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Abstract  

We study the extremes generated by a multifractal model of temporal rainfall and propose a 

practical method to estimate the Intensity-Duration-Frequency (IDF) curves. The model assumes 

that rainfall is a sequence of independent and identically distributed multiplicative cascades of 

the beta-lognormal type, with common duration D. When properly fitted to data, this simple 

model was found to produce accurate IDF results [Langousis A, Veneziano D. Intensity–

duration–frequency curves from scaling representations of rainfall. Water Resources Research, 

2007; 43: doi: 10.1029/2006WR005245]. Previous studies also showed that the IDF values from 

multifractal representations of rainfall scale with duration d and return period T under either 

d→0 or T→∞, with different scaling exponents in the two cases. We determine the regions of the 

(d, T)-plane in which each asymptotic scaling behavior applies in good approximation, find 

expressions for the IDF values in the scaling and non-scaling regimes, and quantify the bias 

when estimating the asymptotic power-law tail of rainfall intensity from finite-duration records, 

as was often done in the past. Numerically calculated exact IDF curves are compared to several 

analytic approximations. The approximations are found to be accurate and are used to propose a 

practical IDF estimation procedure.  

 

Keywords: rainfall extremes, multifractal processes, scale invariance, IDF curves  
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1. Introduction 

The estimation of rainfall extremes is a central problem of stochastic hydrology [2-4]. These 

extremes are typically quantified through εd,T, the average rainfall intensity in an interval of 

duration d with a T-year return period. The Intensity Duration Frequency (IDF) curves are plots 

of εd,T against d for different values of T.  

 The IDF values εd,T depend somewhat on the definition of the return period T. When the 

rainfall record consists of annual maximum values, T is defined as the reciprocal of the 

exceedance rate by the annual maximum and εd,T is obtained as the upper 1/T-quantile of that 

maximum for duration d; see for example [5]. When a continuous rainfall record is available, T 

may be taken as the reciprocal of the rate at which a threshold intensity is upcrossed (so-called 

peak-over-threshold or partial duration method; see for example [6]). Finally, when rainfall is 

represented as a random process, it is often more convenient to define T as the reciprocal of the 

marginal exceedance rate. In this last case εd,T is the value exceeded with probability d/T by εd, 

the rainfall intensity in a generic d interval. Except for very short return periods T, these 

definitions produce similar results [6-9].  

 Here we use the last quoted definition of T to study rainfall extremes under the condition 

that rainfall has multifractal scale invariance. This invariance property has been found to apply in 

good approximation to rainfall, typically for durations d from about 1 hour to several days [10-

13]. As we shall show, multifractality produces interesting theoretical insights into the structure 

of the IDF curves and suggests simple approximations, which may prove attractive in practice. 

Elucidating these theoretical and practical consequences of multifractality is our main objective. 

 Multifractality controls certain asymptotic scaling properties of εd,T, but does not 

completely characterize the rainfall process or the IDF values; hence any derivation of the IDF 
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curves must be in the context of a specific multifractal representation of rainfall. Recently, 

Langousis and Veneziano [1] have studied the IDF curves under various multifractal rainfall 

models. The preferred model (Model 1 in that reference) idealizes rainfall as a sequence of 

independent and identically distributed storms separated by dry periods. The duration D and 

average intensity I of each storm are jointly distributed random variables and rainfall in D is 

described by a stationary multifractal process (a multiplicative cascade).  

 Simpler models (referred to as Models 2 and 3) were also considered in [1]. In particular, 

Model 3 partitions the time axis into intervals of constant (long) duration D and represents 

rainfall inside different D intervals as independent realizations of a stationary multifractal 

process of the beta-lognormal type; see Section 2 for details. The beta component of the process 

models the alternation of dry and wet periods and the lognormal component describes the 

fluctuations of rainfall intensity when it rains (for previous applications of the beta-lognormal 

multifractal process to temporal rainfall, see for example [9] and [14]). As defined above, εd,T 

is a quantile of εd. However, in multifractal analysis what is fundamental is not the averaging 

duration d, but the resolution r = D/d (of course r and d are equivalent once D is specified). This 

is why here we work with εr, the average rainfall intensity in d = D/r. With this notation, the IDF 

rainfall intensity εr,T is the value exceeded by εr with rate 1/T and satisfies P[εr >εr,T]=D/rT.  

