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Some inequalities

� time series ≠ process

� physical process ≠ mathematical process

� geophysical process ≠ stochastic process

� time series ≠ geophysical process

� time series ≠ stochastic process
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Geophysical laws are of stochastic type
� Even deterministic Newton’s laws become stochastic when 

applied to geophysical systems

� Example: Navier-Stokes equations in turbulent flows

� Stochastic laws are inferred, verified or falsified from empirical 
data (time series) usually by induction (rather than deduction)

� Even deterministic controls in geophysical processes are 
detected and explored using stochastic approaches

� Unconsciousness of the stochastic character of a concept, law, 
approach, or tool may result in terrible mistakes

� Example: In detecting deterministic chaos in geophysical 
processes it was often missed that entropy is a stochastic 
concept and its estimation is subject to statistical uncertainty
(see Koutsoyiannis, 2006) 

Note on terminology Stochastics/stochastic are used to collectively incorporate 
probability theory, statistics and stochastic processes
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Case 1: Statistical implications of scaling in state  
� Experiment: A Google search with terms multifractal rainfall moments 

was performed

� The first (highest PageRank) paper was chosen and its first figure is 
reproduced here 
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Exploration of the information content in high 
moments of rainfall depths

� High moments, i.e. mq := E[x q] for q = 4, 5, 6, 7, ..., depend 
enormously and exclusively on the distribution tail

� Recent research results (e.g. Koutsoyiannis 2004, 2005; 
Papalexiou and Koutsoyiannis, 2010; and references therein) 
suggest power-type/Pareto tail with shape parameter κ = 
0.13-0.15, almost constant worldwide

� This reflects the (imperfect) scaling in state of rainfall rate

� Beyond qmax = 1/κ = 6.67 (for κ = 0.15) the moments are 
infinite

� However, their numerical estimates from a time series are 
always finite: an infinite negative bias

� Even below qmax, the estimation of moments is problematic; 
this can be demonstrated by Monte Carlo simulation
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Setting up the Monte Carlo simulation

� Random variable x (representing rainfall distribution tail, i.e. rainfall 
excess above a certain threshold) 

� Pareto distribution function with parameters κ (shape) and λ (scale)

P {x > x} =: F *(x) = (1 + κ x/λ)–1/κ

� Analytically calculated moments (B ( ) denotes the beta function)

mq= E[x q] = q (λ/κ)q B (1/κ – q, q) for q < 1/κ

mq= E[x q] = ∞ for q ≥ 1/κ

� Random sample x1, x2, ... xn, with size n = 100

� Moment estimator (a random variable)

͠mq= (1/n) Σ
n

i = 1 xi
q

� Moment estimate (a numerical value)

͠mq= (1/n) Σ
n

i = 1 xi
q

More inequalities (notice, underlined quantities denote random variables)

mq ≠ m͠q ≠ m͠q ≠mq (three conceptually different mathematical objects) 
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Results of Monte Carlo simulation
� The information content of the empirically estimated moments is high if the 

distribution of the random variable (͠mq /mq) is concentrated around 1

Variables whose distribution ranges over several orders of magnitude cannot 
support inference about a natural behaviour; they can only show the uncertainty 

� Only low 
moments 
(q = 1 and 
2) have 
reasonably 
low variation

� All others 
vary within 
orders of 
magintude

� Even the 
medians are 
by one or 
more orders 
of magnitude 
lower than 1 
for q > 4

Distributions 
were calculated 
from 1000 
simulations
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Results of Monte Carlo simulation (2)
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Even bracketing the true value of high moments between confidence 
limits may be impossible for a distribution with Pareto tail
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Case 2: Statistical implications of scaling in time
� Scaling in time is best viewed through the time averaged process

� Its standard deviation σ (k) at scale k is related to the autocorrelogram
ρj (where j is lag), by a simple transformation, i.e.,
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� The plot of σ (k) vs. k
has been termed the 
climacogram

� The asymptotic slope 
(high k) in a 
logarithmic plot is a 
characteristic of scaling 
defining the so-called 
Hurst coefficient: 
H = 1 + slope

Slopes milder than -0.5, or H values in the interval 
(0.5, 1), indicate long-term persistence
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Properties of the 
HK process  

At an arbitrary 
observation scale  
k = 1 (e.g. annual) 

At any scale k 

Standard deviation σ ≡ σ (1)
 

σ (k) = k H – 1 σ   
(can serve as a definition of the 
HK process; H is the Hurst 
coefficient; 0.5 < H <1) 

Autocorrelation 
function (for lag j) ρj ≡ ρ

(1)

j  =ρ
(k)

j  ≈ H (2 H – 1) |j |2H – 2 

Power spectrum 
(for frequency ω) 

s(ω) ≡ s(1)(ω) ≈  

4 (1 – H) σ 2 (2 ω)1 – 2 H 
s(k)(ω) ≈  
4(1 – H) σ 2 k 2H – 2 (2 ω)1 – 2 H 

 

