Efstratiadis et al., 2008). All the
above are contrary to the targets of the traditional
manual calibration, which requires a comprehensive
understanding of the model, the real system and the
data, to ensure reliable results (Boyle et al., 2000).

The context examined so far reveals a typical
conflict in hydrological modelling, where the principle
of consistency (i.e. building models that are consistent
with the behaviour of the real system) has been gener-
ally accepted as a working paradigm instead of the
principle of optimality, since the latter is too weak

against uncertainties (Seibert & McDonnell, 2002;
Wagener & Gupta, 2005; Beven, 2006). The limita-
tions of the unique parameter set concept have been
emphasized by Beven & Binley (1992) and Beven
(1993), who introduced the term “equifinality” to
illustrate the existence of multiple “behavioural”
parameter sets, which are all acceptable albeit not
equivalent, on the basis of different conceptualiza-
tions, data and fitting criteria. It is clearly admitted that
equifinality arises from uncertainty (Freer et al.,
1996), thus making it impossible to identify a “global”
optimal simulator that definitely better reproduces the
entire hydrological regime of a river basin. Even when
assuming a specific structure and a single performance
measure (a scalar calibration function) it remains diffi-
cult to locate a unique solution whose measure differs
significantly from other feasible ones across the search
space. Such poor parameter identifiability may result
in considerable uncertainty in the model outputs and,
also, preclude relating of the optimized parameter val-
ues with the observable characteristics of the basin
(Vrugt et al., 2003b).

Current advances in hydrological research pro-
vide a variety of computational techniques to deal
with these drawbacks and quantify the model predic-
tive uncertainty, by seeking for promising trajectories
of its outputs on the basis of different parameter sets.
So far, the most common uncertainty assessment pro-
cedure is the Generalized Likelihood Uncertainty
Estimation (GLUE), proposed by Beven & Binley
(1992) and applied in a wide range of hydrological and
environmental models. Founded on a quasi-Bayesian
framework of uncertainty, it employs Monte Carlo

Fig. 1 An automatic calibration procedure – a black-box game of recycling errors and uncertainties.
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simulation, assuming a known prior distribution of
the parameter values, in order to identify behavioural
parameter sets according to either a single or multi-
ple, appropriately combined, likelihood measures.
Next, the empirical cumulative likelihood weighted
distribution of simulations is used to estimate quan-
tiles for model predictions at any time step (Beven,
2001, pp. 234–240).

While the GLUE method estimates the global
uncertainty of predictions, without reference to the
individual effects of the input, parameter and model
structure components, other approaches attempt to
handle them individually. These include multi-normal
approximations (Kuczera & Mroczkowski, 1998),
simple uniform random sampling (Uhlenbrook et al.,
1999), Markov Chain Monte Carlo methods (Kuczera
& Parent, 1998; Thiemann et al., 2001; Vrugt et al.,
2003b; Engeland et al., 2005), meta-Gaussian tech-
niques (Montanari & Brath, 2004), sequential data
assimilation (Vrugt et al., 2005), multi-model averag-
ing methods (Ajami et al., 2007) and coupled schemes
(Blasone at al., 2008). For instance, the Shuffled Com-
plex Evolution Metropolis (SCEM-UA) algorithm by
Vrugt et al. (2003b) is a combined uncertainty assess-
ment and parameter optimization procedure, based on
a modified version of the SCE method for global opti-
mization. It is Bayesian in nature and operates by
merging the strengths of the Metropolis algorithm,
controlled random search, competitive evolution and
complex shuffling, to continuously update the prior
distribution and evolve the sampler to the posterior tar-
get distribution (Feyen et al., 2008). Moreover, the
simultaneous optimization and data assimilation
(SODA) method by Vrugt et al. (2005) aims for a joint
assessment of the uncertainty of model parameters and
observations (Montanari, 2007).

Regardless of their background, most of the above
procedures do not enable incorporating the user’s
experience in parameter estimation, which is the key
advantage of manual calibration. They are generally
too complicated for non-experts, whilst some of them
(especially when employing random sampling) are
computationally inefficient, thus being impractical for
models with complex parameterization. Additionally,
they imply considerable subjectivity with respect to the
selection of prior probability distributions, likelihood
functions and cut-off thresholds (Stedinger et al.,
2008). Inappropriate configurations may result in over-
estimation of uncertainty, thus providing prediction
ranges that are comparable to those computed through
statistical uncertainty measures (e.g. confidence limits)

of the observed responses. Hence, the almost negligible
dissemination of similar approaches in problems of the
every day engineering practice and the reluctance to
provide uncertainty estimation results to decision-mak-
ers and stakeholders is not surprising. Besides, the sci-
entific community remains sceptical, if not divided,
about the concepts of uncertainty and equifinality and
the proper use of Bayesian inference methods in hydro-
logical modelling, as implied from several recent dis-
cussions (Beven, 2006; Pappenberger & Beven, 2006;
Hamilton, 2007; Hall et al., 2007; Todini & Montovan,
2007; Montanari, 2007; Andréassian et al., 2007;
Todini, 2007; Sivakumar, 2008; Beven et al., 2008).

3.2 The multi-objective calibration paradigm

Despite the criticism of the equifinality concept,
hydrologists agree now that is impossible to formulate
a unique modelling structure and assign a unique
parameter set to it, thus identifying the globally optimal
simulator of all processes of a river basin using a
unique objective function. In fact, more than three dec-
ades of research have demonstrated that it is impossible
to assign an appropriate formal error structure for the
model residuals and, on the basis of the latter, detect a
particular statistical measure that is better suited for
fitting model outputs to observations (e.g. Diskin &
Simon, 1977; Sorooshian et al., 1983; Yapo et al.,
1996). This is because the non-systematic interaction
of uncertainties and errors within all modelling aspects
precludes defining a statistically-proper fitting function
and, consequently, making a statistically-correct choice
for the model parameters (Gupta et al., 1998).

In reality, any parameter estimation procedure
through data-fitting is inherently multi-objective. Let
e(q) = {e1(q), e2(q), …, eM(q)} represent the model
residuals, i.e. the departures of the observed
responses from the computed ones, where q is the
vector of parameters. We can evidently define cali-
bration as the simultaneous minimization of the
absolute departures |ei(q)| with respect to q, i.e.:

where Θ is the feasible parameter space, expressing
the prior uncertainty of parameters. Given that hydro-
logical models are, as discussed before, imperfect
simulators of complex natural systems, the above vec-
tor optimization problem is ill-posed. This prevents

minimize 

{ , , . . ., }

e( )

( ) ( ) ( ) ,

q

q q q q= e e eM1 2 ÎΘ
(1)
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the possibility of finding a utopian solution, namely a
specific parameter set that simultaneously minimizes
all residuals. However, on the basis of the Pareto opti-
mality notion, we can locate a subset of the feasible
parameter space Θ* ⊂ Θ, which contains the non-
dominated vectors of parameters, while the rest of the
space is captured by the dominated vectors, corre-
sponding to non-acceptable trade-offs of the residuals.