 An important fact about multifractal extremes is that, as r→∞ or T→∞, εr,T has a power-

law dependence on r and T, with different exponents in the two limiting cases. Most previous 

IDF analyses using multifractal rainfall models have focused on these asymptotic results [e.g. 9, 

15, 16], but the asymptotic scaling properties are not sufficient for hydrologic applications where 

one needs the actual IDF values for finite r and T. The present analysis aims at finding the IDF 

values and covers both the asymptotic scaling regimes and the transient non-scaling range. 
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 Exact calculation of the IDF curves under Model 3 requires numerical analysis. Section 2 

uses such an approach to illustrate the behavior of the IDF curves under multifractality. 

However, numerical analysis is not convenient to study general properties of the IDF curves. For 

this purpose, Section 3 introduces and assesses several approximations. The approximations are 

then used in Section 4 to derive interesting properties of the IDF curves and in Section 5 to 

develop a practical IDF estimation method. Application to a 50-year simulated record illustrates 

the procedure and its accuracy. Conclusions are stated in Section 6. 

 Throughout the paper, we employ standard probability techniques with a minimum of 

multifractal formalism. This makes the approach more transparent than using large deviation 

theory and multifractal concepts like singularities and their fractal dimensions, although the latter 

tools are more elegant and general. Reference to large-deviation and multifractal theories is made 

when interpreting the results. 

2. The Exact IDF Curves Under Model 3 

Temporal rainfall is said to be multifractal if its statistics remain unchanged when time is 

contracted by a factor r > 1 and the intensity is multiplied by some non-negative random variable 

Ar [17, 18]. The distribution of Ar controls the scaling and other properties of the rainfall process 

including the marginal distribution, the spacing and duration of the wet and dry intervals, and the 

extremes. In the case of Model 3, the distribution of Ar has a probability mass 1-r-Cβ at 0 and 

(Ar| Ar >0) has lognormal distribution with log-mean  mln(Ar|Ar >0)=(Cβ - CLN)ln(r) and log-

variance  σ
2

ln(Ar|Ar >0) = 2CLN ln(r), where Cβ and CLN are non-negative parameters such that Cβ + 

CLN < 1. We call this distribution of Ar a beta-lognormal (β-LN) distribution and the resulting 

rainfall process, a beta-lognormal multifractal process (the “beta” nomenclature is from the 

multifractal literature and has no relation with the beta distribution). 
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 Model 3 has four parameters: the outer limit of multifractal scaling D (typically around 10-

15 days; see [1]), the average intensity I, and the multifractal parameters Cβ and CLN with typical 

ranges 0.4 < Cβ < 0.6 and 0.05 < CLN < 0.10. The parameter Cβ controls the fractal dimension (1-

Cβ) of the rain support, whereas CLN controls the amplitude of the intensity fluctuations when it 

rains. Cβ and CLN also determine the scaling of the moments of the average rainfall intensity εr 

for different resolutions r. In fact  E[εr
q
]~ r

K(q)
 with moment-scaling function K(q)= logr E[(Ar)

q
] 

= Cβ(q-1)+CLN(q
2
-q). This moment-scaling property is often used to infer Cβ and CLN from data 

[19]. 

 Since εr,T is proportional to I, in the analysis that follows we set I = 1. Given (I = 1, Cβ, 

CLN), one can calculate the marginal distribution of εr and from that obtain the exact IDF values 

εr,T. Calculation of the marginal distribution uses the fact that εr = Ar Z, where Ar is the beta-

lognormal variable introduced above and Z is the so-called dressing factor, which accounts for 

the rainfall intensity fluctuations at resolutions higher than r [19]. The distribution of Z does not 

have analytical form, but it can be calculated numerically from Cβ and CLN using an iterative 

procedure [20].  

 Important features of the distribution of Z are the asymptotic Pareto upper tail 

P[Z >z] ~ z
 -q*

  with exponent q*=(1-Cβ)/CLN >1 [21] and the fact that, like Ar, Z has a nonzero 

probability mass at zero. Due to these properties of Ar and Z, εr = Ar Z has asymptotic Pareto 

upper tail P[εr >ε] ~ ε
 -q*

 and a probability atom at zero. Except for resolutions r close to 1, the 

rest of the distribution of εr is dominated by (Ar| Ar >0) and is approximately lognormal. As r 

increases, the probability mass at 0 increases and the range of near-lognormality of (εr| εr >0) 

broadens. For a more detailed discussion of the distributions of Z and εr, see [20]. 
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 To exemplify, we have calculated the distribution of εr for Cβ =0.4, CLN =0.05, and 

different values of r. Figure 1 shows the resulting IDF curves as plots of εr,T against r for 

different T/D in the top panel and as plots of εr,T against T/D for different r in the bottom panel. 

