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Abstract 

 
We develop methods to estimate the intensity-duration-frequency (IDF) curves for three rainfall 

models with local multifractal behavior and varying complexity. The models use the classical 

notion of exterior and interior process, respectively for the variation of rainfall intensity at 

(approximately) storm and sub-storm scales. The exterior process is non-scaling and differs in 

the three models, whereas the interior process is stationary multifractal in all cases. The model-

based IDF curves are robust, against outliers and can be obtained from only very few years of 

rainfall data. In an application to a 24-year rainfall record from Florence, Italy, the models 

closely reproduce the empirical IDF curves and make similar extrapolations for return periods 

longer than the historical record.  

 

Keywords: rainfall extremes, multifractal processes, scale invariance, IDF curves 
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1. Introduction 
The assessment of extreme precipitation is an important problem in hydrologic risk analysis and 

design. This is why the evaluation of rainfall extremes, as embodied in the intensity-duration-

frequency (IDF) curves, has been a major focus of theoretical and applied hydrology since the 

early work of Sherman (1931) and Bernard (1932); see for example the textbooks of Eagleson 

(1970), Chow et al. (1988) and Singh (1992). The IDF curves are defined as follows. Let Id be 

the average rainfall intensity in a generic interval of duration d and denote by id,T the value of Id 

with return period T. The IDF curves are plots of id,T against d for different T. 

 There are three basically distinct approaches to the construction of IDF curves. For T below 

the length of the available record, the IDF curves can be estimated directly from the yearly 

maximum rainfalls, using a plotting-position formula; see for example Singh (1992). This 

approach produces non-smooth curves, but in the few cases when a long continuous record is 

available (as for the case of Uccle, Belgium; see Willems, 2000) this is a viable alternative. More 

often, long records are available only for daily rainfall. Then the empirical IDF values for d = 1 

day may be used to calibrate the IDF curves generated by alternative procedures or to constrain 

the dependence of id,T on T (Koutsoyiannis, 2004a, 2004b). 

 A second approach, which is widely followed in practice, is to use a parametric model for id,T. 

Dependence on d is based on the typical shape of empirical IDF curves and dependence on T 

generally relies on the fact that rainfall maxima are attracted to extreme-type distributions. The 

parameters of the model are estimated from the observed annual extremes using various criteria 

(moment matching, maximum likelihood, least squares). For a general review and further details, 

see Koutsoyiannis et al. (1998).  
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 A weakness of the parametric approach is that the dependence of id,T on d is not based on 

theory. To some extent, also the dependence on T needs empirical validation, since the 

distribution of the yearly maxima may not conform to an extreme-value distribution and, if it 

does, theory alone cannot determine the appropriate asymptotic type. Perhaps a more important 

limitation of the parametric method is that, like the empirical approach, it uses only the historical 

annual maxima and neglects other information in the rainfall record. Notice in this regard that the 

IDF values are closely linked to the marginal distribution of the intensities Id and significant 

information on this distribution is contained in the portion of the record that is being neglected.   

 To remedy these shortcomings, one may fit a complete model of temporal rainfall to 

continuous rainfall records and then use the model to generate rainfall time-series through Monte 

Carlo simulation; see for example Chow et al. (1988) and Singh (1992). Model-based IDF curves 

are smoother than the empirical ones and have approximate validity also beyond the range of the 

historical record. In addition, all the available data are used and no a-priori assumption has to be 

made on the shape of the IDF curves. This conceptually more satisfactory approach is rarely 

followed in practice because of the complexities of formulating rainfall models, estimating their 

parameters, and generating Monte Carlo samples.  

 The practical limitations mentioned above are largely due to the complex structure and 

extensive parameterization of rainfall models, such as those based on point processes; see for 

example Waymire and Gupta (1981) and Cowpertwait (1995, 1998). Here we pursue a variant of 

the rainfall-modeling approach in which one uses scaling (specifically, multifractal) rainfall 

models. This variant is capable of reproducing the intermittent character of rainfall found in 

many studies (Schertzer and Lovejoy, 1987, 1989; Olsson, 1995; Veneziano and Iacobellis, 

2002; Venugopal et al., 2006; Koutsoyiannis, 2006; among others), and as we shall show, it 
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combines operational simplicity with accuracy and robustness due to its full use of the rainfall 

data. 

 Multifractal rainfall models (Gupta and Waymire, 1993; Lovejoy and Schertzer, 1995; Harris 

et al., 1998; Deidda, 2000; Menabde and Sivapalan, 2000; Veneziano and Langousis, 2005a, 

among others) are attractive for IDF analysis because they directly characterize how the 

distribution of Id varies with the averaging duration d. In addition, these models are consistent 

with the (approximate) power-law behavior of empirical IDF curves with d and T (see for 

example Burlando and Rosso, 1996, and Willems, 2000). In fact, Hubert et al. (1998) and 

Veneziano and Furcolo (2002) have shown that under multifractality id,T is asymptotically a 

power function of d and T, as d → 0 for any finite range of T and as T → ∞ for any finite range 

of d. 

 These scaling results are of limited practical use because they give id,T up to an undetermined 

factor and characterize the shape of the IDF curves under asymptotic d and T conditions. In order 

to develop practical IDF estimation procedures, one needs to 1) formulate simple scaling models 

of rainfall and develop procedures to calculate the resulting IDF curves for d and T in the range 

of hydrologic interest, 2) if needed, devise approximations for routine application, and 3) 

compare the multifractal approach to current parametric methods for practicality, accuracy, 

robustness, data needs etc. Issue 1 is the main focus of the present paper. Issues 2 and 3 are dealt 

with in two fore-coming papers. The resulting procedure is simple and more accurate than the 

now popular parametric method. In addition, the scaling analysis sheds light on the shape of the 

IDF curves, in particular on the separability of the effects of d and T and the dependence of the 

IDF values on the return period T. These issues, which are still unsettled in the parametric 

approach (e.g. Koutsoyannis, 2004b) will be discussed at length in the second paper of this 
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series. Here we anticipate that, under multifractality, separability does not strictly apply and the 

dependence on T, while of the power-law type for very long return periods, does not conform to 

an extreme distribution of Type 2. 