The above formulation entails the separate mini-
mization of all model residuals, whose number is
impractically large; for instance, given a single
observable response to fit, the problem dimension is
equal to the calibration horizon. This makes the inter-
pretation of their trade-offs impossible, since the
Pareto front becomes too extended, if not tending to
cover the entire M-dimensional objective space
(Coello Coello, 2005). Moreover, the magnitudes of
the individual residuals ei(q) are directly related
through the model structure, thus equation (1) is not
properly defined in multi-objective terms (Gupta
et al., 1998). So, instead of minimizing residuals
themselves, we can correctly state a multi-objective
configuration of the calibration problem, assuming a
limited number of fitting criteria that account for rep-
resentative aspects of the model performance with
regard to the behaviour of the hydrological system.
Therefore, the problem is reduced to:

where gi[e(q)] are scalar performance measures that
ideally should be approximately uncorrelated and

preserve the information contained in the observa-
tions, and m is the reduced dimension, with m << M.
The above problem is handled using either an aggre-
gating or a multi-objective evolutionary approach to
identify a single solution or a Pareto optimal set,
respectively. While the first strategy is typically
employed in practice, the second one is definitely
more integrated, since it allows for investigating pos-
sible conflicts between the components of the vector
objective function (equation 2).

From a mathematical point-of-view, all parameter
sets that are non-dominated with respect to criteria gi

correspond to equivalently optimal (in the Pareto
sense) solutions of equation (2). This reveals that equi-
finality (mainly as treated within the GLUE frame-
work) and dominance are closely related (but not
identical), since both seek feasible model configura-
tions that are then distinguished in two categories cor-
responding to acceptable or not acceptable
representations of the physical system. But while the
GLUE method utilizes subjective criteria to differenti-
ate the behavioural simulators from the non-behav-
ioural ones, the multi-objective paradigm is founded on
a stricter notion, i.e. the principle of dominance, for
evaluating alternative solutions. Moreover, in GLUE,
the behavioural solutions are not equivalent since they
are classified according to the likelihood function. As
shown in Fig. 2, a non-dominated solution obtained
through multi-objective analysis is not necessarily
behavioural and vice versa. On the other hand, formal
Bayesian inference techniques do not differentiate
behavioural from non-behavioural models—they only
give a tiny likelihood to poor simulators. Further dis-
cussion on the comparison of the above approaches is
provided in Section 4.3.

maximize  

  1 2

g e

e e e

q

q q q q

( )⎡⎣ ⎤⎦
= [ ] [ ] … [ ]{ }g g gm( ) , ( ) , , ( ) , ÎΘ

(2)

Fig. 2 Graphical examples illustrating Pareto-optimal and behavioural solutions in the objective space, for two hypotheti-
cal problems of simultaneous minimization of two criteria [f1, f2] with smooth (left diagram) and steep (right diagram)
trade-offs. Vector e = [e1, e2] indicates limits of acceptability, i.e. cut-off thresholds for distinguishing behavioural and
non-behavioural solutions.
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4  CRITICAL ISSUES IN MULTI-OBJECTIVE 
CALIBRATION

Multi-objective calibration has received great atten-
tion in the last decade, as indicated in Table 1, where
we quote representative case studies from the litera-
ture. For each one, we provide synoptic information
about the application area, the modelling framework,
the number of parameters and criteria to optimize,
and the calibration strategy. We distinguish between
pure Pareto-based approaches, where a set of non-
dominated solutions is detected using a MOEA, and
aggregating ones, where a unique compromise
parameter set is identified on the basis of multiple
criteria embedded in a scalar performance function.
We note that, while most of early studies focused on
lumped rainfall–runoff models, there is a growing
number of recent studies on semi-distributed and dis-
tributed schemes, usually involving a small portion
of the total model parameters (Madsen, 2003; Ajami
et al., 2004; Muleta & Nicklow, 2005; Vrugt et al.,
2005; Kunstmann et al., 2006). The spatial scale of
applications varies from experimental basins of a few
hectares (Seibert & McDonnell, 2002; Meixner et al.,
2002; Tang et al., 2006) to very large basins of
thousands of square kilometres (Schoups et al.,
2005a; Cheng et al., 2005a; Engeland et al., 2006;
Feyen et al., 2008). Most applications use two or
three objectives, and only a few explore more crite-
ria, ranging from statistical fitting functions to empir-
ical and fuzzy metrics (Schoups et al., 2005a;
Parajka et al., 2007; Efstratiadis et al., 2008; Moussa
& Chahinian, 2009). Finally, only few items of the
wide spectrum of second-generation multi-objective
evolutionary tools have been tested in hydrological
calibration applications (NSGA-II, SPEA-II,
e-NSGA). We have found only two studies which
compare their performance characteristics (Tang
et al., 2006, 2007).

Taking into account the rich experience of this
last decade, we next discuss five key issues of multi-
objective calibration, also attempting to propose some
guidelines for appropriate use of such approaches to
ensure faithful and reliable models.

4.1 Preservation of the principle of parsimony in 
complex models

The principle of parsimony is a key notion in model-
ling, where model parameters are estimated by fitting
computed outputs to observed data. It aims to represent

the model structure with as few parameters as pos-
sible and accepts that simpler parameterizations are
preferred from more complex ones, provided that
both ensure similarly good fitting. Specifically, in
hydrological modelling, several investigations about
the practical use of this concept (e.g. Beven, 1989;
Jakeman & Hornberger, 1993; Ye et al., 1997;
Uhlenbrook et al., 1999; Perrin et al., 2001) con-
cluded that parsimony is the guise for well-posed
models. Specifically, in the case of lumped concep-
tual schemes, up to five or six parameters can be
identified from time series of external system varia-
bles (e.g. rainfall, streamflow) through single-objective
calibration approaches (Wagener et al., 2001; see
also earlier discussions by Dawdy & O’Donnell,
1965, and Kirkby, 1975). Attempts to use additional
parameters, in the absence of supplementary data to
support them, usually fail to notably improve the
model fitting and result in poorly identified parame-
ters (Gupta & Sorooshian, 1983; Hornberger et al.,
1985; Kuczera & Mroczkowski, 1998). In this man-
ner, model complexity, defined as the formulation of
non-parsimonious (over-parameterized) structures,
becomes a key origin of equifinality, thus increasing
uncertainty within the parameter estimation proce-
dure. Additionally, the use of such structures reveals
a critical problem known as over-fitting, which is
recognized by the surprisingly poor validation of a
model with significantly good fitting in calibration.