The plots in the top-panel are nearly straight and parallel for either (r large, T small) or (r small, 

T very large). As we show in Section 4, these regions correspond to scaling ranges of εr,T. 

Consistently with this behavior, the growth curves in the lower panel of Figure 1 are power-law 

functions for very short and very long return periods T, with a transient region that widens as r 

increases. The overall shape of these curves resembles the logarithmic function that, based on 

asymptotic properties of the Gumbel distribution, is sometimes assumed in empirical IDF 

estimation; see for example [22].  

3. Approximations 

 Exact calculation of the IDF curves is tedious, mainly because obtaining the distribution of 

the dressing factor Z requires multiple convolutions [20]. In addition, the exact results do not 

have an analytical form. Hence for further theoretical analysis as well as practical use, it is 

important to develop approximations to the distribution of εr. Three approximations are 

introduced and evaluated in this section.  

 As discussed in Section 2, the conditional rainfall intensity (εr| εr >0) has a near-lognormal 

body and an asymptotic Pareto upper tail. In the first approximation presented below, we replace 

εr with ε′r such that (ε′r| ε′r >0) is exactly lognormal below some value  εr* and exactly Pareto 

above εr*. This operation produces simpler but still non-analytical IDF curves and is the 

steppingstone for the other two approximations, which further simplify the distribution of ε′r. 

Since the simplifications lead to results that are consistent with the so-called rough and refined 
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limits of large-deviation theory, we refer to these approximations as the rough and refined ε′r 

approximations.  

3.1  ε′′′′r Approximation 

The distribution of ε′r is obtained in two steps: 

Step 1 (approximation of Z and distribution of ε′r below εr*). To approximate εr below εr*, the 

dressing factor Z is replaced by a β-LN variable ArZ
 where rZ is chosen to match some 

characteristic of Z. It is especially convenient to match an integer moment of Z, since 

calculation of these moments is rather straightforward [20] and the moments of ArZ
 are 

given by E[(ArZ
)
q
] = rZ

K(q)
 with K(q)= Cβ(q-1)+CLN(q

2
-q). With Z replaced by ArZ

, ε′r has the 

same beta-lognormal distribution as ArrZ
. By comparing the exact distribution of εr with the 

approximating distribution of ArrZ
, we have found that a good criterion to select rZ is to 

match a moment of Z of order q close to q*/2, where q*=(1-Cβ)/CLN >1 is the order beyond 

which the moments of Z diverge. For example, for Cβ =0.4 and CLN =0.05 one finds q*=12 

and matching E[Z
 6
] gives rZ = 4.36. Using the q*/2-moment matching criterion, Figure 2 

gives rZ for Cβ and CLN in the range of interest for rainfall. The lowest values of rZ, around 

2.0-2.3, are found for purely lognormal cases with Cβ =0.  

Step 2 (εr* and distribution of ε′r above εr*). To improve the above approximation in the upper 

tail, we “graft” a power-law tail to the distribution of ArrZ
 above the value εr* such that the 

log-log slope 


d

 
ln P[ArrZ

> ε]

d lnε εr*
= -q*. Hence we assume that P[ε′r >ε] ∝ ε

 -q*
 for ε >εr*. The 

proportionality constant is used to enforce continuity of the CDF of ε′r at εr*.  
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Figure 3 compares the exact distribution of εr with the distribution of ArrZ
 after Step 1 and the 

distribution of ε′r  after Step 2, at resolutions r = 1 and r = 100. Notice that for r = 1, εr is 

distributed like Z. For both values of r, the ε′r approximation is very accurate. 

 An expression for the change-point εr* that separates the lognormal body from the Pareto 

tail of ε′r is given in Appendix A, Eq. (A.2). Another important quantity derived in Appendix A 

[Eq. (A.4)] is Tr*, the return period of the event ε′r > εr*. 

 Having determined εr* and Tr*, the IDF curves under ε′r are given by 

   εr,T = 



(rrZ)

Cβ-CLN
 e

2CLN ln(rrZ) Φ
-1

[1- 
(rrZ)Cβ D

rT
]
  ¸ T ≤ Tr*    (a)

εr* 






T

Tr*

CLN /(1-Cβ)
                                        ¸ T > Tr*    (b)

 (1) 

where Φ
-1

 is the inverse of the standard normal CDF. While rather simple, Eq. (1) is not 

convenient to study the properties of the IDF curves due to the non-analytic function Φ
-1

. The 

approximations in the next two sections are better suited for this purpose. These approximations 

also provide links to extreme-value results from multifractal and large deviation techniques [9, 

15, 23]. 