 Of course, the methods developed here apply within the scaling range of rainfall, which for 

most moderate climates extends from about 20-60 minutes to a few days. Departure from scaling 

outside this range is for example evident from the spectral analysis of rainfall records (Fraedrich 

and Larnder, 1993; Olsson et al., 1993; Olsson, 1995; Menabde et al., 1997; Veneziano and 

Iacobellis, 2002), Here we consider rainfall models that are multifractal for d ≤ D, where D is 

some upper scaling limit, but impose no lower limit to scaling. It is understood that when a lower 

limit exists, the results should not be used beyond that limit. 

 The IDF curves depend somewhat on the definition of the return period T. Different 

definitions are possible; see for example Hubert et al. (1998), Willems (2000), Veneziano and 

Furcolo (2002) and Veneziano and Langousis (2005b). When one uses scaling rainfall models, it 

is mathematically convenient to take T as the reciprocal of the exceedance rate of Md|D, the 

maximum of Id in D = upper limit of multifractal behavior. Hence, if the D-periods occur with 

rate λ, the return period is T(i|d) = 1/λP[Md|D> i]. In calculating the distribution of Md|D one 

should consider the effects of temporal dependence of Id inside D. However, for values of T and 

d of practical interest, the effect of this dependence is modest (Veneziano and Langousis, 2005b) 

and in what follows this effect is neglected. 

 Section 2 describes three stochastic rainfall models of varying complexity. Each of the 

subsequent three sections shows, for one model, how the model parameters are estimated and the 

IDF curves are calculated. To exemplify, the models are fitted to 23 years of continuous rainfall 

data from the Osservatorio Ximeniano in Florence, Italy (Becchi and Castelli, 1989) and the 
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model results are compared to the empirical IDF curves for that station. Conclusions are given in 

Section 6. 

2. Locally-Multifractal Models of Rainfall for IDF Analysis 

This section describes three models of temporal rainfall. The models are tailored for IDF analysis 

and include simplifications that may be inappropriate for other uses. Each model is composed of 

an “exterior process”, which characterizes the variability of rainfall at large scales, and an 

“interior process” for shorter-term fluctuations.  

2.1  Exterior Process 

The exterior processes of the three models differ as shown schematically in Figure 1. In Model 1, 

rainfall is produced by independent and identically distributed (iid) storms with random duration 

D and random average intensity ID (Figure 1a). Storms occur at an average rate λ and are 

assumed to be well separated, so that at most one storm contributes to the intensity Id. Due to our 

definition of the return period T, the value of λ and the joint distribution of (ID, D) are the only 

characteristics of the exterior process that enter the IDF analysis. Other features of the storm 

arrival process are immaterial and are left unspecified. For example, storm arrival times need not 

be Poisson or stationary during the year.  

 Model 2 is simpler in that it partitions the time axis into intervals of constant duration D, 

where D corresponds to the upper limit of rainfall multifractality. Hence the exterior process of 

Model 2 is simply a sequence of consecutive rectangular pulses of constant duration and random 

iid intensities; see Figure 1b. Like in Model 1, not more than one D interval is assumed to 

contribute to the rainfall intensity Id.  

 Model 3 is structurally similar to Model 2, but the mean intensity ID in different intervals is a 

deterministic constant. In this case the exterior process reduces to a constant intensity ID and a 
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temporal scale D; see Figure 1c. Contrary to Model 2, D in Model 3 is both the outer scale of 

multifractal behavior and the scale at which the average rainfall intensity may be considered 

constant. Due to the latter condition, D in Model 3 is longer than in Model 2 and close to the 

interarrival time of synoptic events. In summary, in Model 1, D is both the storm duration and 

the upper limit of scaling of the rainfall intensity for each storm. In Models 2 and 3 there are no 

storms but D retains the meaning of the upper limit of the scaling range. 

 We emphasize that Figure 1 illustrates only the exterior component of each model. The 

complete model includes also the fluctuations of rainfall intensity inside the D periods, as 

explained next. 

2.2 Interior Process 

In all three models, rainfall in D (inside each storm for Model 1 and inside each D interval for 

Models 2 and 3) is modeled as a stationary multifractal process of the beta-lognormal type. 

Processes of this type have been used in the past to represent rainfall intensity; see for example 

Schertzer and Lovejoy (1987), Over and Gupta (1996) and Schmitt et al. (1998). According to 

this model, the average rainfall intensity Id and its moments scale with d as  

  
  Id  = d  Ar Ird ,            r = 

D
d  ≥ 1

E[(Id)q] ∝ d -K(q) ,      q < q*

 (1) 

where = d   indicates equality in distribution, Ar is the random amplitude-scaling factor of rainfall 

intensity for a scale-contraction factor r > 1 (see below), K(q) = logrE[Ar
q] = Cβ (q-1)+Cln (q2-q) 

is the associated moment-scaling function (e.g. Schertzer and Lovejoy, 1987), q* = 
1-Cβ 
Cln

 > 1 is 

the lowest moment order greater than 1 such that E[(Id)q] diverges (Kahane and Peyriere, 1976), 

and Cβ and Cln are non-negative parameters that satisfy Cβ + Cln < 1. The parameter Cβ controls 
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the alteration of wet and dry periods within D-periods, whereas Cln is responsible for the 

intensity fluctuations when it rains.  

