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Some inequalities

= time series # process
= physical process # mathematical process

o geophysical process # stochastic process
= time series # geophysical process

= time series # stochastic process
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Geophysical laws are of stochastic type

= Even deterministic Newton’s laws become stochastic when
applied to geophysical systems
o Example: Navier-Stokes equations in turbulent flows

= Stochastic laws are inferred, verified or falsified from empirical
data (time series) usually by induction (rather than deduction)

= Even deterministic controls in geophysical processes are
detected and explored using stochastic approaches

= Unconsciousness of the stochastic character of a concept, law,
approach, or tool may result in terrible mistakes

o Example: In detecting deterministic chaos in geophysical
processes it was often missed that entropy is a stochastic
concept and its estimation is subject to statistical uncertainty
(see Koutsoyiannis, 2006)

stics/stochastic are ust
d stochastic processes
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Case 1: Statistical implications of scaling in state

= Experiment: A Google search with terms multifractal rainfall moments
was performed

= The first (highest PageRank) paper was chosen and its first figure is
reproduced here
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Exploration of the information content in high
moments of rainfall depths

= High moments, i.e. m,:= E[x9] for g=4, 5, 6, 7, ..., depend
enormously and exclusively on the distribution tail

= Recent research results (e.g. Koutsoyiannis 2004, 2005;
Papalexiou and Koutsoyiannis, 2010; and references therein)
suggest power-type/Pareto tail with shape parameter « =
0.13-0.15, almost constant worldwide

= This reflects the (imperfect) scaling in state of rainfall rate

= Beyond g, = 1/ = 6.67 (for k = 0.15) the moments are
infinite

= However, their numerical estimates from a time series are
always finite: an infinite negative bias

= Even below g,,,, the estimation of moments is problematic;
this can be demonstrated by Monte Carlo simulation
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Setting up the Monte Carlo simulation

= Random variable x (representing rainfall distribution tail, i.e. rainfall
excess above a certain threshold)

= Pareto distribution function with parameters « (shape) and A (scale)
P{x> x}=: F(x) = (1 + kx/A)x

= Analytically calculated moments (B( ) denotes the beta function)
my=E[x9 = g(A/K)7 B(1/k- g, g) for g < 1/k
m,= E[x9] = oo for g2 1/«

= Random sample x;, X, ... X, with size n =100

= Moment estimator (a random variable)

~ n
mq= (1//7) Z /'=1A//'q
= Moment estimate (a numerical value)

=Y xf
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Results of Monte Carlo simulation

= The information content of the empirically estimated moments is high if the
distribution of the random variable (’/77q/mq) is concentrated around 1

= Only low
moments
(g=1and
2) have
reasonably
low variation

= All others
vary within
orders of
magintude

= Even the
medians are
by one or
more orders
of magnitude
lower than 1
forg> 4
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Results of Monte Carlo simulation (2)
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Case 2: Statistical implications of scaling in time

= Scaling in time is best viewed through the time averaged process

i 1 ik
L(- = Z X
k I=(i-1)k
= Its standard deviation 0¥ at scale kis related to the autocorrelogram
p;(where j is lag), by a simple transformation, i.e.,

k-1 . . .
n_ O _ J _j+l ) j-1
A _ﬁ@’ a, —1+22(1—2Jpj - P, _Taj” - Jjo, +Tocj_1
=
= The plot of o vs. k

has been termed the

climacogram

= The asymptotic slope
(high £) in a
logarithmic plot is a
characteristic of scaling ~——~White noise EERNCS

e o A | Markov ! \\62\\0
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The Hurst-Kolmogorov (HK) process and its multi-
scale stochastic properties

The simplest process with scaling in time (or long-term persistence), the
Hurst-Kolmogorov process, has constant slope of climacogram
throughout all scales (power-law climacogram or perfect time scaling)

Also its autocorrelogram and power spectrum are power laws of lag j,
frequency w and scale k£

At an arbitrary
observation scale At any scale &
k=1 (e.g. annual)

Properties of the
HK process

oW = k" 1o

(can serve as a definition of the
HK process; His the Hurst
coefficient; 0.5 < H <1)

Standard deviation | o= o

Autocorrelation O 2H— 2
function (for lag j) p=p =p, = H(2 H=-1) /]
Power spectrum | s(w) = s (w) SN w) =

(for frequency w) |4 (1 - H) 02 (2 w)* 27 |4(1 - H) 0? kK*"72 2 w)* 2"
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A historical note:
Hurst & Kolmogorov

We owe the discovery and first study
of scaling behaviour in time of natural
processes to Hurst and Kolmogorov
(see Koutsoyiannis and Cohn, 2008)

Comptes Rendus (Doklady) de 1’Académie des Sciences de 1’URSS
1940. Volume XXVI, M 2

MATHEMATIK

‘WIENERSCHE SPIRALEN UND EINIGE ANDERE INTERESSANTE
KURVEN IM HILBERTSCHEN RAUM

YVon A. N. KOLMOGOROFF, Mitglied der Akademie

Wir werden hier einige Sonderfille von Kurven bhetrachten, denen
meine vorhergehende Note «Kurven im Hilbertschen Raum, die gegeniiber
einer einparametrigen Gruppe von Bewegungen invariant sind» (*) gewid-
met ist.

