
S c a l i n g  v e r s u s  H u r s t  
(By V. Kleme5) 

A historic record of streamflows represented by a time series [XI, - 
XI, X,, .. ., Xt, . . ., X, is taken as the basis for the comparison of 
the two approaches to its analysis. Such series typically exhibits a 
more or less pronounced clustering of higher and lower values over 
irregular intervals of different lengths. This is referred to as the 
fluctuation of X at different (time) scales. The nature of this 
fluctuation can be analyzed by examining consecutive segments of k 
values of the series. Such analysis is here referred to as analysis at 
(time) scale k. This scale - the length of the segment - can vary from 
k = 2 to k = n, in which case the whole series constitutes one 
segment. However, since the essence of the analysis is a comparison of 
the series behaviour in several complete segments of a given length, 
the maximum value of k has to be smaller than n/2. 

This scheme is regarded as the general principle of what is here 
understood as 'scaling' analysis. 

As an example, around which this discussion will be evolving, a time 
series of n=30 terms, [XISOI will be used and the analysis performed 
for scale k=5, so that there will be m=6 complete segments. In the top 
of Figure 1 this series is plotted in black; the "population" mean 
Xn=,, is also shown (in the text, I am using bold face to denote 
averages since I can't place a bar over a letter). 

In the f irst  s tep  the original series [XI,, is 'scaled' by replacing 
it with the series of the segment averages, [x'~'], EI xii5), i = 

1,2,...,6, i. e. by "mean flows in successive periods of length k=5". 
The top of Fig. 1 shows its plot in blue. 

Up to this point, the Hurst analysis proceeds in exactly the same way 
as the scaling approach: it splits the original series into the same 
segments and replaces it with the series of the segment means. The 
only difference is "operational" rather than conceptual: the scaling 
analysis represents both series in their original form, while Hurst 
represents them in the form of their "integral transforms", namely as 
their (residual) mass curves with ordinates Y and Yi5!, respectively. 
In the bottom part of Fig. 1 their plots are shown again in black and 
blue and are labelled SY and SYt5) to emphasize the fact that it is the 
slopes of the curve segments, rather than their ordinates, which 
define the flow values in this plot. In other words, the upper and 
lower black and blue plots in Fig. 1 contain the same information 
about the original and the scaled series. 

A conceptual difference comes in the s e c ~ n d  s tep  where a specific 
feature (measure) of the scaled series is adopted as a characteristic 
of its behaviour, i.e. as a variable to be analyzed: 



In the scaling approach, it is the computed segment mean itself. In 
Hurst's approach, it is the 'theoretical' minimum storage capacity of 
a reservoir needed to "physically produce" this mean as a constant 
reservoir release throughout the duration (length) of the whole i-th 
segment, given that the reservoir inflows were the k original flows X. 
This storage capacity is defined, for each segment taken separately 
(i.e., as if it represented the whole series used for sizing the 
reservoir), by the "adjusted range", R(~), of the corresponding segment 
of the "residual mass curve" of the original flow (i.e., reservoir 
inflow) series X; the label "adjusted" means that the range is 
computed with respect to the average outflow Xi(k) represented by the 
slope SY,'"). This is depicted in the lower plot in Fig. 1, with the 
definitions given at the bottom (the double slash, / / ,  stands for 
"adjusted with respect to1') . 
Note the essence of the difference: In the scaling approach, when 
computing the segment mean, one also must first accumulate (add up) 
the k individual values of X and "store" them, the computer memory 
playing the role of Hurst's reservoir storage. But, in "computing" the 
segment mean, this generating mechanism is not reflected in the result 
it produces and does not enter the picture, in contrast to Hurst's 
approach which takes it explicitly into account. 

From a conceptual point of view, one could say that Hurst goes one 
step "deeper" into the problem: he chooses a measure which is based on 
the segment mean but one which also reflects the mechanism by which 
this mean can be "conceptually" produced (a practical implementation 
of this concept is still a different matter - see the highlighted 
remark at the bottom of p.5 of my 1994 paper "Statistics and 
probability. . . " )  . 
From a statistical point of view, the scaling approach employs a 
measure of central tendency which takes no account of the variability 
within the segment (called 'intra-segment' herefrom). In contrast, 
Hurst uses a measure which also reflects central tendency but, being a 
function of the deviations from it, it emphasizes the intra-segment 
variability. 

This is the place in the analysis where it most clearly comes to light 
why it is important to appreciate the fact that Hurst started to work 
with a streamflow record and that his original objective was to find 
out how the length of the record used for the sizing of a reservoir 
influences its storage capacity needed to "equalize" the flows over 
the record length (see below his own explanation). Had he not been an 
engineer concerned with reservoir design, but instead, say, a 
meteorologist interested in temperature fluctuations over time, he 
most likely would not have analyzed "storages needed to equalize" 
them, but could well have adopted the 'scaling approach' which has 
nothing to do with "storing" any physical entity and thus does not 
invite the employment of "mass curves". 