 

3.2  Refined Approximation of ε′′′′r 

A well-known property of the normal distribution [e.g. 24] is that          lim
x→∞

x[1-Φ(x)]

φ(x)
 = 1 where φ(x), 

Φ(x) and h(x)=φ(x)/[1-Φ(x)] are respectively the probability density function (PDF), cumulative 

distribution function (CDF) and hazard function of the standard normal variable. This limit 

suggests replacing the exceedance probability 1-Φ(x) with φ(x)/x and the hazard function h(x) 
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with x. With these replacements, the analysis in Appendix A gives the following simplified 

expressions for εr* and Tr*: 

 

εr* ≈(rrZ)
γ*

                                                            (a)

Tr* ≈
D

r 







(2π)2ln(rrZ)
(1-Cβ)

2

CLN

1/2
 (rrZ)

[
(1-Cβ)

2

CLN
+Cβ]

    (b)

 (2) 

where γ*=2 -Cβ -CLN.  

 The IDF curves may be characterized by Tr,ε, the return period of the event (ε′r >ε) for 

different ε and r, but here it is more convenient to write ε as (rrZ)
γ
 and find the return period Tr,γ 

as a function of r and γ. Note from Eq.(2.a) that the lognormal and Pareto ranges of ε′r 

correspond to γ ≤ γ* and γ > γ*, respectively. One finds (see Appendix B) 

 Tr,γ ≈ 





D

r
 








(2π)2CLN 






γ-Cβ

2CLN
 +

1

2

2
 ln(rrZ)

1/2
 (rrZ)

CLN 



γ-Cβ

2CLN
 +

1

2

2

+Cβ
  ¸ γ ≤ γ*    (a)

D

r
 








(2π)2ln(rrZ) 
(1-Cβ)

2

CLN

1/2
 (rrZ)

[1+(γ-1) 
1-Cβ
CLN

 
]
                      ¸ γ > γ*    (b)

 (3) 

If needed, the inverse relation (εr,T as a function of r and T) can be calculated numerically.  

 An interesting feature of Eq. (3.a) is that it can be obtained also from large deviation 

theory, using Cramer’s refined limit [23, 25-27],. This is why we refer to the present 

approximation as the refined approximation of ε′r.  

 

3.3  Rough Asymptotic Approximation of ε′r 

Further simplification follows from approximating the factor 








(2π)2CLN 






γ-Cβ

2CLN
 +

1

2

2
 ln(rrZ)

1/2
 in 

Eq. (3.a) by a constant. Values of r and γ of interest for hydrologic applications are in the ranges 

1 ≤ r ≤ 100 and γ1< γ <γ*, where γ1=Cβ-CLN +2 CLN (1-Cβ)<1 and γ*=2-Cβ-CLN >1. For example, 
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for Cβ = 0.4 and CLN =0.05 one finds γ1=0.7 and γ*=1.55. The lower limit γ1 is such that values of 

εr in excess of (rrZ)
γ1 occur approximately once per year, whereas (rrZ)

γ*
 marks the lognormal-

Pareto transition of ε′r. Combinations (r, γ) with r > 10 and γ > 1 produce very small exceedance 

probabilities P[εr >(rrZ)
γ
] and should not be considered. Under these constraints, the factor 









(2π)2CLN 






γ-Cβ

2CLN
 +

1

2

2
 ln(rrZ)

1/2
 has low sensitivity to r and γ and may be approximated by a 

constant δ. For example, for Cβ = 0.4, CLN =0.05 and rZ = 4.36, this factor ranges from about 3 

(both r and γ small) to about 10 (r or γ large) and one may take δ = 5. Moreover, δ is insensitive 

to Cβ and CLN in the range of interest for rainfall.  

 With the δ approximation, Eq. (3) becomes 

    Tr,γ ≈ 





Dδ

r
 (rrZ)

CLN 



γ-Cβ

2CLN
 +

1

2

2

+Cβ
  ¸ γ ≤ γ*    (a)

Dδ

r
 (rrZ)

[1+(γ-1) 
1-Cβ
CLN

 
]
        ¸ γ > γ*    (b)

 (4) 

Also the expression in Eq. (4.a) (for δ = 1) can be derived from large-deviation theory, in this 

case using Cramer’s rough limit [23, 25, 26]. 