Yet, the preservation of parsimony is question-
able in modern modelling tools with distributed or
semi-distributed structures and, thus, with a large
number of parameters for representing the spatial
heterogeneities of both basin characteristics and forc-
ing data. Similar difficulties arise when hydrological
models are coupled with water management schemes
to provide forecasts of inflows and abstractions at
multiple sites (Efstratiadis et al., 2008). Distributed
schemes are founded on small-scale physics, which,
in theory, would allow for obtaining all parameter
values from field data, thus avoiding calibration
effort. However, the idea that the natural heterogene-
ity could be modelled without calibration based on
field measurements of physically meaningful proper-
ties in a detailed spatial scale is fundamentally
flawed and unrealistic. For this reason, some model-
lers employ an intermediate strategy, aiming to opti-
mize a small portion of parameters, while the rest of
them are approximated on the basis of known proper-
ties of the basin (e.g. Refsgaard, 1997; Muleta &
Nicklow, 2005). In contrast, semi-distributed models
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Table 1 Characteristic applications of multiobjective calibration of hydrological models (pure Pareto approaches are
annotated with *).

Reference Study basin(s) Model Problem formulation 
(parameters and objectives)

Calibration method(s)

*Yapo et al. (1998) Leaf River, USA (1950 km2) SAC-SMA 13 parameters, 2 objectives 
(RMSE, HMLE)

MOCOM-UA

Seibert (2000) Lilla Tivsjön (12.8 km2) and 
Tärnsjö (14.0 km2), 
Sweden

HBV 10 parameters, 2 objectives 
(fuzzy measures 
combining EF for runoff 
and CD for groundwater 
levels)

Modified genetic 
algorithm

Madsen (2000) Tryggevaelde, Denmark 
(130 km2)

MIKE 11/NAM 9 parameters, 4 objectives 
(overall volume error, 
RMSE, RMSE of peak 
and low flows)

Weighted SCE-UA

Yu & Tang (2000) Gao-Oing Creek, Taiwan 
(3257 km2)

HBV 9 parameters, 3 objectives 
(RMSE, MPE, fuzzy 
MPE-based function for 
11 flow stages)

SCE-UA

*Liong et al. (2001) UBT, Singapore (6.11 km2) HydroWorks 8 parameters, 2 objectives 
(overall volume error, 
peak discharge error)

VEGA, MOGA, 
NSGA, ACGA 
with NN

*Madsen & Khu (2002) Tryggevaelde, Denmark 
(130 km2)

MIKE 11/NAM 9 parameters, 2 objectives 
(RMSE of high and low 
flows)

Weighted SCE-UA, 
PROSCE

*Beldring (2002) Sæternbekken, Norway 
(6.32 km2)

Physically-based 
rainfall–runoff 
model

11 parameters, 3 objectives 
(EF of runoff and two 
groundwater level series)

MOCOM-UA

Seibert & McDonnell (2002) Maimai M8, New Zealand 
(3.8 ha)

3-box lumped 
conceptual 
model

16 parameters, 3 fuzzy 
functions (one based on 
runoff and two 
groundwater level series, 
and two rules based on 
“soft” data)

Modified genetic 
algorithm

Cheng et al. (2002) Shuangpai, China 
(10 594 km2)

Xinanjiang 16 parameters, 3 objectives 
(peak value, peak time, 
total runoff volume)

Multiple objective 
GA

*Meixner et al. (2002) Emerald Lake, Sequoia 
National Park, USA 
(120 ha)

Alpine 
Hydrochemical 
Model (AHM)

15 parameters, 4 objectives 
(sub-sets of 21 chemical 
and hydrological criteria)

MOCOM-UA, 
combined with 
sensitivity analysis

*Madsen (2003) Karup, Denmark (440 km2) MIKE-SHE 12 parameters, 2 objectives 
(RMSE of runoff, avg. 
RMSE of 17 groundwater 
level series)

Weighted SCE-UA

*Vrugt et al. (2003a) Leaf River, USA (1950 km2) SAC-SMA 13 parameters, 2 objectives 
(RMSE for driven and 
non-driven parts of 
hydrograph)

MOCOM-UA, 
MOSCEM-UA

Ajami et al. (2004) Illinois River, USA 
(1645 km2)

Multiple structures 
of SAC-SMA

13 parameters, 2 objectives 
(RMSE and Log-RMSE 
for fitting on high and 
low flows)

Multi-step calibration 
with SCE-UA

*Schoups et al. (2005b) San Joaquin Valley, USA 
(1400 km2)

MOD-HMS 10 parameters, 3 objectives 
(RMSE of water table, 
annual pumping and 
subsurface drainage)

SCEM-UA, 
MOSCEM-UA

Muleta & Nicklow (2005) Big Creek, USA (133 km2) SWAT 16 parameters, 2 objectives 
(RMSE of runoff and 
sediment yield)

Sensitivity analysis, 
GA, GLUE

(Continued)
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Table 1 (Continued).

