

European Geosciences Union General Assembly 2010 Vienna, Austria, 2-7 May 2010

Session NP4.1: Open Session on Geoscientific Time Series Analysis

Some problems in inference from time series of geophysical processes

Demetris Koutsoyiannis

Department of Water Resources and Environmental Engineering Faculty of Civil Engineering National Technical University of Athens, Greece (dk@itia.ntua.gr, http://www.itia.ntua.gr/dk/)

Presentation available online: http://www.itia.ntua.gr/en/docinfo/973/

Some inequalities

- time series ≠ process
- physical process \neq mathematical process
 - □ geophysical process \neq stochastic process
- time series ≠ geophysical process
- time series ≠ stochastic process

Exploration of the information content in high moments of rainfall depths

- High moments, i.e. $m_q := E[x^q]$ for q = 4, 5, 6, 7, ..., depend enormously and exclusively on the distribution tail
- Recent research results (e.g. Koutsoyiannis 2004, 2005; Papalexiou and Koutsoyiannis, 2010; and references therein) suggest power-type/Pareto tail with shape parameter κ = 0.13-0.15, almost constant worldwide
- This reflects the (imperfect) scaling in state of rainfall rate
- Beyond $q_{\text{max}} = 1/\kappa = 6.67$ (for $\kappa = 0.15$) the moments are infinite
- However, their numerical estimates from a time series are always finite: an infinite negative bias
- Even below q_{max} , the estimation of moments is problematic; this can be demonstrated by Monte Carlo simulation

D. Koutsoyiannis, Some problems in inference from time series

Setting up the Monte Carlo simulation

- Random variable <u>x</u> (representing rainfall distribution tail, i.e. rainfall excess above a certain threshold)
- Pareto distribution function with parameters κ (shape) and λ (scale) $P\{\underline{x} > x\} =: F^*(x) = (1 + \kappa x/\lambda)^{-1/\kappa}$
- Analytically calculated moments (*B*() denotes the beta function) $m_q = \mathbb{E}[\underline{x}^q] = q (\lambda/\kappa)^q B(1/\kappa - q, q)$ for $q < 1/\kappa$ $m_q = \mathbb{E}[\underline{x}^q] = \infty$ for $q \ge 1/\kappa$
- Random sample $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$, with size n = 100
- Moment estimator (a random variable)

$$\widetilde{\underline{m}}_q = (1/n) \sum_{i=1}^n \underline{x}_i^{\alpha}$$

Moment estimate (a numerical value)

$$\widetilde{m}_q = (1/n) \sum_{i=1}^n x_i^q$$

More inequalities (notice, underlined quantities denote random variables) $m_q \neq \tilde{m}_q \neq \tilde{m}_q \neq m_q$ (three conceptually different mathematical objects)

D. Koutsoyiannis, Some problems in inference from time series

The Hurst-Kolmogorov (HK) process and its multiscale stochastic properties

The simplest process with scaling in time (or long-term persistence), the Hurst-Kolmogorov process, has constant slope of climacogram throughout all scales (power-law climacogram or **perfect time scaling**) Also its autocorrelogram and power spectrum are power laws of lag j, frequency ω and scale k

Properties of the HK process	At an arbitrary observation scale k = 1 (e.g. annual)	At any scale <i>k</i>
Standard deviation	$\sigma = \sigma^{(1)}$	$\sigma^{(k)} = k^{H-1} \sigma$ (can serve as a definition of the HK process; <i>H</i> is the Hurst coefficient; 0.5 < <i>H</i> < 1)
Autocorrelation function (for lag <u></u>)	$ ho_{j}\equiv ho_{j}^{(1)}= ho_{j}^{(k)}$	$\approx H(2 H-1) j ^{2H-2}$
Power spectrum (for frequency ω)	$s(\omega) \equiv s^{(1)}(\omega) \approx 4 (1 - H) \sigma^2 (2 \omega)^{1-2 H}$	$s^{(k)}(\omega) \approx 4(1-H) \sigma^2 k^{2H-2} (2 \omega)^{1-2H}$

D. Koutsoyiannis, Some problems in inference from time series 10

Impacts on statistical estimation: Hurst-Kolmogorov statistics (HKS) vs. classical statistics (CS)

True values \rightarrow	Mean, μ	Standard deviation, σ	Autocorrelation ρ_l for lag /	
Standard estimator	$\overline{\underline{x}} := \frac{1}{n} \sum_{i=1}^{n} \underline{x}_i$	$\underline{s} := \sqrt{\frac{1}{n-1}} \sqrt{\sum_{i=1}^{n} (\underline{x}_i - \overline{\underline{x}})^2}$	$r_{i} := \frac{1}{(n-1)\underline{s}^{2}} \sum_{j=1}^{n-1} (\underline{x}_{j} - \overline{x}) (\underline{x}_{j+1} - \overline{x})$	
Relative bias of estimation, CS	0	≈ 0	≈ 0	
Relative bias of estimation, HKS	0	$\approx \sqrt{1-\frac{1}{n'}}-1\approx -\frac{1}{2n'}$	$\approx -\frac{1/\rho_l - 1}{n' - 1}$	
Standard deviation of estimator, CS	$\frac{\sigma}{\sqrt{n}}$	$\approx \frac{\sigma}{\sqrt{2(n-1)}}$		
Standard deviation of estimator, HKS	$\frac{\sigma}{\sqrt{n'}}$	$\approx \frac{\sigma \sqrt{(0.1 \ n+0.8)^{A(H)}(1-n^{2H-2})}}{\sqrt{2(n-1)}}$ where $A(H) := 0.088 \ (4H^2-1)^2$		
Note: $n' := n^{2-2H}$ is the "equivalent" or "effective" sample size: a sample with size n' in CS results in the same uncertainty of the mean as a sample with size n in HKS (Koutsoyiannis, 2003; Koutsoyiannis & Montanari, 2007).				

D. Koutsoyiannis, Some problems in inference from time series 14

References

- Hurst, H.E., Long term storage capacities of reservoirs, *Trans. Am. Soc. Civil Engrs.*, 116, 776–808, 1951.
- Kolmogorov, A. N., Wienersche Spiralen und einige andere interessante Kurven in Hilbertschen Raum, *Dokl. Akad. Nauk URSS*, 26, 115–118, 1940.
- Koutsoyiannis, D., Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of long rainfall records, *Hydrological Sciences Journal*, 49 (4), 591–610, 2004.
- Koutsoyiannis, D., Uncertainty, entropy, scaling and hydrological stochastics, 1, Marginal distributional properties of hydrological processes and state scaling, *Hydrological Sciences Journal*, 50 (3), 381–404, 2005.
- Koutsoyiannis, D., On the quest for chaotic attractors in hydrological processes, *Hydrological Sciences Journal*, 51 (6), 1065–1091, 2006.
- Koutsoyiannis, D., and T.A. Cohn, The Hurst phenomenon and climate (solicited), European Geosciences Union General Assembly 2008, Geophysical Research Abstracts, Vol. 10, Vienna, 11804, European Geosciences Union, 2008.
- Papalexiou, S.-M., and D. Koutsoyiannis, On the tail of the daily rainfall probability distribution: Exponential-type, power-type or something else?, *European Geosciences Union General Assembly 2009, Geophysical Research Abstracts, Vol. 12*, Vienna, EGU2010-111769, European Geosciences Union, 2010.