 Unlike Eq. (3), Eq. (4) can be inverted analytically to give 

       εr,T ≈ 



(rrZ)

Cβ-CLN + 2 CLN[
 
log

rrZ
(rT/δD)-Cβ]

  ¸ T ≤ Tr*    (a)

(rrZ)
1+ 

CLN

1-Cβ
 [

 
log

rrZ
(rT/δD)-1]

                 ¸ T > Tr*    (b)

 (5) 

where Tr* ≈
Dδ

r
 (rrZ)

[
(1-Cβ)

2

CLN
+Cβ]

. 
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 Figure 4 compares the exact IDF curves with the approximations in Eqs. (1), (3) and (5) for 

log10(T/D)=1(2)9. In all cases Cβ = 0.4, CLN =0.05 and rZ = 4.36. The results from Eqs. (1) and 

(3) are almost identical and all approximations are accurate over a wide range of r and T.  

4.  Properties of the IDF Curves 

Next we use the approximation in Eq. (5) to discuss two properties of the IDF curves under 

multifractality conditions. One is the scaling of εr,T (for what ranges of r and T the IDF values 

have a power-law dependence on r and T and with what exponents). The other issue is the 

relation between IDF scaling and the Pareto upper tail that is often observed in the empirical 

distribution of εr.  

4.1  Ranges of IDF Scaling 

Equation (5) implies that εr,T has power-law dependence on r and T/D under two conditions: 

1. In the high-resolution limit r → ∞ or more specifically when logrrZ
(rT/D)→1. Writing 

logrrZ
(rT/D) =1+logrrZ

(T/DrZ), this limiting condition is equivalent to logrrZ
(T/DrZ) →0. 

Since in this case T ≤Tr*, εr,T must be calculated from Eq. (5.a) Noting that here 

logrrZ
(T/DrZ) <<1 , one finds after some algebra 

    εr,T ≈ (δ
-1/q1 rZ 

γ1-1/q1) r 
γ1 (T/D)

1/q1  (6) 

where γ1=Cβ-CLN +2 CLN (1-Cβ) and q1 = (1-Cβ)/CLN. Hence, at high resolutions r the IDF 

curves have power-law dependence on r and T. Numerical validation of this result is shown 

in Figure 1, where the scaling exponents γ1 of r and 1/q1 of T are indicated. 

2. In the long-return-period limit and more precisely when logrrZ
(rT/δD) ≥Cβ +(1-Cβ)

2
/CLN. In 

this case Eq. (5.b) applies. This equation may be written as 
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 εr,T ≈ (δ
-1/q*

 rZ 
1-1/q*

)
 
r (T/D)

1/q*
 (7) 

where q*=(q1)
2
= (1-Cβ)/CLN. Hence also in this case εr,T is a power-law function of r and 

T/D, but the scaling exponents are quite different from those in Eq. (6). Also the scaling 

relation in Eq. (7) is verified numerically in Figure 1. 

The constants γ1, q1 and q* in Eqs. (6) and (7) have a simple geometrical interpretation in terms 

of the moment-scaling function K(q) = Cβ(q-1)+CLN(q
2
-q): γ1 is the slope of the tangent to K(q) 

with K intercept equal to –1, q1 is the moment order q at the point of tangency, and q* > 1 

satisfies K(q*)=q*-1; see [9]. Equation (7) was first obtained by [15] and Eq. (6) was derived by 

[9] using large-deviation techniques. 

 It is interesting that dependence of εr,T on r =D/d and T displays two power-law regimes 

for small and large values of the parameters. In these regimes the function εr,T is separable, a 

property that is often assumed in practical IDF estimation [e.g. 3-5]. However, in the transient 

non-scaling range the function is non-separable. This behavior is different from any suggested in 

the past. 

 To better characterize the shape of the IDF curves and see whether in practice either 

scaling regime is of interest, we study the range of r and T under which each scaling behavior 

may be considered to apply. We start with the second scaling behavior, given by Eq. (7). The 

exact IDF curves satisfy Eq. (7) asymptotically as T→∞, whereas in the ε′r approximation, Eq. 