Reference Study basin(s) Model Problem formulation 
(parameters and objectives)

Calibration method(s)

*Khu & Madsen (2005) Tryggevaelde, Denmark 
(130 km2)

MIKE 11/NAM 9 parameters, 4 objectives 
(overall volume error, 
RMSE, RMSE of peak 
and low flows)

NSGA-II with Pareto 
preference ordering

*Schoups et al. (2005a) Yaqui Valley, Mexico 
(6800 km2)

Integrated surface 
water-
groundwater 
model

10 parameters, 4 objectives 
(RMSE of water table, 
aquifer head, drainage 
volume and canal seepage 
volume)

MOSCEM-UA

Cheng et al. (2005a) Shuangpai Reservoir, China 
(10 594 km2)

Xinanjiang 16 parameters, 3 objectives 
(peak value, peak time, 
total runoff volume)

Serial and parallel 
GAs

*Engeland et al. (2006) Saone, France (11 700 km2) Ecomag 10 parameters, 7 objectives 
for calibration, 15 
independent objectives 
for validation (EF of 22 
runoff series)

MOCOM-UA

*Tang et al. (2006) Leaf River, USA (1950 km2) SAC-SMA 13 parameters, 2 objectives 
(RMSE & RMSE with 
Box-Cox transformation)

NSGA-II, SPEA-II, 
MOSCEM-UA

*Tang et al. (2006) Shale Hills, USA (19.8 ha) Integrated surface-
subsurface model

13 parameters, 2 objectives 
(RMSE, RMSE of peak 
and low flows)

NSGA-II, SPEA-II, 
MOSCEM-UA

Kunstmann et al. (2006) Ammer River, Germany 
(710 km2); Alpine 
catchment

WaSiM (distributed 
model)

37 parameters, 8 objectives 
(EF at 8 discharge 
gauges, using 
transformed flows)

PEST (two-step 
approach)

Rouhani et al. (2007) Grote Nete, Belgium 
(383 km2)

SWAT 10 parameters, 5 objectives 
(bias, RMSE for total and 
slow flow, quick flow 
maxima and slow flow 
minima)

Manual calibration

Moussa et al. (2007) Gardon d’Anduze, France 
(543 km2)

ModSpa 5 parameters, 7 objectives 
(EF, bias and CC of 7 
runoff series)

Single and multi-site 
manual calibration

*De Vos & Rientjes (2007) Geer River, Belgium 
(494 km2)

HBV 10 parameters, 3 objectives 
(RMSE, log-RMSE and 
MSDE)

NSGA-II

*Bekele & Nicklow (2007) Big Creek, USA (133 km2) SWAT (two 
calibration 
scenarios)

16 parameters, 2 objectives 
per scenario (RMSE and 
log-RMSE of runoff; 
RMSE and log-RMSE of 
sediment yield; RMSE of 
runoff and sediment 
yield)

NSGA-II

*Tang et al. (2007) Leaf River, USA (1950 km2) SAC-SMA 13 parameters, 2 objectives 
(RMSE and RMSE with 
Box-Cox transformation)

Serial and parallel 
implementations of 
e-NSGA-II

*Confesor & Whittaker 
(2007)

Calapooia, USA (963 km2) SWAT 139 parameters, 2 objectives 
(RMSE and MAE of 
daily flows)

NSGA-II (cluster of 
24 parallel 
computers)

*Parajka et al. (2007) 320 Austrian catchments Modified HBV 
(with semi-
distributed 
structure)

14 parameters, 2 objectives 
(weighted function of EF 
and bias of runoff, time 
ratio with poor snow 
cover simulation)

Weighted SCE-UA, 
MOSCEM-UA

(Continued)
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do not hide the fact that they are conceptual in nature.
Yet, they involve calibration of many more free vari-
ables, if compared to analogous schemes with
lumped or semi-lumped parameterization (Ajami
et al., 2004).

In the case of complex models with many
parameters, multi-objective calibration provides a
favourable framework for preserving parsimony
and thus reducing uncertainty. This presupposes
the increase of independent information contained

in calibration, by introducing additional outputs for
model fitting or by improving the knowledge already
available, e.g. using different data periods to identify
different parameters (Wagener et al., 2001). As a
first approach, and extending the empirical rule
expressed for lumped models, we should retain a
ratio of about 1:5 to 1:6 between the number of crite-
ria and the number of parameters to optimize, to pro-
vide a parsimonious representation of the multi-
objective calibration problem. Typically, significant

Table 1 (Continued).

Reference Study basin(s) Model Problem formulation 
(parameters and objectives)

Calibration method(s)

Kim et al. (2007) North River, Virginia 
(973 km2)

HSPF 11 parameters, 6 objectives 
(MSE of daily flows, 
50% of lowest flows 
exceed., 10% of highest 
flows exceed., storm 
peaks, seasonal volume, 
storm volume)

Manual and automatic 
calibration, using 
the PEST software

*Fenicia et al. (2007a) Hesperange, Luxemburg 
(288 km2)

FLEX (simple & 
complex 
structure)

8 to 11 parameters, 3 
objectives (RMSE, log-
RMSE and CC of runoff)

MOSCEM-UA, SCA 
(stepped 
calibration)

*Fenicia et al. (2007b) Hesperange, Luxemburg 
(288 km2)

HBV-96 9 parameters, 2 objectives 
accounting for the low 
and high portions of the 
hydrographs

MOSCEM-UA

Efstratiadis et al. (2008) Boeoticos Kephissos, Greece 
(1956 km2)

HYDROGEIOS 
(surface water, 
groundwater and 
water 
management 
model)

99 parameters, 40 objectives 
(EF and bias of 7 runoff 
series, penalties to control 
flow interruption events 
and unrealistic trends of 
groundwater level series)

Hybrid, using the 
evolutionary 
annealing-simplex 
method

*Khu et al. (2008) Karup, Denmark (440 km2) MIKE-SHE 11 parameters, 5 to 9 
objectives (RMSE of 
runoff, avg. RMSE and 
st.dev. of residuals for 
representative 
piezometric series, after 
grouping of multisite 
data)

Preference ordering 
genetic algorithm 
(POGA)

Feyen et al. (2008) Morava, Austria, Czech Rep. 
and Slovak Rep. 
(∼10 000 km2)

LISFLOOD (three 
calibration 
scenarios)

9 parameters (lumped or 
semi-distributed over 7 
sub-basins), 3 objectives 
per hydrograph (bias, EF 
and CD) with 
transformed flows

SCEM-UA

*Moussa & Chahinian 
(2009)

Gardon d’ Anduze, France 
(543 km2)

Lumped, two-
reservoir-layer 
model, event-
based

7 parameters, 1 to 3 
objectives resulting from 
6 fitting criteria (global 
and relative bias, global 
and relative RMSE, 
global and relative peak 
flow error)

Multi-step 
aggregation 
method for 29 
flood events

RMSE: root mean square error; log-RMSE: RMSE of logarithmically transformed data; HMLE: heteroscedastic maximum likelihood
error; EF: Nash-Sutcliffe efficiency; CD: coefficient of determination; CC: coefficient of correlation; MPE: mean absolute percentage
error; MAE: mean absolute error; MSDE: mean square derivative error.
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effort is required to formulate uncorrelated criteria
that really add new information, based on the avail-
able measures, as further analysed in the following
sub-section.