 The random variable Ar in equation (1) has unit mean and is the product of two independent 

random factors: a factor Aln,r with lognormal distribution [specifically, ln Aln.r ∼ N(µ,σ2), where 

µ = -Cln lnr and σ2 = 2Cln lnr], and a discrete factor Aβ,r such that P[Aβ,r = 0] = 1 – r-Cβ and P[Aβ,r 

= rCβ] = r-Cβ. Hence,  

  Ar
 =


0 ,                                                  with probability 1-r-Cβ

 rCβ exp( )-Cln lnr + Q 2Cln lnr  ,  with probability r-Cβ

 (2) 

where Q is a standard normal variable. In what follows, we refer to a distribution of the type in 

equation (2) as a beta-lognormal distribution. The parameters Cβ and Cln may depend on D and 

ID, but an analysis of rainfall data shows that such dependence is negligible; see Section 3.2c.  

 A technical point of some importance is the distinction between “bare” and “dressed” rainfall 

densities (Schertzer and Lovejoy, 1987). The bare density Id′ in an interval of duration d ≤ D is 

the density in d when construction of the multifractal measure through the product of fluctuations 

at decreasing scales is terminated at scale d, whereas the dressed measure density Id is the 

average density inside d when all rainfall fluctuations, down to infinitesimal scales, are 

accounted for. The distributions of Id and Id′ are related as 

  Id = d   Z Id′ (3) 

where Z is a unit mean random variable called the dressing factor. 

 For binary multiplicative cascades where r = 2n, Veneziano and Furcolo (2003) developed a 

numerical method to calculate the distribution of Z. That method requires significant numerical 

effort, but accurate results on multifractal extremes follow from using a simple approximation to 



 10

Z (Veneziano and Langousis, 2005b). The approximation has the form Z ~ ArZ, where rZ is such 

that ArZ matches some moment of Z. For example, matching the moment of order q = 2 or q = 3 

gives 

  

rZ = 



1

2 - 2K(2)
1/K(2)

 ,             for q=2      (a)

rZ = 



3

22-2K(3) 
2K(2)

2-2K(2)

1/K(3)

 ,   for q=3      (b)
 (4) 

where K(q) is the function in equation (1).With this approximation, Id has the distribution of 

ID′ArrZ
, and estimation of the IDF curves for all three models is greatly simplified. In particular, 

for d = D, the dressed density ID has the distribution of ID′ArZ
. 

2.3 Objectives of Model Fitting and General Parameter Estimation Strategy 

For IDF analysis, the main objective of model fitting is to accurately reproduce the distribution 

of the dressed densities Id over a wide range of durations d. Special attention is given to the 

upper tail or higher moments of the distribution, which control the IDF curves. For all models, 

the parameters of the interior process are Cβ and Cln. The parameters of the exterior process are 

the joint distribution FD,ID′ for Model 1, the duration D and distribution FID′ for Model 2, and the 

values of D and ID′ for Model 3. 

 When matching the empirical moments, we tend to use moments of order not higher than 3.5 

or 4. This follows from two considerations. One is that the upper tail region of Id that determines 

the IDF values for durations d and return periods T of practical interest is controlled by moments 

of order between about 2 and 5 (Veneziano et al., 2006). The other is that, especially for d small, 

the empirical moments of order greater than 3 or 3.5 tend to underestimate the true moments due 
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to sample limitations (Ossiander and Waymire, 2000, 2002). Details on the model-fitting 

procedure and IDF results are given in the next three sections. 

3. Parameter Estimation and IDF Analysis for Model 1 

This section analyzes rainfall extremes using Model 1. First we describe the method to calculate 

the IDF curves. Then we apply the procedure to the Florence data and in that context discuss the 

issues of storm extraction and parameter estimation. 

3.1  IDF Analysis 

Suppose for the moment that all storms have the same duration D and the same bare rainfall 

intensity ID′, while exhibiting internal multifractal scale invariance with parameters Cβ and Cln. 

Consider an interval of duration d that for d ≤ D is entirely inside a storm and for d > D includes 

one and only one storm. Then the rainfall intensity Id satisfies, 

  Id = 
d
   


ID′ADrZ/d ,   for d ≤ D 

ID′ArZ 
D
d  ,   for d > D

 (5) 

where the variables Ar
 have the distribution in equation (2). The expression for d ≤ D is the 

product of the bare rainfall intensity at scale D, ID′, the scaling factor AD/d to obtain the bare 

intensity at scale d, and the factor ArZ
 that approximates the effect of dressing. As was explained 

in Section 2.2, the last two factors are combined into the term ADrZ/d The expression for d > D in 

equation (5) has a similar structure and holds under the assumption that not more than one storm 

contributes rainfall in an interval of duration d. This assumption is accurate for small d (say d ≤ 1 

day), but leads to some underestimation of the IDF values for d longer than a few days; see 

Section 3.2d. 
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 The critical step in calculating the IDF values id,T is to find the distribution of Md|θ, the 

maximum of Id in a storm with characteristics θ = [ID′, D, Cβ, Cln]. Following Veneziano and 

Langousis (2005b), for return periods T and resolutions D/d of practical interest one can neglect 

temporal dependencies and approximate the distribution of Md as 

  FMd|θ
(i) = 



[FADrZ/d

(i/ID′)]D/d ,  for d ≤ D 

FArZ
 (id/ID′D) ,    for d > D

  (6) 

where FX is the cumulative distribution function (CDF) of the random variable X. Then, the IDF 

values id,T are given by 

  id,T = 


ID′ ADrZ/d,(1-1/λT)d/D ,  for d ≤ D 

ID′  
D
d ArZ,1-1/λT ,     for d > D

 (7) 

where λ is the rate of storm arrivals and Ar,x denotes the x-quantile of Ar. Equation (7) follows 

directly from equation (5). 