The above problem Hurst tackled was a crucial one because, in his 
time, it was taken for granted that the storage capacity for a given 
"safe draft" has a definite "correct" value which is approached the 



more closely the longer is the flow series used for its computation - 
in a similar way as a sample mean approaches the "populationm mean 
with the sample size. This was textbook wisdom even in my time 50 
years ago, and was the main reason why it was engineers who were 
stressing the need for long streamflow records. 

Hurst was the first who dispelled this myth and showed that there is 
no "correct"value which the storage approaches with an increasing 
record length - that this "random variable" has no population mean but 
grows without limit, And I think (and have written it somewhere) that 
this was Hurstls most important, but still not fully appreciated, 
contribution to the practice of reservoir design. This I think was the 
crucial finding that led to the abandonment of the traditional 
!'Rippll s method" and established "respectability" and later general 
adoption of probabilistic methods. 

Digression into adistant past (to be skipped on first reading) 

The problem with the probabilistic methods (Savarenskiy, Kritskiy & Menkel, Moran, Lloyd) 
was that they could be more-or-less easily formulated only for annual flow series. The effect 
of sub-annual flow fluctuations - which is substantial for smaller reservoirs - had to be added 
by some ad-hoc procedure (e.g., based on 'typical' annual hydrograph) not related to the 
design reliability (probability of non-failure year), thus compromising the value of the 'design 
reliability' of the project.. 

I chose to 'solve' this problem as part of my PhD work in the early 1960s. The solution was 
in fact based on a "scaling la Hurst" on two levels, annual and monthly (or daily). The 
object was to figure out a probability distribution of the 'sub-annual' component of storage 
that could be appropriately added to that of 'annual storage' established by the standard 
probabilistic methods. I am enclosing the English (i.e., my 'tortured' high-school English) 
summary of my 1963 paper with two its Figures (14 and 15) illustrating the substance Fig. 
14 shows how the 'seasonal component' was separated out on the mass curve from the total 
storage obtained from the monthly (daily) record. As shown in red, it consists of two parts, 
one contributing at the beginning, the other at the end of a 'critical period'. My reasoning was 
that years with any seasonal patterns could occur at these two boundaries, so I constructed the 
possible hypothetical start-of-period and end-of-period contributions for every year and, 
having 30 years of record, I could produce reasonably defined empirical distribution functions 
of both. They are shown in Fig. 15, together with the graphically constructed (no computers 
then!) convolutions adding them together, as well as convolutions of the result with the 
distribution of annual (long-term) storage obtained via Savarenskiy/M[oaan-type methods. The 
final theoretical result of the exercise (highlig ted in red on the second sheet of the enc 
was the seasonal storage component, P,,, a a function of draft a? for a given reli 

ability) level P (below it are shown examp es of empirically obtained results for three 
nt flow series, and opposite an example of such empirically derived relationship for 

several different reliability levels). 
Cumbersome as it was, my method was favourably regarded by both Kritskiy and Moran, and 
at the time has become a standard 'textbook' method in Czechoslovakia (a part of its 

e 1966 Votruba & Broia textbook is also shown in the enclosure). 



Back to Hurst: 

In his 1951 paper Hurst explains: "The investigation began. 
empirically, before any attempts to find a mathematical theory were 
made, by finding R for any available long series of river discharges. 
Such series were scarce and so the work was extended to rainfall data, 
which were more plentiful. When it was found that rainfall data gave 
results similar to the river data the work was extended to other long 
series of natural events" (p.783). In other words, he was using all 
the 'other' series just as proxy for streamflow and he still had in 
mind reservoir storage, rather than the series fluctuations as such. 

Paradoxically, this 'narrow' engineering focus on reservoir sizing for 
a given streamflow record kept him 'out of trouble' scientifically, 
because residual mass curves of streamflcw represent a record of 
storage fluctuations in an ('infinite') reservoir, i. e. record of a 
physically meaningful cumulative process. This cannot be said of 
residual mass-curve representation of many other records such as those 
of temperatures, tree rings, barometric pressure, etc., which all have 
often been represented by their 'cumulative departures from the mean' 
(= residual mass curves) on the basis of whose patterns 'scientific' 
inferences about the nature of time fluctuations of the original 
series ( ! )  have been routinely made. Most notoriouslyf such inferences 
have been made about long-term fluctuations of streamflow and 
precipitation because their representation by residual mass curves has 
been standard practice in hydrology (as well as meteorology and 
climatology!. However, the 'long-term cycles' in the 'computed' mass 
curves are just chimeras - misleading mathematical artefacts as I have 
explained in the enclosed 1987 'Drought' paper and, in more detail, in 
KlemeS & Kleme5 (1988); some examples from the latter were reproduced 
in the "Geophysical time series . . ."  paper. Only if the mass curves 
have been 'computed by nature' (produced by some physical process) do 
their fluctuation patterns have a real 'meaning'. Thus it was the 
very fact that Hurst did not aspire to use the patterns of his mass 
curves to 'analyze' fluctuations in streamflow series (as did, say, 
his younger American contemporary Williams) what saved him from 
'barking up the wrong tree'. 