Unter einer Ahmnlichkeitstpansformation i
Ranm H werden wir eine heliaki

or Punkte, die auf derselben
T, ubergeht. .
Satz 6. Die Funktion By(x,,v,), die der Funkiion &(t) der Klasse A
entspricht, kann in der Form

Be(rp sy =cl| M| el —|m ==l
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AMERICAN SOCIETY OF CIVIL ENGINEERS
: Founded November 5, 1852

TRANSACTIONS

Paper No. 2447

LONG-TERM STORAGE CAPACITY
OF RESERVOIRS

By H. E. HURsST®

‘Wite Discussion Y VEN Te Crow, Henrt MiLLereT, Louis M. Lavsuey,
awp H. E. Horst.

SyNopsis

A solution of the problem of determining the reservoir storage required on a
given stream, to guarantee a given draft, is presented in this paper. For ex-
ample, if a long-time record of annual total discharges from the stream is avail-
able, the storage required to yield the average flow, each year, is obtained by
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| Example 1: The annual
rainfall in Maatsuyker
Island (Australia)

Suggests an HK behaviour
with a very high Hurst
coefficient: H = 0.99

Rainfall (mm)

e e Annual
—~ 3 T T T T T T T T T ey — — 10-year average
g | | | | | | | | | ! ! ———30-year average
£ T | Lt | 890 1910 1930 1950 1970 1990 2010
2281 Vi REEEE e L EEEEE Bt
g | : : : : : :
§ | = Classical empirical estimate
- ! —+— Hurst-Kolmogorov (HK) model
T 267 - I EEEEER —— HK adapted for bias
g ------- Classical statistics
k) i
E :
Soat—y/ R
2.2"””7””"74'{;’7 ””” : ””” :””’F””T ~~—W
2 R T e R
0 02 04 06 08 1 12 14 16 18 2

Log(averaging time scale in years)

D. Koutsoyiannis, Some problems in inference from time series

12




Example 4: The lower 00—
tropospheric temperature 3 year rnning aerage
Suggests an HK behaviour 02l

with a very high Hurst o [N
coefficient: A~ 0.99 02 f!
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| Impacts on statistical estimation: Hurst-Kolmogorov
statistics (HKS) vs. classical statistics (CS)

True values — Mean, y Standard deviation, o Autocorrelation g, for lag /

. _ l n 1 n -2 1 n=1 _ _
Standard estimator | x:= n Z,lg(,» S=N\/p21 /=z1 X-x = n_—l)éz/;l(g,-— XN (Xi+ —X)
Relative bias of
estimation, CS 0 %0 %0
Relative bias of 0 A1 1 1% 1 L 1p-1
estimation, HKS ~ a7 T2 T n-1
Standard deviation |_& - g
of estimator, CS \In “\2(n-1)

AR _2H-2
Standard deviation |_o_ ~ /(0.1 nr/z(if) 1)(1 7%
f estimator, HK ' -~

of estimator, HKS |\/n" where A(H) := 0.088 (442~ 1)
Note: n' := n*~?"is the “equivalent” or “effective” sample size: a sample with size 7" in CS results in
the same uncertainty of the mean as a sample with size nin HKS (Koutsoyiannis, 2003; Koutsoyiannis &
Montanari, 2007).
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| Example 1: The annual
infall in Maatsuyker

Island (Australia)

26

Log(standard deviation in mm)

2241

281

= Classical empirical estimate
—+— Hurst-Kolmogorov (HK) model
—— HK adapted for bias
Classical statistics

,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,

s i i i i i
0.8 1 12 14 16 1.8
Log(averaging time scale in years)

f
0.6 2

2000

1800 -
1600 -
1400 -
1200 -
1000 +
800
600 4
400 -
200

Rainfall (mm)

Annual
— — 10-year average
———30-year average

01890 12;10 15;30 12;50 19‘70 1990 2010
() HKS ratio

Hurst coefficient 0.986
Sample size (n, 1) 113 1.1 0.010
Mean

Point estimate|1237.7| 1237.7 1

Standard error| 69.2| 688.7 9.9
Standard deviation

Point estimate| 260.5| 735.9 2.8

Standard error| 17.4 43.3 2.5
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Log (standard deviation)

| Example 4: The lower

tropospheric temperature
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CS HKS ratio
Hurst coefficient 0.992
Sample size (n, 1) 373 1.1 0.003
Mean
Point estimate| 0.0712| 0.0712 1
Standard error| 0.0369| 0.6796| 18.4
Standard deviation
Point estimate| 0.211| 0.713 3.4
Standard error| 0.0077| 0.0315 41
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| Concludlng remarks

Modelling of geophysical processes heavily relies on available data
series and their statistical processing

= The classical statistical approaches, often used in geophysical
modelling, are based upon several simplifying assumptions, tacit or
explicit, such as independence in time and exponential distribution
tails, which are invalidated in natural processes

= Moreover, the perception of the general behaviour of the natural
processes and the implied uncertainty is heavily affected by the
classical statistical paradigm

= However, the study of natural processes reveals scaling behaviours in
state (departure from exponential distribution tails) and in time
(departure from independence)

= Both types of scaling result in enormous biases and/or enormously
increased uncertainty in all properties of processes

= Ignorance of increased uncertainty results in inappropriate modelling,
wrong inferences and false claims about the properties of the
processes
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