The Hurst-Kolmogorov (HK) process and its multi-
scale stochastic properties
The simplest process with scaling in time (or long-term persistence), the 
Hurst-Kolmogorov process, has constant slope of climacogram 
throughout all scales (power-law climacogram or perfect time scaling)

Also its autocorrelogram and power spectrum are power laws of lag j, 
frequency ω and scale k
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A historical note: 
Hurst & Kolmogorov

We owe the discovery and first study 
of scaling behaviour in time of natural 
processes to Hurst and Kolmogorov 
(see Koutsoyiannis and Cohn, 2008)

Kolmogorov (1940) studied the stochastic 
process that describes this behaviour 10 
years earlier than Hurst

Hurst (1951) studied numerous geophysical 
time series and observed that: “Although in 
random events groups of high or low values 
do occur, their tendency to occur in natural 
events is greater. This is the main difference 
between natural and random events”
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Example 1: The annual 
rainfall in Maatsuyker
Island (Australia)
Suggests an HK behaviour
with a very high Hurst 
coefficient: H ≈ 0.99

Maatsuyker Island Lighthouse 
(Australia), 
coordinates: -43.65N, 146.27E, 147 m, 
WMO station code: 94962
Data: 1892-2004, from 
http://climexp.knmi.nl/getprcpall.cgi?s
omeone@somewhere+94962+MAATS
UYKER_ISLAND_LIGHTHOUSE+
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Example 4: The lower 
tropospheric temperature

Suggests an HK behaviour
with a very high Hurst 
coefficient: H ≈ 0.99

Data: 1979-2010, from 
http://vortex.nsstc.uah.edu/publi
c/msu/t2lt/tltglhmam_5.2

D. Koutsoyiannis, Some problems in inference from time series 14

 

True values →  Mean, µ Standard deviation, σ Autocorrelation ρl for lag l 

Standard estimator x– := 
1
n ∑

i = 1

n

 xi s := 
1

n – 1
  ∑

i = 1

n

  (xi – x–)2 rl
 := 1

(n – 1)s2
 ∑
i = 1

n – l

 (xi
 – x–)(xi + l

 – x–) 

Relative bias of 
estimation, CS 

0 ≈ 0 ≈ 0 

Relative bias of 
estimation, HKS 

0 ≈ 1 − 
1
n΄ − 1 ≈ − 

1
2n΄  ≈ – 

1/ρl − 1
n΄− 1

    

Standard deviation 
of estimator, CS 

σ
n
    ≈ 

σ
2(n – 1)

   

Standard deviation 
of estimator, HKS 

σ
n΄

   
≈ 

σ (0.1 n + 0.8)λ(H)(1 –n2H − 2)

2(n – 1)
  

where λ(H) := 0.088 (4H 2 – 1)2   

 

Note: n΄ := n 2 – 2H is the “equivalent” or “effective” sample size: a sample with size n΄ in CS results in 
the same uncertainty of the mean as a sample with size n in HKS (Koutsoyiannis, 2003; Koutsoyiannis & 
Montanari, 2007).  

 

Impacts on statistical estimation: Hurst-Kolmogorov 
statistics (HKS) vs. classical statistics (CS)



D. Koutsoyiannis, Some problems in inference from time series 15

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1890 1910 1930 1950 1970 1990 2010

R
a
in

fa
ll 

(m
m

)

Annual

10-year average

30-year average

2

2.2

2.4

2.6

2.8

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Log(averaging time scale in years)

L
o
g
(s

ta
n
d
a
rd

 d
e
v
ia

tio
n
 i
n
 m

m
)

Classical empirical estimate
Hurst-Kolmogorov (HK) model
HK adapted for bias
Classical statistics

B
ia

s
 

Example 1: The annual 
rainfall in Maatsuyker
Island (Australia)

0.0101.1113Sample size (n, n’)

0.986Hurst coefficient

2.543.317.4Standard error

2.8735.9260.5Point estimate

Standard deviation

9.9688.769.2Standard error

11237.71237.7Point estimate

Mean

ratioHKSCS
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Example 4: The lower 
tropospheric temperature

0.0031.1373Sample size (n, n’)

0.992Hurst coefficient

4.10.03150.0077Standard error

3.40.7130.211Point estimate

Standard deviation

18.40.67960.0369Standard error

10.07120.0712Point estimate

Mean

ratioHKSCS
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Concluding remarks
� Modelling of geophysical processes heavily relies on available data 

series and their statistical processing

� The classical statistical approaches, often used in geophysical 
modelling, are based upon several simplifying assumptions, tacit or 
explicit, such as independence in time and exponential distribution 
tails, which are invalidated in natural processes

� Moreover, the perception of the general behaviour of the natural
processes and the implied uncertainty is heavily affected by the
classical statistical paradigm

� However, the study of natural processes reveals scaling behaviours in 
state (departure from exponential distribution tails) and in time 
(departure from independence)

� Both types of scaling result in enormous biases and/or enormously 
increased uncertainty in all properties of processes

� Ignorance of increased uncertainty results in inappropriate modelling, 
wrong inferences and false claims about the properties of the 
processes

knowledge of uncertainty ≠ ignorance
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