A deeper inspection of the above framework
reveals the need for fundamental changes to the clas-
sical rainfall–runoff modelling strategy, assumed so
far as a staged procedure where conceptualization
(i.e. the representation of system dynamics through
parametric equations) precedes calibration (Beven,
2001, p. 4). This approach has little flexibility, since
the model structure and, subsequently, the number of
parameters, is a priori specified. Yet, for poorly
measured hydrosystems, it is impossible to have
sufficient information to formulate the number of cri-
teria that is necessary to justify the detail of the
adopted delineation. An efficient way to avoid this is
to disconnect the schematization, involving the spa-
tial detail of process description (which is imposed
by the specific scope of study), from parameteriza-
tion, which assigns the model free variables to the
characteristics of the physical system (Efstratiadis
et al., 2008). However, in most known distributed
tools schematization dictates parameterization, since
parameters refer to contiguous spatial elements,
usually grid cells, whose number is typically huge.
Not only does this contrast the principle of parsi-
mony but also makes optimization inefficient, due to
the curse of dimensionality and the large time effort
of simulation. In groundwater modelling, the prob-
lem is typically addressed through regularization
techniques, i.e. by using spatial zonation patterns
through the aquifer or by constraining parameters to
preferred values or relationships. While such
approaches are widely used to obtain a unique solu-
tion to the inverse problem, an oversimplified param-
eterization dramatically reduces the model accuracy
at local scales (Moore & Doherty, 2006; see also dis-
cussion by Hunt et al., 2007).

4.2 Model fitting on multiple responses

Fully- and semi-distributed models estimate the
basin fluxes at multiple sites (grid and sub-basin
scale, respectively) while conjunctive simulation
schemes, i.e. surface–groundwater models, hydro-
chemical models and sediment transport models, pro-
vide estimations for multiple processes. When
systematic measurements exist for those variables, the
role of multi-objective calibration becomes evident, in
order to maximize the model predictive capacity by

fitting its parameters to the corresponding data. The
advantages of “conditioning” the model parameters on
multiple responses are extensively discussed by Gupta
et al. (1998). In addition, Kuczera & Mroczkowski
(1998) use the term joint calibration to describe a suit-
able framework for compromising between model com-
plexity and the principle of parsimony. In the absence of
major structural errors, this approach enhances the cali-
bration procedure with additional information about the
physical system, thereby leading to a better identifica-
tion of the model parameters (Boyle et al., 2000).

Following the terminology of Madsen (2003),
the multi-objective fitting function may be formu-
lated on the basis of the following three types of
information:

– multi-variable data: different observable fluxes
that are reproduced by conjunctive simulation
schemes, including flows, piezometric levels,
sediment load, geochemical tracers, distributed
soil moisture, etc.;

– multi-site data: historical records obtained from a
number of gauges within the river basin, which
measure the same variable and are reproduced by
semi- or fully-distributed schemes;

– multi-response models: independent criteria
accounting for various aspects of a single process
(typically discharge), which is reproduced even
by lumped conceptual schemes.

In particular, the last type of information origi-
nates from the same historical sample, which is uti-
lized from different points of view. This approach
aims to ensure a satisfactory agreement of the spe-
cific components making up the observed discharge
series, and not an average good match across all flow
ranges (Yapo et al., 1998; Madsen, 2000; Moussa &
Chahinian, 2009). It is in full accordance with a man-
ual calibration strategy, where the expert hydrologist
follows a trial-and-error approach to reproduce all
features of a hydrograph, regarding both flow quan-
tity and timing. Moreover, focusing on different
aspects ensures more realistic and robust parameter
values, given that different parameters activate dif-
ferent hydrological mechanisms, which are finally
reflected on the shape of the hydrograph (Rouhani
et al., 2007).

A multi-objective fitting strategy should not be
restricted to systematic measurements for all varia-
bles involved in calibration. Even sparse observa-
tions, or rough estimations about the average
quantities or their long-term fluctuation, are useful to
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enhance the information contained in calibration and
reduce uncertainties. This issue becomes critical
when the number of the observed variables is insuffi-
cient to support the number of parameters. In that
case, the hydrologist should take advantage of his
experience to “invent” empirical criteria so as to be
compatible with the principle of parsimony in param-
eterization. Seibert & McDonnell (2002) introduced
the term “soft data” to characterize the qualitative
rather than the quantitative knowledge about the
behaviour of a basin, in contradistinction to “hard
data”, namely measurements derived from well-
recorded variables. This approach represents a new
dimension to calibration that favours the dialogue
between experimentalists and modellers, ensures
reasonableness and consistency of internal model
structures and simulations, and also helps to specify
realistic parameter ranges. Moreover, it helps in
providing reliable simulations for model responses
and internal variables that are not controlled by meas-
urements, e.g. evapotranspiration, moisture storage,
groundwater storage, underground losses, etc.

While hard data are typically represented by
statistical fitting functions (e.g. RMSE, efficiency),
the incorporation of soft data within calibration is
implemented through empirical or fuzzy metrics,
which are introduced as independent components of
the multi-objective function (e.g. Yu & Yang, 2000;
Seibert & McDonnell, 2002; Cheng et al., 2002;
Rozos et al., 2004; Parajka et al., 2007; Efstratiadis
et al., 2008). This certainly increases the effort of
calibration and provides less attractive results with
regard to an approach that is merely based on hard
data. Nevertheless, this is the cost paid to obtain a
better overall model performance and ensure consist-
ency within all of its aspects (Seibert & McDonnell,
2002).

The effects on model predictive capacity of con-
ditioning its responses on multiple objectives have
been also examined within uncertainty assessment
approaches, employing the GLUE technique (Lamb
et al., 1998; Blazkova et al., 2002; Freer et al., 2004;
Mo & Beven, 2004; Blazkova & Beven, 2004; Zhang
et al., 2006; Choi & Beven, 2007; Gallart et al.,
2007). In some of the above studies, this involved the
evaluation of the performance of TOPMODEL against
discharge, water table and saturated area observations,
through appropriate likelihood measures. All con-
cluded that the use of internal catchment information
definitely helped to narrow the posterior distributions
for the related parameters. Yet, only the last paper,

by Gallart et al. (2007), reports that the uncertainty
of the predicted discharges has been significantly
restricted.