The next element of the conceptual difference between "scaling" and 
"Hurst" appears in the third step where the type of vprocessing' of 
the previously chosen characteristics (x'~) and R(~), respectively) of 
the scaled series is decided: the former uses its standard deviation, 
o[~(~'], while the latter uses the mean, y [R*!~)], where R*(~! is called 
the "rescaled adjusted range" and is equal to R ( ~ )  divided by the 
intra-segment standard deviation of the corresponding sample 

Note that here the difference is diametrically opposite to that in 
step two: Here it is "scaling" which uses a variability 
characteristic, while "Hurst" uses one for central tendency. Also note 
that it is only in this step where Hurst made an "attempt to find a 
mathematical theory": this is evident from his 'normalizationbf R(~' 
by o[~](". He noted that both these variables are functions of 
deviations from the mean (p.784) and, by using the latter as a 
normalizing factor, he sort of 'purified' R from the effect of the 



intra-segment 0 .  The enormous difference betweeri R and R" is appa-rent 
from their plots, for k=5, in the top part of Fig. 1. 

While, in my opinion, this 'rescaling' of R has little direct 
engineering relevance (reservoir size depends on the actual X I  not on 
how much of it is due to 0 and how much due to something else), it has 
been praised by Mandelbrot as a stroke of (mathematical) genius of 
which Hurst himself was most likely oblivious. Mandelbrot and Taqqu 
(1979) see the mathematical significance of R' in its "robustness 
against scale changes" and "against extreme deviations from normality, 
including the infinite variance syndrome". 

Be it as it may, the fact remains that it was the shape of the 
dependence of the mean of R'on the segment length k, specifically the 
slope H of its log-log plot, that gave birth to the "Hurst phenomenon" 
and made it famous and notorious object of countless analyses. 

However, the point of interest here is the following: 

Why is the slope H of the log-log plot of mean R*'") vs. k so similar 
(perhaps even identical?) to that of o[x'"'] vs. k, given the two above 
differences in the underlying procedures? Namely, "scaling" reflects 

nt means, while "Hurst" reflects the 
ies and, moreover, it also depends on the 

sequential order of the segment terms which the standard deviation 
ignores. The point is that, depending on this sequential order, R (as 
well as R*) for a given segment can vary from some minimum to some 
maximum, the standard deviation remaining unchanged. Even if this 
variability is 'averaged out' in the mean of many segmentsi R* still 
has different information content than 9. The more general difference 
is that "scaling" employs statistics of the series itself, while 
"Hurst" uses a statistics of its Yntegral transform' - and, as 
follows from the preceding discussion, for the fluctuations of the 
series itself its own statistics should be more relevant than 
statistics of its mass curve, which in turn should be more relevant to 
storage fluctuations. 

For somebody whose 'mathematical synapses and neurotransmitters' are 
still well oiled, it might be interesting to trace mathematically the 
root of the similarity between the estimates of H (I find it hard to 
believe that they are identical) obtained by the two approaches. 

Reference: 
Mandelbrot & Taqqu, Robust R/S analysis of long run serial 
correlation, RC 7936 {#34217) 10/4/79, Research Report, IBM Thomas J, 
Watson Research Center, Yorktown Heights, New York. 













In addition to your Opini~n paper, it was the fact that you contrasted 
(in HSJ 20023 the 'scaling analvsis-f a time series with Hurst's 
analysis, which has inspired this 'second instalment' of my comnents 
(by the way; in both papers; you have a misprint in the reference to 
Hurst's paper: its starting page is 770, not 776). Strictly speaking, 
these are not so much comnents on your papers: rather, they have 
crystalized into an 'opinion' essay which cguld well go under the 
title "Scaling versus Hurst". I wrote it as if it were intended. for 
the 'uninitiated' so that I could still understant it six months 
later; hence you may find much of it redundant. 

You of course are meant as the 'somebody' in my proposition at the end 
of the writeup - if you have not already done what I propose, 