 Equation (7) applies when the storms have identical characteristics θ = [ID′, D, Cβ, Cln] or 

storms with a given θ dominate the IDF curves. When θ varies randomly from storm to storm, 

the marginal distribution of Md for a generic storm is obtained by taking expectation of equation 

(6) with respect to θ: 

  FMd
(i) = E

θ
  [FMd|θ

(i)] (8) 

The distribution function FMd|θ
 is analytically known [see equation (6)] and calculation of FMd

 can 

proceed numerically without the use of Monte Carlo simulation; see also Sections 3.2d, 4.2, and 

5. The IDF value id,T is the (1-1/λT)-quantile of Md in equation (8).  
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3.2 Application to the Florence Rainfall Record  

We exemplify the use of Model 1 by using a rainfall record from Florence, Italy (Becchi and 

Castelli, 1989); see Veneziano and Iacobellis (2002) for an analysis of this record. The data 

cover continuously the 24-year period from 1962 to 1985, at 5-min resolution. However, the 

rainfall intensity values at this maximum resolution are not reliable and the analysis that follows 

uses statistics and produces results only for durations of at least 20 minutes. In 1966, the City of 

Florence experienced a devastating flood. The unusually long and intense rainfall event 

associated with that flood is thought to have a return period far longer than the 24-year duration 

of the record. For this reason, in some of the analyses reported below, we have excluded the year 

1966 and used only the remaining 23 years of the record. 

(a) Rainstorm Identification 

To extract storm characteristics from the data, one must first define what constitutes a rainstorm. 

One often identifies rainstorms as uninterrupted sequences of rainy periods. This is a strict 

criterion considering that even a very short pause in rainfall would split what meteorologically is 

a single storm into multiple events. To avoid these artificial splits, one must allow storms to 

include some dry intervals. A commonly used method is the so-called “dry period criterion”, 

whereby dry intervals of duration longer than a given threshold τo are taken as storm separators. 

Selection of τo is either judgmental (e.g. Huff, 1967; Menabde and Sivapalan, 2000; Upton, 

2002) or based on statistical tests of independence of the resulting storm events (Koutsoyiannis 

and Foufoula-Georgiou, 1993).  

 In all cases mentioned above, τo is taken to be a constant independent of storm duration. 

However, physical considerations suggest that τo should depend on storm type and size; see for 

example Orlanski (1975). Here we allow τo to scale with storm duration, as follows. We partition 
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the record into continuously wet and continuously dry periods and then examine the dry periods 

in order of increasing duration. If a dry period is flanked by rainy intervals of the same or longer 

duration, the dry period is considered part of a storm interior (the dry period is reclassified as 

“wet”, although it retains its zero rainfall intensity). The above procedure is applied with two 

exceptions: 1) dry periods of duration below some lower limit τo
- are always considered part of a 

storm interior, and 2) dry periods of duration longer than an upper limit τo
+ are always 

considered storm separators. This storm-identification procedure allows longer dry spells to be 

part of the interior of longer storms in a scale-invariant way. The values τo
- = 1 hr and τo

+ = 6 hr 

produce satisfactory results (see Section 3.2d) and are close to the maximum and minimum dry 

periods used in other studies (30 min in Upton, 2002; 1 hr in Menabde and Sivapalan, 2000; 6 hr 

in Huff, 1967, and 7 hr in Koutsoyiannis and Foufoula Georgiou, 1993). The impact of changing 

from variable to fixed τo is not large for fixed τo around 6 hr, but becomes noticeable if τo is 

taken to be 1 hr or less. 

When applied to the 23 year Florence record, the variable τo approach with τo
- = 1 hr and τo

+ = 6 

hr, identifies 844 storms with duration between 5 and 20 min and 3078 storms with duration 

between 20 and 2420 minutes.  

(b) Joint Distribution of D and I 

Figure 2a shows a scatterplot of the dressed intensity ID and duration D for the 3078 storms with 

duration between 20 and 2420 minutes. A joint distribution was fitted to these data by estimating 

the marginal distribution of D and the conditional distribution of (ID|D) for different D intervals. 

Storms with duration smaller than 20 min were not used when fitting the joint distribution of D 

and ID, because high-resolution values are not very accurate (see above) and small duration 
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storms contribute relatively little to the IDF curves. As Figure 2b shows, storm duration D 

closely follows the 3-parameter Gamma distribution with probability density (for D in minutes) 

  fD(x) = 
δκ
Γ(κ) (x-c)κ-1e-δ(x-c) ,          κ, δ > 0;  x > c (9) 

and parameters δ = 0.00358 min-1, κ = 0.613 and c = 5 min obtained by maximum likelihood.  

 To find the distribution of (ID|D), we binned the 3078 storms into 13 duration classes of equal 

log width between 20 and 2420 min and for each class fitted a normal distribution ln(ID|D) ∼ 

N[µ(D), σ2(D)] to the upper 25th percentile of the log data using maximum likelihood with 

censoring (Johnson and Kotz, 1970, p. 77). The empirical histograms of ln(ID|D) do not 

generally conform to a normal model. However, as exemplified in Figure 2c for one duration 

interval, the upper tails of the ln(ID|D) histograms are fitted well by a normal distribution. The 

upper quartile of the data has been selected because interest is in the upper tail and the data in 

that region are accurately fitted by normal distributions. Figure 2d shows the maximum-

likelihood estimates of µ(D) and σ(D) and the analytical fits  

  
µ(D) = -0.052 ln(D) +0.377

σ(D) =7.325 {ln(D)}-1.286
  (10)   

(c) Multifractal Parameters 

When one analyzes continuous rainfall records without distinguishing between storms and inter-

storm periods, one typically partitions the record into intervals of different duration d and 

examines how logE[(Id)q] varies with log(d) for different q; see for example Gupta and Waymire 

(1993), Olsson (1995), and Lovejoy and Schertzer (1995). Since our data consist of storms of 

different duration D and different average intensity ID, the above procedure would produce 
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biased results because only storms of duration D ≥ d can be used to obtain the scaling of the 

moment E[(Id)q], and the distribution of storm intensity varies with D.  