The above reveals a common misconception
with regard to multi-objective calibration, which is
that as more information about the system becomes
available, the uncertainty of predictions is definitely
reduced. Kuczera & Mroczkowski (1998) highlight
this danger, indicating that the improvement of the
parameter identifiability mainly depends on how the
model structure interacts with each response, and less
on the amount of data itself. In addition, a consistent
formulation of the multi-objective calibration prob-
lem is far form being a straightforward task. For
instance, the criteria are not expected to be uncorre-
lated (since the basin fluxes are mutually correlated
with precipitation and evapotranspiration) and are
also related with commensurability and uncertainty
issues. A proper evaluation of the information
content of additional observations, as well as the
development of a generalized approach that may
allow us to benefit from different types of informa-
tion (including multi-site observations and soft data),
remains an open issue in hydrological research
(Beven, 2006; Montanari, 2007; Khu et al., 2008).

4.3 Recognition of model errors 
and uncertainties

The limitations of a model can be empirically
addressed within a multi-objective calibration frame-
work, by investigating the trade-offs between the dif-
ferent objectives of the Pareto optimal solutions
(Gupta et al., 1998). Although, from a statistical
point-of-view, it is difficult to isolate the different
categories of errors from parameter uncertainty (Ros-
bjerg & Madsen, 2005), an irregular shape of the
Pareto front is a usual evidence of ill-posed models.
For instance, significant trade-offs in fitting two or
more objectives may indicate that the model is
wrongly parameterized (Schoups et al., 2005a,b). In
addition, an asymmetrically extended spread of the
Pareto solutions along one particular axis indicates
considerably high uncertainty in reproducing the
processes that are controlled by the corresponding
criterion. Similarly, the generation of very steep
fronts, almost resembling right angles (Fig. 2, right)
denotes the sensitivity of parameters to the corre-
sponding criteria, since a small perturbation of the
parameter values, in the direction of improving one cri-
terion, leads to significant deterioration of the others
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(Efstratiadis & Koutsoyiannis, 2008). Valuable
information about the possible model errors is also
provided by deriving the ranges of non-dominated
parameter sets, as well as the ranges of the simulated
responses (“envelopes”) against the criteria. For
instance, when these envelopes fail to enclose all
observed values of a hydrograph, an expert hydrolo-
gist can easily recognize whether this failure is due to
an inappropriate model structure (e.g. by examining
which specific parts of the hydrograph systematically
remain out of the Pareto-optimal range) or inaccurate
data. In contrast, a single-objective calibration would
not allow recognition of whether the departures of
the modelled outputs from the observations are due
to structural (or data) errors or a statistically incon-
sistent fitting function.

In some cases, the increased information pro-
vided after employing a multi-objective framework
may even lead to rejection of an inappropriate model,
which would appear as proper against a single crite-
rion. An interesting example is given by Choi &
Beven (2007), who attempted to fit TOPMODEL in
an experimental catchment in Korea, taking advant-
age of both annual and seasonal (30 day) calibration
data. While the model showed good performance (by
means of efficiency) at the annual level, no model
implementations were found that were behavioural
over all multi-period clusters and all performance
measures (mainly in dry periods). The authors
claimed that the model rejection strategy of their
GLUE approach served to focus attention on possible
model deficiencies, thus making it necessary to add
more parameters for the description of the time-
varying recession and evapotranspiration processes.

Since the Pareto set can be used to generate
envelopes that contain all acceptable (according to
the dominance concept) model outputs, multi-objective
calibration has some links with Bayesian inference
methods for uncertainty assessment. Yet, there are
also key differences, as Engeland et al. (2006)
explain, especially with respect to the GLUE
method. First, Bayesian methods evaluate the uncer-
tainty around a single performance measure, namely
the likelihood function, while a multi-objective con-
text requires at least two criteria to make sense. The
GLUE framework also allows combining multiple
objectives, provided that they can be expressed in
terms of likelihoods—yet, the evaluation of these
objectives is not based on the principle of domi-
nance but on arbitrary acceptability thresholds.
Thus, the behavioural solutions are searched inside

a hyperrectangle in the m-dimensional objective
space (containing both dominated and non-dominated
sets), whereas Pareto optimal solutions are searched
across hypersurfaces of dimension m – 1, i.e. in a much
restricted area. Their cross-section determines a sub-set
that encloses solutions that are simultaneously non-
dominated and behavioural, while in the case of very
steep Pareto fronts one should further restrict its
limits to seek for promising trade-offs (Fig. 2).
Finally, when new objectives are included, while in a
Bayesian inference approach the parameter uncer-
tainty possibly decreases (or remains unchanged), the
Pareto set definitely extends, thus resulting in
increased uncertainty. This is a known characteristic
of multi-objective theory, where criteria are consid-
ered as degrees of freedom and not as constraints.
Indeed, on the basis of Pareto optimality, if one
solution outperforms another one against even a sin-
gle criterion, then the two alternatives are indifferent.
Therefore, by adding criteria, the existing non-domi-
nated set not only remains non-dominated, but
spreads across the new dimensions. For this reason,
and given that even state-of-the-art multi-objective
optimization algorithms incur serious performance
deterioration in high-dimensional objective spaces, it
is not practical to employ Pareto-based optimization
on the basis of more than three to four criteria. Other-
wise, it is necessary to implement some form of
aggregation of objectives, e.g. through clustering
techniques (Khu et al., 2008), or even review the
concept of dominance as the only evaluation prin-
ciple, by employing some kind of filtering among
indifferent solutions (Efstratiadis & Koutsoyiannis,
2008).

4.4 Handling non-commeasurable 
fitting criteria

Several studies seek a single parameter set that
ensures satisfactory performance against all conflict-
ing criteria, namely an intermediate solution from the
Pareto front. However, approximating this front
through a MOEA and then manually picking up a
suitable solution on the basis of external-empirical
criteria is time-consuming, not well-understood and
thus far away from the usual practice. On the other
hand, the traditional manipulation through an equi-
valent single-objective optimization approach (e.g.
weighting method) involves many more difficulties
than when optimizing a particular criterion. Some of
the practical drawbacks of the so-called aggregating
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approaches have been already discussed in Section
2.2. Specifically, within a calibration problem invol-
ving many criteria, it is necessary to broadly specify
the desirable characteristics of the best-compromise
solution, through suitable configuration of the scalar
objective function. But in some cases, it is even hard
to recognize whether two criteria are conflicting or
not, since their behaviours differentiate across the
feasible parameter space. Further problems arise
when the criteria are non-commeasurable, which
requires proper scaling to avoid over-emphasis of
specific components of the objective function, in
contrast to others (Madsen, 2000). Obviously, an
incautious formulation of the problem may result in
asymmetrically good fitting for some criteria in con-
trast to the rest of them (solutions lying in the
extremes of the Pareto front), unless limits of accept-
ability are imposed, as shown in Fig. 2. It is interest-
ing to notice that, in some cases, it is desirable to focus
on specific criteria in order to obtain more accurate pre-
dictions at local rather than global scales. For instance,
Pappenberger et al. (2007) used a vulnerability-
weighted approach to ensure better calibration of a
flood inundation model to locations that are of particu-
lar interest to flood planners and risk assessors.

