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The dataset 

A subset of the Global Historical Climatology Network-Daily database: stations with daily rainfall time 

series with length over 50 years (a total of 11 519 stations with very few missing values). 
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Entropy and maximum entropy distributions 
 The Boltzmann-Gibbs-Shannon (BGS) entropy for a non-negative random 

variable X with probability density function f(x) is 

 

 

 The Havrda-Charvát-Tsallis (HCT) entropy, a generalization of the BGS 
entropy that has gained popularity in the last decades, was originally 
introduced axiomatically by Havrda and Charvát [1967] and re-introduced by 
Tsallis [1988]; this is defined by 

 

 

 Application of the principle of maximum entropy (ME) [Jaynes, 1957a, b], for 
a given set of macroscopic constrains expressed in the form E[gi(X)] = ci,  
i = 1,…,m, for the BGS and the HCT entropies using Lagrange multipliers λi 
results, respectively, in density functions 

  fX(x) = exp[– λ0 – λ1 g1(x) – … – λm gm(x)],    x ≥ 0  

  fX(x) = {1 + (1 – a) [λ0 + λ1 g1(x) + … + λm gm(x)]}– 1/(1 – a),    x ≥ 0 
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The most common maximum entropy distributions 
 The most common constraints in entropy optimization assume  known first 

and second moments.  

 The resulting probability distributions from these constraints for positive 
variables are: 

(a) for the BGS entropy, the normal distribution truncated at zero, and, 

(b)  for the HCT entropy, a symmetric bell-shaped distribution with power-
type tails truncated at zero, called the Pearson type VII distribution 
(introduced by Pearson in 1916; now also called the Tsallis distribution). 

 These distributions do not adequately describe various properties of the 
empirical daily rainfall distribution, e.g., 

(a) the truncated normal seems to fail to describe both the right and left tail 
of fine time-scale rainfall [Koutsoyiannis, 2005], 

(b) the truncated Tsallis distribution performs better but seems to fail to 
describe the left tail [Papalexiou and Koutsoyiannis, 2008a], and, 

(c) both distributions have limitations in the shapes they can form, as their 
skewness is only due to truncation. 
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Seeking a better entropy-based distribution for rainfall 
 We seek a probability distribution resulting from the application of the 

principle of maximum entropy that is capable of describing the daily rainfall 
at all locations, if possible. 

 It seems reasonable to generalize the constraints, from the first two 
moments (orders 1 and 2) to moments of unspecified order p, i.e. E(Xp) = mp. 

 Another simple constrain that seems reasonable for non-negative positively 
skewed variables is the geometric mean, i.e., E(ln X) = ln μG. 

 Using only two constrains (μG, mp ) and BGS entropy, the ME density is 

  fX(x) = exp[– λ0 – λ1 ln x – λ2 xp ],    x ≥ 0  

 which after algebraic manipulation and parameter renaming becomes 

 

 

 
 where  β is a scale parameter and γ1 and γ2 are shape parameters 

 This includes as special cases many common distributions, e.g., the Gamma, 
Weibull, and Exponential distributions.    
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A generalization scheme 
 The following generalizations of the exp and ln functions are used (compatible 

with the definition of the exp function by Euler, 1748) 

 

 

 Using these functions, the ME distribution for the HCT entropy is  

  fX(x) = expa – 1 [– λ0 – λ1 g1(x) – … – λn gn(x)],    x ≥ 0 

 Using constraints E(Xp) = mp and E(lnnX) = lnnμGn, the ME distribution is 

  fX(x) = expn[– λ0 – λ1 lnn x – λ2 xp ],    x ≥ 0 

 After algebraic manipulations and assuming small n, and after parameter 
renaming, this is approximated as: 

 

 

 The Generalized Gamma is a special case of GBII; another three-parameter 
special case of GBII is the Burr type XII distribution, introduced in 1942:  

)(explim)exp(  that so  ,)1(:)(exp
0

/1 xxnxx n
n

n
n




)(lnlim)(ln  that so  ,/)1(:)(ln
0

xxnxx n
n

n
n




 
 