 To avoid these problems we standardize each storm to have unit average intensity ĨD, 

calculate the moments of the standardized rainfall intensities for different relative averaging 

durations d′ = d/D ≤ 1, and estimate K(q) as the negative slope of logE[(Ĩd′)q] against log(d′). The 

standardization step causes all the moments of Ĩd′ to be finite (by contrast, the moments of Id of 

order q ≥ q* diverge) and in particular affects the moments of Ĩd′ for d′ close to 1. However, for 

small q and d′ << 1 the bias in K(q) is small. 

 Results (moment plot, empirical K(q) function, and “beta-lognormal” fit) for the 3078 storms 

identified in the 23 year Florence record are shown in Figure 3. Lack of linearity of the moment 

plots for d′ > 0.5 is due to normalization of the storm intensities, as mentioned above. For the 

estimation of K(q), we have used the range d′ < 0.5, where the moment plots are very nearly 

straight. For orders q ≤ 3, the beta-lognormal fit to the empirical K(q) function is quite good, 

whereas for q > 3 the empirical K(q) becomes a nearly straight line. As noted already, this is due 

to a well-known bias when K(q) is inferred from one-dimensional rainfall records (Ossiander and 

Waymire, 2000, 2002; Lashermes et al., 2004; Veneziano et al., 2006). The estimated 

multifractal parameters are Cβ = 0.025 and Cln = 0.1. Since the estimate of Cβ is small, one may 

simplify the model by setting Cβ = 0, which corresponds to a compact rainfall support inside 

storms. 

 To determine whether Cβ and Cln depend on storm duration and intensity, we have divided the 

storms into four categories, according to short/long duration and low/high average intensity. The 

threshold values of D and ID were chosen to produce approximately the same number of storms 
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in each class. The results are summarized in Table 1. Since the estimates of Cβ and Cln are nearly 

identical, we conclude that Cβ = 0 and Cln = 0.1 are appropriate values for all ID and D.  

(d) IDF Curves 

In calculating the IDF curves id,T, we assume that not more than one storm contributes rainfall in 

any given interval of duration d. This is equivalent to artificially spacing the storms by at least d. 

To assess the effects of this simplifying assumption, Figure 4 compares the empirical IDF curves 

from the 23 year Florence record with curves obtained by spacing the storms identified on that 

record by at least d. In all cases the Weibull (1939) plotting position formula is used; see for 

example Singh (1992). One can see that the assumption produces small distortions, except 

possibly for durations d > 1 day.  

 Calculation of the IDF values requires knowledge of the conditional distribution of (ID′|D). In 

Part b we have found the conditional distribution of the dressed intensity (ID|D). In analogy with 

equation (3), these distributions are related as (ID|D) ≈ d   (ID′|D)Z. Hence, obtaining the distribution 

of (ID′|D) requires de-convolution of the distribution of the dressing factor Z from the distribution 

of (ID|D). This is in general a delicate numerically operation, but in our case it can be performed 

analytically because the distribution of (ID|D) was found to be approximately lognormal and, for 

Cβ = 0, the distribution of ArZ that approximates Z is also lognormal; see equation (2). One 

concludes that (ID′|D) has lognormal distribution, with parameters 

  
E[lnID′|D] = E[lnID|D]-E[ln ArZ]

 Var[lnID′|D] = Var[lnID|D]-Var[ln ArZ]
    

(a)

(b)
 (11) 
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where E[ln ArZ] = -Cln ln(rZ), Var[ln ArZ] = 2Cln ln(rZ) and rZ is given by equation (4). The results 

in Figure 5 were obtained by matching the 2nd moment of Z (equation 4a) Similar results are 

obtained when matching the 3rd moment of Z (equation 4b).  

 Under Model 1, the IDF curves are obtained using equation (8). When, as is the case here, the 

parameters (Cβ, Cln) do not vary with storm duration and average intensity, equation (8) reduces 

to, 

  FMd
(i)=⌡⌠

D

 

 ⌡⌠
I
D

'

 
 FMd|I,D

(i) fID′|D(I) fD(D) dI dD (12) 

where integration is over all possible durations D and bare average rainfall intensities ID′. All 

distribution functions on the right hand side of equation (12) are known analytically (see above); 

hence evaluation of equation (12) can proceed numerically without the need for Monte Carlo 

simulation.  

 The IDF value id,T is the (1-1/λT)-quantile of Md in equation (12). Note that, although the 

rainstorms used for model fitting have duration D of at least 20 minutes, the integration in 

equation (12) is performed over all theoretically possible durations D which, according to 

equation (9), extend down to c = 5min. Hence, the parameter λ should refer to all storms and its 

empirical value is λ=170.52 storms/year; see Section 3.2a.  

 Figure 5 compares the empirical IDF curves from the Florence record (solid lines) with curves 

from Model 1 (dashed lines). In Figures 5a and 5b, the empirical curves are estimated using 23-

years of data (excluding the year 1966), whereas Figure 5c uses all 24 years. For averaging 

durations d longer than about one day, the empirical 24-year curve in Figure 5c gives very high 

rainfall intensities. This is due to the flood event of November, 1966. The return period of that 

event cannot be estimated empirically, but according to Model 1 it is on the order of 1000 years. 
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This is in general agreement with the historical flood record for the city of Florence (Becchi and 

Giuli, 1987).  