Scaling problems occur when dealing with vari-
ables measured in different units (e.g. runoff and
groundwater level), when combining dimensional
measures with non-dimensional ones, and when
combining statistical and empirical or fuzzy mea-
sures. The different criteria require assigning proper
transformations, most typically weighting coeffi-
cients. The latter may be either empirically deter-
mined (Cheng et al., 2005; Rouhani et al., 2007;
Parajka et al., 2007), or specified analytically at the
beginning of the evolution procedure, according to
the properties of the initial population (Madsen,
2000, 2003; Moussa & Chahinian, 2009), or manu-
ally re-evaluated during optimization, taking into
account the progress achieved so far and the conflicts
to compromise (Rozos et al., 2004; Kim et al., 2007;
Efstratiadis et al., 2008). Fuzzy multi-objective func-
tions are also used that ensure flexibility and allow
for combining criteria that are not directly analogous
(Yu & Tang, 2000; Seibert & McDonnell, 2002;
Cheng et al., 2002, 2006). All of the above
approaches are in accordance with the hybrid
calibration paradigm for selecting a single
“balanced” solution.

In general, the aggregation of criteria leads to sig-
nificantly high complexity of the objective function,

thus formulating non-convex response surfaces of
irregular geometry. In that case, even the most
sophisticated global optimization methods are pos-
sible to trap, thus failing to locate a suitable com-
promise that ensures satisfactory performance
against all criteria. This negates all the benefits dis-
cussed so far, regarding multi-criteria calibration. In
this respect, hybrid strategies taking advantage of the
strengths of both manual and automatic calibration,
can be most suitable approaches for such problems
(Boyle et al., 2000). These allow guiding “by hand”
the search towards acceptable compromises, since an
expert hydrologist easily recognizes the conflicts of
criteria. In contrast, a black-box algorithmic proce-
dure, which evolves on the basis of an aggregating
scalar function, has no insight on the trade-offs of
criteria and thus may converge to solutions with
unsatisfactory performance. Characteristic studies
involving hybrid manipulations of the multi-criteria
problem (Ajami et al., 2004; Kunstmann et al., 2006;
Rouhani et al., 2007; Moussa et al., 2007; Efstratiadis
et al., 2008; Moussa & Chahinian, 2009) are
included in Table 1.

4.5 Identifying a best-compromise 
parameter set

While multi-objective calibration provides new per-
spectives to the parameter estimation problem, the
detection of a unique parameter set, to be utilized for
hydrological planning, management and forecasting,
remains a common practice. This is confirmed by the
recent calibration studies (Table 1), where many of
them attempt to identify the most “prominent” solu-
tion against the conflicting criteria, usually following
a semi-automatic strategy, where the hydrological
experience plays a key role. In contrast to the black-
box approaches of the 1990s, the current trend
favours the incorporation of the user’s judgment in
order to retrieve a good compromise among the
multiple non-dominated solutions. This major issue
was comprehensively addressed by Boyle et al.
(2000), who proposed a hybrid calibration procedure
comprising two steps. In the first step, an automatic
search of the feasible parameter space is imple-
mented, to define a representative sample of Pareto
optimal parameter steps, on the basis of user-selected
criteria that measure different aspects of the close-
ness of the model outputs and observations. In the
second step, the solutions having unacceptable trade-
offs are rejected, and additional criteria (both objective
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and subjective) are introduced to narrow the search
space, also accounting for the overall statistical char-
acteristics of the model responses (e.g. long-term
biases and overall residual variance).

Madsen et al. (2002) investigated three strate-
gies that utilize multiple objectives and allow user
intervention on different levels and different stages
in the calibration process, specifically:

– a generic search routine, where the user specifies
the priorities to be given to certain objectives that
are aggregated into one measure which is then
optimized automatically;

– a method using different automatic search tech-
niques (cluster analysis, simulated annealing and
multi-criteria optimization) in combination with
different calibration objectives, which requires
user intervention at different stages in the calibra-
tion process;

– a knowledge-based expert system, reflecting the
course of a trial-and-error effort of experienced
hydrologists, where user intervention is required
for subjective evaluation of different calibration
criteria.

These different methods focused on different aspects of
the examined model responses, but none of them
proved superior with respect to all criteria considered.

Several recent studies focus on the exploitation
of the valuable information provided by vector opti-
mization approaches and the development of guide-
lines for selecting the best-suited parameter set
among multiple non-dominated ones. Rozos et al.
(2004) used several empirical criteria for evaluating
Pareto optimal solutions, including the overall model
performance against all the measured responses as
well as the likelihood of the unmeasured ones, the
consistency of the optimized parameters against their
broad physical interpretation, and the model predictive
capacity, i.e. the performance of each non-dominated
solution in validation. With regard to the last issue, it
was not surprising that the majority of the solutions
obtained within calibration were clearly rejected, since
their performance was significantly deteriorated when
moved to another time period (i.e. validation). This
reveals a serious drawback of multi-objective cali-
bration, which seems to be rather inefficient at
providing solutions that remain non-dominated (or
approximately non-dominated) across different con-
trol periods, since the Pareto set obtained on the basis
of a specific data set is obviously non-unique. On the
other hand, the existence of satisfactory trade-offs

against different criteria and different periods are
strong evidence of the robustness of the best-com-
promise solution (Efstratiadis & Koutsoyiannis,
2009; cf. Choi & Beven, 2007).

Although manual strategies take full advantage
of the hydrological experience, they are very time-
consuming and too difficult to computerize. Thus,
some recent approaches have focused on developing
effective and “friendly” filtering tools and embed-
ding them within multi-objective search. For
instance, Schoups et al. (2005a,b) used various pro-
cedures for identifying the best-compromise solu-
tion, including the minimization of the Euclidean
distance in the normalized objective function space.
They claimed that the optimal choice depends on the
individual interests as defined by the user, thus
emphasizing the decision-making process rather than
the hydrological problem. Khu & Madsen (2005)
proposed an automatic routine, based on multi-objec-
tive genetic algorithms and Pareto preference order-
ing, which enables one to sift through the numerous
Pareto optimal solutions and retain a short-list of pre-
ferred ones for further investigation; this list contains
non-dominated solutions that remain non-dominated
in different subspace combinations of the objective
functions space. Finally, Fenicia et al. (2007a) com-
bined vector optimization with a stepped calibration
strategy to explore the deficiencies of the model
structure and determine a solution that is consistent
with the data available.