3
1 21 2

1/1/
2 3

3

1 2 3 1 2

1
/ 1 / , /

γγ γγ γ

X

γ γ x x
f x γ

βB γ γ γ γ γ β β


     

     
       

Generalized Beta of 
2nd kind  
GBII(x; β, γ1, γ2 , γ3) 
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Burr type XII  
BurrXII(x; β, γ1, γ2) 



Papalexiou & Koutsoyiannis, A world-wide investigation of the probability distribution of daily rainfall 7 

Empirical points in the Generalized Gamma L-moments space 

97.6% of the empirical points are in 
the space of GG for 0.1 < γ2 <2 

Empirical average 
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Empirical points in the Burr type XII L-moments space 

87.7% of the empirical points are in 
the space of BurrXII for 0 < γ2 < 0.7 

Pareto 

Empirical average 
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From the body to the tail of the distribution 
 The upper tail of the distribution is its most important part as it rules the 

magnitude and the frequency of the extreme events.  

 The heavy-tailed distributions, whose probability density function goes to zero less 
rapidly than exponentially, result in more frequent and more intense extreme 
events compared to distributions of exponential type.  

 The most commonly used models for daily rainfall belong to the exponential family 
(e.g. Gamma). However, several studies suggest that heavy tailed distributions may 
be more suitable (e.g. a pioneering study by Milke, 1973, which proposed the 
Kappa distribution, a heavy tailed distribution, for daily rainfall). 

 As only a very small portion of the empirical data belongs to the tail, fitting a 
simple (e.g. two-parameter) distribution function using all data will be “biased” 
against the tail (the estimated parameters will result in a fitting that best describes 
the largest portion of the data, i..e the body rather than the tail).  

 An ill-fitted tail may result in serious errors with severe consequences in 
hydrological design. For example, the magnitude of the 1000-year precipitation 
may be seriously underestimated if it is calculated from an exponential tail rather 
than a heavy tail.  

 It may be assumed that a simple, two-parameter distribution can give an 
acceptable fit on the tail only, i.e. over a certain threshold. 
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Two-parameter special cases and their tails 
Distribution Survival function  *

XF x  Comments 
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The Pareto distribution is the simplest heavy-tailed distribution and 

depending on the shape parameter γ may produce very extreme 

events. Other distributions, tail-equivalent with Pareto, are the 

Burr [Tadikamalla, 1980], the Kappa [Mielke, 1973] and the Log-

Logistic [e.g. Ahmad et al., 1988]. 

Weibull 
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The Weibull distribution, a common model in hydrology [e.g. Heo 

et al., 2001], can be considered as a generalization of the 

exponential distribution, and for a shape parameter γ < 1, results in 

a heavier tail compared to that of the standard exponential 

distribution tail. 

Gamma 
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The Gamma distribution is probably the most popular model for 

describing daily rainfall [e.g. Buishand, 1978]. Asymptotically, it 

behaves like the standard exponential distribution. 
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The Log-Normal distribution is a very common distribution in 

hydrology that may approximate power-law distributions for a 

large portion of the body of the distribution [Mitzenmacher, 2004]. 
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Fitting distribution tails to empirical data 

 The upper tail is assessed through its survival function FX
*(x) :=  

1 – FX(x) = P{X > x|x > 0} for large x. 

 For each station with record length of N years and a total number 
n of non-zero values, we derived the empirical survival function at 
the tail, Fn

*(xi), as the empirical probability (according to the 
Weibull plotting position) of the N largest non-zero rainfall values, 
i.e., Fn

*(xi) = r(xi)/(n + 1), with r(xi) being the rank of the value xi, 
i.e., the position of xi in the ordered sample x(1) ≥,…, ≥ x(n).  

 Four different theoretical distributions were chosen and fitted to 
the empirical tails: Pareto, Weibull, Log-Normal and Gamma. 