 The model-based IDF curves in Figures 5a, 5b and 5c are calculated by fitting the interior and 

exterior processes of Model 1 to 23 years (excluding 1966), the first 4 years (1962-1965) and all 

24 years of the record, respectively. It is interesting that the results are nearly the same in all 

cases. This means that the analysis is insensitive to outlier storms and produces accurate results 

also from short records (we have obtained similar results using other 4-year segments of the 

data). The model curves in Figure 5a appear as smoothed versions of the empirical ones. The 

model curves slightly under-predict the intensities for long averaging durations, due to the 

assumption that no more than one storm contributes rainfall in any given d-interval; see above. 

For durations below 1 day, the bias from this assumption is negligible; see Figure 4.  

 Close inspection of the data explains the waviness of the empirical curves in Figure 5a. The 

relative highs around d = 100 and 1000 min are due to a few intense storms with those 

approximate durations (see highlighted events in Figure 2a), which introduce inflection points in 

the empirical IDF curves. The decrease in the slope of these curves for d smaller than 1 hour is 

due to the fact that at high resolutions the data display less variability than expected under exact 

multifractal scaling. This phenomenon has been observed also in other rainfall time series 

(Olsson et al., 1993; Olsson 1995; Fraedrich and Larnder, 1993; Menabde and Sivapalan, 2000; 

Koutsoyiannis, 2006), and its effect on the IDF curves is usually accounted for in the parametric 

expressions for id,T used in engineering practice (see for example Chow et al., 1988; Singh, 1992; 

Koutsoyiannis et al., 1998). The IDF results from Model 1 display some log-log curvature 

depending on the storm mixture that makes up the rainfall climate but do not include curvature 

from small-scale smoothness. At least in the case of the Florence record, some of the curvature 
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of the empirical IDF plots for small-durations is due to artificial smoothing introduced by the 

digitization procedure (Castelli, personal communication).  

 Model 1 was used also to produce seasonal IDF curves (not shown here). This was done by 

dividing the 23-year Florence record into four seasonal sub-records, each for 3 calendar months. 

The empirical and model curves are always in good agreement, as in the case of annual analysis.  

4. Parameter Estimation and IDF Analysis for Model 2 

4.1 Estimation of Model Parameters 

For Model 2, it is convenient to start by estimating the parameters Cβ and Cln of the interior 

process. Estimation is simpler than for Model 1, since one can use the continuous record to 

determine the scaling of the moments. In Figure 6a, we have divided the Florence rainfall 

intensities by the historical mean intensity Î = 0.086 mm/hr and plotted the log moments 

logE[(Id/Î)q] against log(d) for durations d up to 15 days. A good fit to the empirical K(q) 

function in the range 0 ≤ q ≤ 3.5 is obtained with Cβ = 0.5 and Cln = 0.05; see Figure 6b.  

 The estimates of Cβ and Cln are very different from Model 1. The much higher value of Cβ is 

due to the predominance of dry conditions inside the D intervals of Model 2. The smaller value 

of Cln in Model 2 is less easy to interpret, since in both models this parameter controls the 

variability of rainfall intensity when it rains. Hence Cln should be the same. We have examined 

this issue in some detail and found that the discrepancy is due to the interstorm periods. 

Specifically, we have analyzed two synthetic rainfall series: a beta-lognormal series generated 

using the parameters Cβ = 0.5 and Cln = 0.05 of Model 2 and a series with storms of random 

duration and interior lognormal multifractality with Cln = 0.1 as in Model 1. In the latter case, the 

storms are separated by dry periods of constant length. When the first series is analyzed the 

multifractal parameters are recovered, whereas for the second series one significantly 
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underestimates Cln. In essence, by assuming that lacunarity extends to the rainy periods, Model 2 

interprets some of the variability inside storms as due to the beta component and consequently 

reduces the estimate of Cln. In summary, the parameters obtained for Model 2 produce the best 

overall fit of a very simple model to a complicated process.  

 Next we turn to the parameters D and FID′ of the exterior process. As was explained in Section 

2.3, these parameters are used to reproduce the dressed moments of ID of orders 0, 2 and 3. Using 

the approximation Z ~ ArZ with rZ from equation (4), the model moments E[(ID) q] are the product 

of E[(ID′)q] times E[(ArZ)
q] = (rZ)K(q). Many (D, FID′) pairs produce equally good moment fits, but 

it is desirable to use long durations D because Model 2 produces reliable IDF curves only for d ≤ 

D. The 0th order moment E[(ID) 0] increases with increasing D but should be no less than the 0th 

order moment of the dressing factor, E[(ArZ)
0] = (rZ)-Cβ (other positive contributions to E[(ID) 0] 

may come from the bare distribution of ID′, which may have a probability atom at zero). Hence D 

is maximized by finding the duration for which the empirical 0th order moment in Figure 6a 

equals this theoretical minimum. Using equation (4b), one finds rZ = 4.0, E[(ArZ)
0] = 0.5, and 

D ≈ 3.38 days. For this value of D and the multifractal parameters estimated above, the empirical 

second and third moments of ID are reproduced by taking FID′ to be lognormal with parameters 

µlnID′= -2.570 and (σlnID′)
2 = 0.475. The solid lines in Figure 6a show that the moments from the 

fitted model agree very well with the empirical ones. For d = D, the theoretical moments in 

Figure 6a correspond to those of the lognormal exterior process. Equally good estimates are 

obtained when matching the 2nd moment of Z through equation (4a). This gives rZ = 3.35, E[(ArZ

)0] = 0.45 and D = 4.18 days. 

 As an alternative to matching moments, one can obtain µlnID′, and (σlnID′)
2
 to fit the upper tail of 

(ID|ID >0). We applied this procedure to the upper 25th of the distribution of (ID|ID >0) using 
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maximum likelihood with censoring. The resulting estimates are very similar to those from 

moment fitting.  