(7) applies for logrrZ
(rT/δD) ≥Cβ +(1-Cβ)

2
/CLN. One may take the latter inequality as the practical 

range of validity of Eq. (7); see dashed-dotted lines in Figure 1 delimiting the “high-T scaling 

region”.  
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 To determine the region of approximate validity of Eq. (6), we consider the partial 

derivatives 
∂log(εr,T)

∂log
 
r

 and 
∂log(εr,T)

∂log
 
(T/D)

 of εr,T in Eq. (5.a). The ratios between these derivatives and 

their asymptotic values from Eq. (6) are  

 

Sr = 

∂log(εr,T)

∂log
 
r

γ1
 = 

Cβ - CLN + 








ξ
 
+

 1

ξ
CLN

 
(1-Cβ)

 Cβ -CLN +2 CLN (1-Cβ)
     (a)

ST/D = 

∂log(εr,T)

∂log
 
(T/D)

1/q1
 = ξ                                             (b)

 (8) 

where ξ = 
1-Cβ

logrrZ
(rT/δD) -Cβ

. As r→∞, these ratios approach 1. The “high-r scaling regions” 

in Figure 1 satisfy ST/D > 0.9 (in these regions, Sr is very close to 1, indicating that scaling with r 

is achieved over a wider range of the parameters than scaling with T). As Figure 1 shows, there is 

a wide transient range of r and T/D in which neither scaling relation holds. In this range the IDF 

curves are non-separable.  

4.2 Pareto Tail of εr 

The fact that εr has asymptotic Pareto tail with exponent q*= (1-Cβ)/CLN is often used to estimate 

q* from empirical plots of log(P[εr >ε]) against log(ε) [10, 11, 15, 28]. According to the refined 

ε′r approximation, the minimum record length needed to observe that power law is given by Tr* 

in Eq. (2.b). Tr* is large and increases very rapidly as r increases. For example, for Cβ = 0.4, 

CLN =0.05, rZ = 4.36 and D = 15 days one finds Tr* ≈ 1.5 10
4
 years at the lowest resolution r = 1 

and Tr* ≈ 1.5 10
6
 years for r = 2. These minimum lengths are far longer than any available 

rainfall record, implying that the empirical slope underestimates q*. 
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 Suppose that the record has length T < Tr*. One can use Eq. (5.a) to quantify the bias when 

q* is estimated as the negative slope of the empirical plot of log(P[εr >ε]) against log(ε). Near the 

maximum observed value of εr, the theoretical value of this negative slope is  

 -






∂log(εr,T)

∂log
 
(T/D)

-1
 = η

 1-Cβ
CLN

 = ηq* (9) 

where η=
CLN

 
[logrrZ

(rT/δD) -Cβ]

1-Cβ
 is a bias factor. Figure 5 shows how η depends on r and T/D 

for Cβ = 0.4, CLN =0.05, rZ = 4.36 and δ = 5. For example, for T = 50 years and D = 15 days, T/D 

= 1217 and η ranges from 0.68 for r = 1 to 0.39 for r = 1000. Since the q* analysis is typically 

done at resolutions r on the order of 100, underestimation is by a factor around 0.4. This explains 

why the literature often reports estimates of q* around 3.5 [e.g. 10, 15, 28]. These estimates are 

actually closer to q1= q* than to q*. In fact, as r increases, εr develops a Pareto range with 

exponent q1 = (1-Cβ)/CLN over a wider set of return periods; see Eq. (6). This is consistent with 

the fact that, as r→∞, η in Eq. (9) approaches 1/q1 for any finite T. A related observation  is the 

“straightening” of the empirical moment scaling function  K ^(q) for q larger than about 3-3.5 [e,g. 

29]. For a detailed analysis of the root cause of these phenomena (the fact that high-order 

singularities are not observable in one-dimensional cascades), see [30, 31]. 

5.  A Practical IDF Estimation Method 

Langousis and Veneziano [1] have found that Model 3 produces accurate IDF curves over the 

scaling range of durations, which in many temperate climates extends from about 1 hour to 

several days. Figure 4 further shows that little accuracy is lost if one replaces the exact IDF 

curves with the approximations in Eqs. (1), (3) and (5). Here we devise an IDF estimation 
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procedure using these approximations, as an alternative to the standard method of fitting 

extreme-type distributions to annual rainfall maxima. 

 The proposed method consists of four steps. The first three steps estimate the parameters of 

Model 3 and the final step estimates the IDF curves: 

1. Estimate the mean rainfall intensity I as the average rainfall intensity in the historical 

record;  

2. Using the scaling range of the empirical moments, estimate the K(q) function and the 

multifractal parameters Cβ and CLN. We recommend choosing Cβ and CLN to reproduce 

the scaling of the moments of orders 0 and 3. This gives Cβ= -K(0) and CLN 

=[K(3)+2K(0)]/6. The IDF results are insensitive to the parameter rZ. One may obtain this 

parameter from Figure 2 or just fix it to a constant such as rZ = 4; 

3. Fit the empirical third moments with a log-log linear function of d. The parameter D is 

estimated as the value of d for which this function equals the theoretical third moment 

I
 3

rZ
K(3)

; 

4. Estimate the IDF curves for different averaging durations d = D/r and different return 

periods T using Eqs. (1), (3) or (5), the latter with δ = 5. In all cases, multiply the 

calculated IDF values by the average rainfall intensity I.  