 The theoretical survival functions were fitted to the empirical 
ones by minimizing a modified mean square error (MSE) norm 
defined as MSE = (FX

*( xi) / Fn
*( xi) – 1)2/N; this is superior to the 

classical MSE norm (more balanced). 
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Fitting results: the 
Generalized Pareto tail 

 MSE 
Scale 

parameter 

Shape 

parameter 

Min 0.0019 0.73 0.00 

Mean 0.0179 9.99 0.13 

Median 0.0153 9.30 0.13 

Max 0.0679 50.00 0.53 

Standard 

Deviation 
0.0107 4.92 0.07 
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Fitting results:  
the Weibull tail 

 MSE 
Scale 

parameter 

Shape 

parameter 

Min 0.0020 0.17 0.31 

Mean 0.0191 7.49 0.72 

Median 0.0166 6.55 0.70 

Max 0.0664 53.17 1.30 

Standard 

Deviation 
0.0111 4.79 0.13 
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Fitting results:  
the Log Normal tail 

 MSE 
Scale 

parameter 

Shape 

parameter 

Min 0.0021 0.40 0.20 

Mean 0.0183 0.76 2.26 

Median 0.0157 0.75 2.32 

Max 0.0680 1.53 4.34 

Standard 

Deviation 
0.0110 0.14 0.60 
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Fitting results:  
the Gamma tail 

 MSE 
Scale 

parameter 

Shape 

parameter 

Min 0.0020 0.82 0.01 

Mean 0.0212 25.78 0.34 

Median 0.0185 22.17 0.27 

Max 0.0679 75.00 2.00 

Standard 

Deviation 
0.0123 14.57 0.26 
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The fatter the better, the more popular the worse! 

The four tails were compared in couples by means of the 
resulting MSE, i.e., the tail with the smaller MSE  is considered 
best fitted. Within the couples, the Pareto tail was better fitted in 
approximately 60% of the stations. Interestingly, the fatter tail of 
each couple, in all cases, was better fitted in a higher percentage 
of the stations, i.e., the fatter, the better! 

The four fitted tails in each station were 
ranked according to their MSE. The tail 
with the smaller MSE was ranked as 1 
and the one with larger as 4. The figure 
depicts the mean rank of all stations. 
The Pareto is the best fitted, while the 
most common model, the Gamma, is 
the worst. 
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Can we assume a global tail index? 

 

Historical 

shape 

parameter 

Simulated 

shape 

parameter 

Historical MSE Simulated MSE 

Min 0.001 0.001 0.002 0.002 

Mean 0.133 0.134 0.018 0.017 

Median 0.130 0.134 0.015 0.014 

95% CI  (0.017, 0.255) (0.045, 0.224) (0.006, 0.040) (0.005, 0.036) 

Max 0.530 0.349 0.068 0.124 

Standard 

Deviation 
0.072 0.054 0.011 0.010 

 

Estimates from 
historical data 

Estimates from 
simulated data 

To test the assumption of a global tail index 
(Pareto shape parameter) [e.g., 
Koutsoyiannis, 2004] we generated random 
samples from a Pareto distribution with tail 
index γ = 0.13 and lengths equal to the 
historical ones, and applied the same 
methodology to estimate the shape 
parameter. The sampling variability is as high 
as in the real world data—but the historical 
and simulated histograms are not identical.  
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Conclusions 
 A four-parameter distribution, the Generalized Beta of the 2nd kind, derived by 

maximum-entropy considerations, can describe daily rainfall at all 11 500 
examined locations. 

 The same distribution can also describe rainfall at a wide range of time scales, 
from hourly to annual [Papalexiou and Koutsoyiannis, 2008b]. 

 Three-parameter special cases of this distribution, i.e. the Generalized Gamma 
distribution and the Burr type XII distribution can describe very large portions 
of the entire daily rainfall data set (97.6% and 87.7%, respectively).  

 Two-parameter special cases of this distribution, i.e., the Pareto, the Weibull, 
and the Gamma, along with the widely used Lognormal distribution were 
tested for their ability to describe the distribution tails, and the following 
results were obtained: 
 In comparisons in pairs, the distribution with the heavier tail performed 

better. 
 Overall, the Pareto distribution performed best.   
 The most popular model, the Gamma distribution, performed worst. 

 Overall, the investigation supports the general conclusions that: 
 Distributions bounded from above should be excluded. 
 Distributions with light tails (in particular, Gamma) are generally not 

appropriate. 
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