5 SYNOPSIS AND DISCUSSION

The progress in integrated representation of hydro-
logical processes through detailed modelling tools
has highlighted the weaknesses of automatic, single-
objective calibration approaches. At the same time,
as models become more complex, multi-objective
strategies for parameter estimation have exhibited
several strong points; they: (a) ensure parsimony,
namely consistency between the number of criteria
against parameters to optimize, thus improving their
identifiability; (b) fit the distributed responses of
models on multiple measurements (“hard” data), also
enhancing the information contained in calibration
on the basis of “soft” data, derived through expert
knowledge; (c) recognize the uncertainties and struc-
tural errors related to the model configuration and the
parameter estimation procedure; (d) effectively handle
criteria of different scales or criteria having contradic-
tory performance; and (e) utilize the experience
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obtained after investigating the trade-offs of criteria
for identifying a best-compromise solution, which
should be consistent with the existing knowledge
(i.e. experience and data). Such strategies are advan-
tageous even for calibrating simple models with a
few parameters, because by taking into account vari-
ous objectives (both quantitative and qualitative),
they ensure consistency against multiple aspects of
the system under study.

In this last decade, significant progress was
made with regard to different components of the
multi-objective calibration problem, including: (a)
the algorithmic manipulation; (b) the formulation of
objectives; (c) the interpretation of non-dominated
solutions and the guidance to a best-compromise
choice, and (d) the link with uncertainty assessment
approaches. Still, there are many open issues that
have been recognized after the experience gained by
employing the multi-objective framework in a wide
spectrum of applications.

Specifically, recent advances in computer sci-
ence provide a number of robust multi-objective
optimization tools, typically employed as adaptations
of genetic algorithms. Yet their dissemination in real-
world hydrological applications is relatively poor
and thus there is much research to be done on com-
parative tests in challenging calibration problems.
The definition of appropriate procedures for evaluat-
ing MOEAs remains a challenging task in optimiza-
tion science (Zitzler et al., 2003; Coello Coello,
2005). The calibration problems of hydrological
models certainly present difficulties not usually
faced in other technological areas. First, the compu-
tational time needed for a single simulation run in
complex models, makes it impossible to approach the
Pareto front with reasonable effort. Second, there is
too little experience on multi-dimensional objective
spaces, while a calibration problem may involve a
large number of fitting criteria, either statistical or
empirical. In reality, not all of them are by nature
conflicting and the trade-offs appearing are mainly
due to ill-posed structures and deficient data.
However, as more objectives are included in the
calibration, the set of Pareto optimal solutions tends
to be impractically extended; thus, it is necessary to
provide guidelines for determining a limited number
of criteria that are best suited for Pareto analysis
(Meixner at al., 2002). For example, Khu et al.
(2008) proposed a framework for classifying multi-
site measurements into groups according to temporal
dynamics.

A multi-objective approach does not necessarily
guarantee the detection of calibrations that are
acceptable from a hydrological perspective. In fact,
because of the past emphasis on finding the “best”
model (in either a global- or Pareto-optimal sense,
both based on fitting metrics requiring systematic
measurements), there has been little consideration of
whether this optimal model is actually a consistent
simulator according to an expert hydrologist (Choi &
Beven, 2007). Thus, the attention is now given to soft
data, usually expressed through empirical criteria
that also reflect the expert knowledge on the system
under study. This allows for controlling different
modelling aspects from a macroscopic point-of-view,
e.g. to ensure realistic fluctuations of internal model
variables (Efstratiadis et al., 2008). It also offers a
means to partially handle the huge uncertainty result-
ing from the complexity of model parameterizations
in contrast to data scarcity, which is a global engin-
eering problem that is getting increasingly severe.
Yet, we emphatically note that soft data are auxiliary
information and cannot substitute measurements;
moreover, a “bulimic” use of empirical criteria that
are not supported by some kind of documentation
may lead to over-constraining the feasible parameter
space and thus underestimating uncertainty. Actual
research should provide more guidance on the effect-
ive combination of statistical and expert-based evalu-
ation procedures.

The assessment of the richness of information
derived by Pareto-based calibration approaches also
offers additional research perspectives. For instance,
the interpretation of the irregularities of the trade-off
curves has been little investigated. There are also
many practical issues that remain open, such as the
development of a hybrid calibration framework
supporting interactive computerized facilities, for fil-
tering through numerous Pareto-optimal solutions to
detect the most promising ones. This last option may
be related to the non-uniqueness property of the
Pareto set—a critical point to which no attention has
been given so far. For instance, a cross-validation on
different data subsets may help to significantly
reduce the number of solutions ensuring acceptable
trade-offs through different control periods (Efstratiadis
& Koutsoyiannis, 2009). Yet, since this is often not
feasible, it is essential to provide a framework to
effectively combine (and explain) the results
obtained from multiple calibration periods, in order
to improve the model predictions (Beven et al.,
2008).
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Many argue that the real challenge in hydrology
is the development of a generalized uncertainty
assessment framework that will allow hydrological
models to profit from different types of information
(e.g. Hamilton, 2007; Montanari, 2007). Indeed,
state-of-the-art research is actually focused on the inte-
grated handling of parameter estimation and uncertainty
assessment, using multiple objectives within Bayesian
inference techniques (Vrugt et al., 2003b, 2005). Until
now, the experience has been restricted to elementary
models and it is difficult to predict their success in more
demanding applications as well as their dissemination in
the everyday engineering practice. Yet, the major prob-
lem is not only technical but also philosophical; a gener-
ally agreed definition of uncertainty is missing, as is a
generally-accepted assessment of whether the existing
approaches over- or underestimate the uncertainty of
predictions (Beven, 2006; Andréassian et al., 2007; Hall
et al., 2007; Todini & Montovan, 2007; Beven et al.,
2008). In this obscure environment, it is difficult to pre-
dict the success of a unified approach to model calibra-
tion and uncertainty assessment following the multi-
criteria paradigm, which requires subjective decisions
and is based on qualitative considerations (i.e. soft data).
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