 The reason why the value of rZ is not important is that for any given rZ one estimates D to 

reproduce the third empirical moment. What matters to the IDF curves is that this moment is 

reproduced, not the specific combination of rZ and D. Different approximations in Step 4 

produce similar IDF estimates. Use of Eq. (5) is simplest, but also implementation of Eqs. (1) 

and (3) is rather straightforward. A simplifying feature when using Eq. (1) is that one is 

interested mainly in the lognormal range; hence one needs only work with Eq. (1.a). 
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 Figure 6 illustrates the above procedure using a 50-year continuous simulation of Model 3 

with parameters I = 1, D = 15 days, Cβ = 0.4, and CLN = 0.05. The empirical average intensity for 

this realization is 1.012. From the moment plot in Figure 6.a one estimates K(0) = -0.397 and 

K(3) = 1.086 (the exact values are –0.4 and 1.1); hence the multifractal parameters are estimated 

to be Cβ = 0.397 and CLN = 0.049. Taking rZ = 4, one finds the theoretical third moment of the 

average rainfall intensity in D to be I
 3

4
K(3) 

=4.506. This is matched by taking D = 9.24 days; see 

Figure 6.a. Notice that the exact value of D is not retrieved from the synthetic record. This is due 

to the fact that the value of rZ has been arbitrarily set to 4, and hence D is found such that the 

combination (rZ, D) reproduces the third empirical moment.  

 Finally, Figure 6.b and 6.c compare the IDF curves from Eqs. (1) and (5) with the exact 

IDF curves for the parameters used in the simulation. Since the parameter estimates are very 

good, the accuracy of the IDF approximations is comparable to that already observed in Figure 4.  

6. Conclusions 

 It has been known for some time [9, 15] that the IDF curves generated by multifractal 

rainfall models display two asymptotic scaling behaviors, one as the averaging duration d→0 (or 

more precisely as the resolution r =D/d→∞ where D is the upper limit of the scaling range) and 

the other as the return period T→∞. Without knowing the ranges of (r, T) for which these scaling 

relations apply in good approximation, these asymptotic results have limited practical value. By 

using certain approximations to the exact IDF curves, we have determined these ranges. The 

results show that the two scaling regimes are widely separated and the scaling for T→∞ holds 

only for very long return periods; see the example Figure 1. 

 A consequence of this fact is that the asymptotic power-law tail of the rainfall intensity at 

resolution r, εr, cannot be observed unless the rainfall record is unrealistically long. This result 
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shows that the common practice of estimating the power-law decay from the empirical upper tail 

of the distribution of εr produces biased (too low) estimates. 

 Another current deficiency that we have addressed is the calculation of the actual IDF 

values (as opposed to calculation of the asymptotic scaling exponents) over the entire range of 

resolutions r and return periods T. For this purpose we have developed three different 

approximations, which are far simpler than numerical calculation of the exact IDF values. We 

have derived these approximations using classical probability methods, which are more 

transparent than large deviation theory and singularity analysis.   

 Finally, we have proposed an especially simple method to estimate the IDF curves under 

the condition of multifractality. The method performs well when it is applied to simulations from 

multifractal models. A more extensive assessment of method and comparison with traditional 

IDF estimation procedures will be presented in a companion paper. 
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Appendix A: Derivation of εr* and Tr* in the ε′r Approximation 

The change-point εr* that separates the lognormal body from the Pareto tail of ε′r is found from 

the condition 


d

 
ln P[ArrZ

> ε]

d lnε εr*
= -q* by noting that ln(ArrZ

|
 
ArrZ

>0) is a normal random variable 

with mean value (Cβ-CLN)
 
ln(rrZ) and variance 2CLN

 
ln(rrZ). Therefore 



 19 

   


d

 
ln P[ArrZ

> ε]

d lnε εr*
= 



d

 
ln{1-Φ(x)}

d lnε x*
 = - 

1

2CLN
 
ln(rrZ)

 h(x*) (A.1) 

where φ(x), Φ(x) and h(x)=φ(x)/[1-Φ(x)] are respectively the probability density function (PDF), 

cumulative distribution function (CDF) and hazard function of the standard normal variable and 

x*= 
ln(εr*) -(Cβ -CLN)ln(rrZ)

2CLN
 
ln(rrZ)

. To find εr* such that the slope in Eq. (A.1) equals -q*= -(1-Cβ)/CLN, 

one first obtains x* from the condition h(x*) =(1- Cβ) 2
 
ln(rrZ)/CLN and then one calculates εr* 

using  

  εr* =(rrZ)
Cβ-CLN e

2CLN ln(rrZ) x*
 (A.2) 

The return period Tr* of the event ε′r >εr*is found as follows. Notice that P[ε′r >0] =(rrZ)
-Cβ. 