4.2  IDF Curves 

With the parameters given above, estimation of the IDF curves under Model 2 proceeds like for 

Model 1, with the simplification that the duration D is fixed. In this case equation (12) reduces to 

  FMd
(i)= ⌡⌠

I
D

'

 
 FMd|I

(i) fID′
(I) dI (13) 

The IDF value id,T is obtained as the (1-1/λT)-quantile of Md with λ = 1/D (D in years, fixed). 

 Figure 6c compares the empirical IDF curves from 23 years of the Florence record with the 

IDF curves generated by Model 2. The agreement is again very good. As for Model 1, similar 

results were obtained when using all 24 years of the record or just 4-year segments. Comparing 

Figures 5a and 6c, one observes that the IDF curves from Model 2 are straightened versions of 

those of Model 1. Specifically, Model 2 captures less well the “hump” of the empirical IDFs 

around d = 100 min and the slope decrease for d < 1 hour. The reason is that these features are 

related, respectively, to the high intensity of short-duration storms and the lack of non-rainy 

periods at small scales, which are not resolved by Model 2. On the other hand, Model 2 uses 

rather large D values and suffers less from the assumption that not more than one D period 

contributes rainfall in d, for d ≤ D. This is why for large d the IDF curves from Model 2 are more 

accurate than those from Model 1.  

5. Parameter Estimation and IDF Analysis for Model 3 

Model 3 is a purely multifractal model in which the variability of ID (the rainfall intensity in D) 

is due entirely to the dressing factor Z or its approximation ArZ. Hence, the bare density ID′ 
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reduces to a constant and can be estimated as the mean rainfall intensity of the entire record, Î = 

0.086 mm/hr. Inference of the interior multifractal parameters follows the same procedure as for 

Model 2, again producing the estimates Cβ = 0.5 and Cln = 0.05.  

 In the estimation of D, it is advisable to match a high empirical moment of ID. Here we elect 

to reproduce the third moment, and therefore we calculate D from the condition E[(ID/Î)3] = 

E[Z3] = rZ K(3), where rZ = 4.0 from equation (4b). According to Figure 7a, the third moment of ID 

is reproduced by taking D = 14.6 days. Estimation of id,T follows directly from equation (7) and λ 

= 1/D (D in years, fixed).  

 Figure 7a compares empirical and model moments. While the higher moments are well 

reproduced, there is a clear discrepancy in the 0th order moment. This means that the wet/dry 

patterns generated by the model are different from the empirical ones. However, as one can see 

from Figure 7b, this discrepancy is not critical for extreme-value analysis. As for the other 

models, the results are insensitive to the presence of outliers and the length of the record used to 

fit the model.  

6. Conclusions 

We have developed parameter and IDF-curve estimation procedures for three rainfall models 

with local multifractal scale invariance. Each model consists of an interior multifractal process 

for the high-frequency fluctuations and an exterior process for the fluctuations at larger scales. 

By focusing on the characteristics or rainfall that are important for IDF analysis (the marginal 

distribution or marginal moments of the average rainfall intensity for different durations), the 

models are kept relative simple and the parameterization is parsimonious. 

 The most elaborate model (Model 1) uses the classical notion of rainstorms with random 

duration D and random average intensity I and represents the storm interior through a stationary 
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multifractal process. In an application to a 24-year rainfall record from Florence, Italy, we have 

found that storm duration D has a three-parameter gamma distribution and the upper tail of the 

conditional storm intensity (I|D) is lognormal with parameters that depend on D. Dry periods are 

allowed to occur within storms by including a “beta component” in the multifractal model, but 

the rainfall support inside the storms is nearly compact and a one-parameter lognormal 

multifractal model suffices. Importantly, we have found that the multifractal parameter can be 

taken to be the same for all D and I.  

 The model results (including extrapolation to longer return periods) are robust against outliers 

(we have included or excluded the year 1966 when the city of Florence experienced a record 

flood) and insensitive to the length of the rainfall record (similar IDF curves result from fitting 

the model to 4-year segments of the historical record). These features derive from the fact that 

the model makes efficient use of information from the continuous rainfall record, not just the 

annual extremes. This is an important advantage of the present rainfall modeling approach over 

the standard procedure of making parametric assumptions directly on the IDF curves and using 

the historical annual maxima.  

 Model 1 is attractive in that it uses the physical notion of rainstorm events. By considering the 

storm mixture that makes up the rainfall climate, this model is capable of producing curved IDF 

plots in log-log scale. This model is recommended in climates where particular storm types, for 

example convective storms associated with the diurnal cycle, have a dominant effect on the IDF 

curves for the return periods and averaging durations of interest. On the other hand, use of Model 

1 is laborious because it requires the identification of storms, the estimation of the joint 

distribution of D and I, and careful analysis of the multifractality of the interior process.  
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 Model 2 is much simpler, as it represents the rainfall process as a sequence of intervals of 

fixed duration D, each with random average intensity I. Inside each D-interval, rainfall intensity 

varies as a beta-lognormal multifractal process, in this case with a significant beta component. 

The beta component breaks down the D intervals into “rainstorms” of different durations and 

intensities, producing realistic rain patterns. The duration D is found as the outer limit of 

multifractal behavior and the distribution of I is estimated such that the upper tail or some higher 

moments of the marginal distribution of rainfall intensity are reproduced. Model 2 uses a very 

schematic representation of rainfall, but it too produces accurate and robust IDF curve estimates.  