Therefore  

 P[ε′r >εr*]= P[ε′r >0][1-Φ(x*)] =(rrZ)
-Cβ 
φ(x*)

h(x*)
  

 =








(2π)2ln(rrZ) 
(1-Cβ)

2

CLN

-1/2
 (rrZ)

-Cβ e
-(x*)

2
/2

 (A.3) 

Since Tr*= 
D

rP[ε′r >εr*]
, one obtains  

       Tr*= 
D

r
 








(2π)2ln(rrZ) 
(1-Cβ)

2

CLN

1/2
(rrZ)

Cβ e
(x*)

2
/2

  (A.4)  

 

Appendix B: Return Period Tr,γ in Eq. 3 

In the lognormal range (for γ ≤ γ*), the exceedance probability P[ε′r >(rrZ)
γ
] is given by 

 P[ε′r >(rrZ)
γ
] = (rrZ)

-Cβ 








1-Φ






γln(rrZ) +(CLN -Cβ)ln(rrZ)

2CLN
 
ln(rrZ)
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 ≈ 








(2π)2CLN 






γ-Cβ

2CLN
 +

1

2

2
 ln(rrZ)

-1/2
(rrZ)

-CLN 



γ-Cβ

2CLN
 +

1

2

2

-Cβ
  , γ ≤ γ* (B.1) 

where for the last expression we have replaced 1-Φ(x) with φ(x)/x and used the equality 

 
γln(rrZ) +(CLN -Cβ)ln(rrZ)

2CLN
 
ln(rrZ)

 = 








2CLN 






γ-Cβ

2CLN
 +

1

2

2
 ln(rrZ)

1/2
 (B.2) 

In the Pareto range (for γ > γ*), 

       P[ε′r >(rrZ)
γ
]= P[ε′r >(rrZ)

γ*
] 






(rrZ)
γ

(rrZ)
γ*

-(1-Cβ)/CLN

  

 = 








(2π)2ln(rrZ) 
(1-Cβ)

2

CLN

-1/2
 (rrZ)

-[1+(γ-1) 
1-Cβ
CLN

 
]
  , γ > γ* (B.3) 

where  P[ε′r >(rrZ)
γ*

] has been evaluated using Eq. (B.1). Equation (3) follows from Eqs. (B.1) 

and (B.3) and the definition Tr,γ= 
D

r P[ε′r >(rrZ)
γ
]
. 
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Figure Captions 

Figure 1: (a) εr,T as a function of r for log10(T/D) = 1(1)10. (b) εr,T as a function of T/D for 

log10(r) = 0(1)4. The dashed lines delimit the regions of approximate scaling; see 

Section 2. 

Figure 2: Values of rZ that reproduce the moment of Z of order q*/2. 

Figure 3: Comparison of the exact distribution of εr  with the distributions of ArrZ
 and ε′r for r = 1 

and r = 100. Other parameters are Cβ = 0.4, CLN = 0.05 and rZ =4.36. 

Figure 4: Comparison of exact (solid lines) and approximate IDF curves (dashed lines) for 

log10(T/D) = 1(2)9. Other parameters are Cβ = 0.4, CLN = 0.05 and, for the 

approximations, rZ =4.36. 

Figure 5: Bias factor when estimating q* as the empirical slope of log(εr,T) against log(T). Model 

3 with Cβ = 0.4, CLN = 0.05, rZ =4.36 and δ =5. 

Figure 6: Model fitting and IDF curve estimation using a 50-year simulation of Model 3 with 

parameters I = 1, D = 15 days, Cβ = 0.4 and CLN = 0.05. (a) Empirical moments 

(circles), fitted straight lines to estimate K(q), and estimation of D. (b,c) Comparison of 

exact IDF curves (solid lines) with IDF values from either Eq. (1) or Eq. (5) (dashed 

lines). All curves are for return periods log10
 
T(yr)=1(2)9, increasing from below. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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