 Model 3 is even simpler. It has a structure similar to Model 2, but both D and I are 

deterministic. Hence Model 3 represents rainfall as a series of multifractal cascades with no 

additional variability. Since the model does not consider rainfall variability at scales larger than 

D, this duration is estimated to be close to the storm interarrival time (for Florence, this is on the 

order of 15 days). By fitting the model parameters to the high moments, also Model 3 produces 

accurate and robust IDF results, with limited effort. For durations d < D, the IDF curves 

generated by Models 2 and 3 are nearly straight in log-log scale, because both models assume 

rainfall scaling below D. Therefore these models are applicable in the range of durations for 

which the moments of rainfall intensity have power-law dependence on d. In many moderate 

climates this range is between about 1 hour and a few days. 

 An important conclusion is that, more than the choice of model, what counts for IDF 

estimation are the criteria used for parameters estimation. When a moment method is used, the 

empirical rainfall moments to be reproduced should be those of order 2-3 for rainfall intensity in 

intervals of short relative duration d/D and order up to 4 for d/D close to 1. The reason for not 

using higher rainfall moments is that, especially for d/D << 1, those moments are underestimated 
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with high probability. If additional parameters are available, as for example is the case for Model 

2, then one could reproduce the probability of dry periods by matching also the 0th order 

moment. 

 The simpler multifractal models, in particular Model 3, are amenable to analytical treatment 

and emerge as strong competitors of classical IDF estimation methods that fit parametric IDF 

models to rainfall annual maxima. The development of practical multifractal methods and 

comparison with standard approaches will be the subject of follow-up communications. 
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Figure Captions 

Figure 1: Schematic representation of the exterior process for rainfall models 1, 2, and 3. 

Figure 2: Fitting of Model 1 to 23 years of the Florence rainfall record: (a) Scatter plot of the 

density ID and duration D of the 3078 storms with duration larger than 20 min, (b) fitted 

gamma distribution of storm duration D, (c) example tail fitting of (lnID|D) for D 

between 35 and 55 minutes, and (d) mean and standard deviation of (lnID|D). 

Figure 3: Estimation of Cβ and Cln for Model 1: (a) Moments of the normalized rainfall intensity 

as a function of the dimensionless duration d′=d/D. (b) Comparison of the empirical 

K(q) function with the fitted K(q) function for Cln = 0.1 and Cβ = 0.025. 

Figure 4: Comparison of empirical IDF curves estimated from the 23-year continuous rainfall 

record (solid lines) with those obtained by extracting storms and assuming that not more 

than one storm contributes rainfall in each d- interval (dashed lines). Return periods T= 

2, 4, 8, 24 years, increasing from below.  

Figure 5: Comparison of empirical and theoretical IDF curves using Model 1. In (a) and (b) the 

empirical IDF curves are estimated from 23 years of the record, whereas in (c) 

estimation is from all 24 years. In Panels (a), (b) and (c) the model curves are obtained 

by fitting Model 1 to 23, 4 (1962-1965), and 24 years of the record, respectively. 

Figure 6: Application of Model 2 to the Florence rainfall record, normalized to have unit average 

rain rate. (a) Moments of the 23-year rainfall record (circles) and moments from the 

fitted model (solid lines). (b) Comparison of the empirical and model moment scaling 

functions. (c) Comparison of empirical and model IDF curves. 
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Figure 7: Application of Model 3 to the Florence rainfall record. (a) Moments of the 23-year 

rainfall record (circles) and moments from the fitted model (solid lines). (b) Comparison 

of empirical and model IDF curves.  
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Table 1: Classification of the 3078 storms with duration D ≥ 20 min into four sub-sets according 

to short/long duration D and low/high average intensity ID. Multifractal parameters are 

estimated by the procedure of Section 3.2c.  

Category Storm 
Duration (D)  

Storm Intensity 
(ID) 

Number of 
storms Cβ Cln 

1 20min-3hrs 0.036-1.26 mm/hr 875 0.026 0.093 
2 20min-3hrs 1.26-42 mm/hr 1038 0.018 0.108 
3 3-40hrs 0.036-1.26 mm/hr 734 0.033 0.101 
4 3-40hrs 1.26-42 mm/hr 431 0.023 0.097 
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Figure 1: Schematic representation of the exterior process for rainfall models 1, 2, and 3. 
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Figure 2: Fitting of Model 1 to 23 years of the Florence rainfall record: (a) Scatter plot of the 

density ID and duration D of the 3078 storms with duration larger than 20 min, (b) fitted gamma 

distribution of storm duration D, (c) example tail fitting of (lnID|D) for D between 35 and 55 

minutes, and (d) mean and standard deviation of (lnID|D). 
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Figure 3: Estimation of Cβ and Cln for Model 1: (a) Moments of the normalized rainfall intensity 

as a function of the dimensionless duration d′=d/D. (b) Comparison of the empirical K(q) 

function with the fitted K(q) function for Cln = 0.1 and Cβ = 0.025. 
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Figure 4: Comparison of empirical IDF curves estimated from the 23-year continuous rainfall 

record (solid lines) with those obtained by extracting storms and assuming that not more than 

one storm contributes rainfall in each d- interval (dashed lines). Return periods T= 2, 4, 8, 24 

years, increasing from below. 
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Figure 5: Comparison of empirical and theoretical IDF curves using Model 1. In (a) and (b) the 

empirical IDF curves are estimated from 23 years of the record, whereas in (c) estimation is from 

all 24 years. In Panels (a), (b) and (c) the model curves are obtained by fitting Model 1 to 23, 4 

(1962-1965), and 24 years of the record, respectively. 
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Figure 6: Application of Model 2 to the Florence rainfall record, normalized to have unit average 

rain rate. (a) Moments of the 23-year rainfall record (circles) and moments from the fitted model 

(solid lines). (b) Comparison of the empirical and model moment scaling functions. (c) 

Comparison of empirical and model IDF curves. 
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Figure 7: Application of Model 3 to the Florence rainfall record. (a) Moments of the 23-year 

rainfall record (circles) and moments from the fitted model (solid lines). (b) Comparison of 

empirical and model IDF curves.  
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