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Introduction 

The old goal of a great many Egyptian rulers and governments to harness the Nile River 
and 'make use of the Nile water to the fullest possible extent' (Hurst et al., 1965) has led to 
extensive studies of hydrological records of the Nile River and, in particular, of the long series 
of maximum flood stages recorded on the Roda gauge in Cairo which dates back to 641 A.D. 

Since about 1936 these studies were conducted by H.E. Hurst and were aimed at finding a 
storage reservoir capacity that would be necessary to make the mean annual discharge of the 
Nile River constant and equal to its long-term mean. 'The method for doing this is well 
known and consists in taking the departures of the yearly discharges from the mean in order 
and forming their continued sums. The difference (range), R, between the maximum and 
minimum of these sums is the storage which would have been required to maintain the mean 
discharge throughout the period' (Hurst et a/., 1965). The method is illustrated in Figure 1. In 

order that the values of Rn corresponding to a given series length n could be compared for 
different time series, the range is normalized by the standard deviation Sn of the series to 
form a variable Rn/Sn called the 'rescaled range'. 

Hurst (1951) found that for a random series 

R/s]~ n°-
L n nj 

(1) 

where E signifies the arithmetic mean and the sign - indicates proportionality. This result was 
confirmed by Feller (1951) and was later shown to hold asymptotically not only for purely 
random processes but also for all the common types of stationary stochastic processes. It 
was therefore expected that for large n the plot log E [Rn/Sn) versus log n (let us call it the 
'range plot') of empirical time series should have an asymptote with slope equal to 0.5. It thus 
came as a great surprise to theoreticians when Hurst showed that the range plot of the Roda 
gauge data as well as range plots of long series of precipitation, river discharges, annual 



44 

d) 

time 

time 

*) 

Fig. 1 a) Time series of variable x 
b) Time series of cumulative departures f rom the mean x 

temperatures, and pressures, annual sediment deposits (varves) in lakes, and tree ring 
thicknesses exhibited a relationship 

R /S 
n n 

( 2 ) 

where h was close to 0.7. Similar empirical f indings were later made w i th regard to economic 
and other historic time series. 
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The failure of the exponent /?to accord with theory underlying eq. (1) has been labelled the 
Hurst phenomenon. It has long resisted an adequate theoretical explanation and geophysi-
cists and mathematicians still have not reached agreement as to its cause. 

One theoretical model that accounts for the Hurst phenomenon is a stochastic process 
called fractional Brownian noise (fBn) put forward by Mandelbrot (1965) and later developed 
by himself and his collaborators (a detailed bibliography is given, for instance, in K/eme5, 
1974). The fBn is a time series, each term of which, x (f), has been constructed as a weighted 
sum of an infinite number of Gaussian random quantities, e(t - 1), e(t - 2), ...,e(t - T ) ; 
T •> oo where the weights are Tk, with 0.5<k< 1.5. The fBn can possess any value of h ob 
served in historic series and it (or rather its approximations) has been successfuDy used as an 
operational model for hydrologic series. The problem is, however, that this mathematical 
model implies that the modelled physical process has an infinite memory of a peculiar kind: 
the formation of each new term of the series requires that all the past values be available (i.e. 
stored) since their original values are repeatedly used and modified by different coefficients 
(weights) in every step. Such a mechanism can be easily visualized in economic time series 
where the original values of variables (prices, volumes of stock, etc.) are preserved in the 
book-keeping process, and in some biological processes where the long-term memory could 
be related to the mechanism of genetic coding. It, however, does not seem likely that the 
model has universal validity, especially in geophysical processes which tend to have the so 
called Markovian property, it means the past history of the process affects its present state 
through its cumulative effect which is fully reflected in a small number of the most recent 
states of the process. For instance, the rate of outflow from a lake depends on the instant 
elevation of its water level and the slope of the surface, and it is immaterial through what 
sequence of past events their current values have been reached, it is hard to visualize a 
physical mechanism through which, for instance, this month's mean temperature could have 
been directly influenced by that of, say, May 1950 or 1850 

The present author (Klemes, 1974) has suggested two different processes that account for 
the Hurst phenomenon and whose mechanisms are compatible with geophysical processes. 
One of them is a compounded cumulative process arising in a series of semi-infinite storage 

reservoirs where output from one becomes the input into the next. This process, although 
quite common in hydrologic and related processes, will not be discussed here as it has no 
bearing on the concept of catastrophism. It is the other process that can be of interest in this 
connection. 

Process with time-variant central tendency 

Consider a historic record of a time series describing fluctuations of some geophysical 
variable. For the sake of simplicity the variable concerned will be one defined on the yearly 
basis, for instance the annual precipitation total or maximum air temperature at a particular 
geographic location, date of freeze-up of a particular lake, etc. 

In trying to develop a mathematical model for such series we must first introduce certain 
assumptions which may be based on our knowledge (or the lack of it) of the physical laws 
governing the process, on the geometry of the historic series, on the tools available for the 
analysis. In any case, these assumptions serve to simplify the complex reality and to make it 
fit into our preconceived schemes called 'organized system of knowledge'. It should be 
pointed out that these assumptions are to a great extent arbitrary. 

The first assumption will probably be one concerning the stochastic nature of the series. It 
implies an admission on our part of not being able to predict the future values of the series 
accurately. The degree of uncertainty involved can be ascertained only by making predic
tions and testing their accuracy. To make predictions, or estimates (they need not relate to 
specific values of the variable but to their dispersion corresponding to a given probability), 
specific assumptions, or sets of assumptions, about the pattern of the series behaviour are 
necessary. 
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Here we must first decide the following fundamental question: does the series represent 
fluctuations within some firm, stable general pattern, or does the pattern, the master plan 
itself, change? In other words, is the series a stationary one or a nonstationary one? 

The geometry of the historical record can seldom provide a clear-cut answer. For instance, 
almost any series can be equally well visualized as either a sequence of large fluctuations 
about a constant mean or a sequence of small fluctuations about a sharply fluctuating mean 
(Figure 2). Mathematical convenience dictates the acceptance of the stationary hypothesis 
whereas the physical evidence testifies to the contrary. It seems to make little sense to 
assume, for instance, a constant mean discharge at a certain point of a river if we know that 
the slope of the river and the topography of the basin undergo permanent changes due to 
erosion and sedimentation; it would seem to be even less reasonable to assume a constant 
mean discharge over a period containing a glacial age during which the river ceased to exist. 

In this connection the following two things should be noted, (1) that the failure to account 
for the Hurst phenomenon is observed in the common types of stationary stochastic process 
which, by definition, all possess a constant long-term mean, (2) that the variables Rn and 
Sn, on the basis of which the Hurst phenomenon is defined, are both functions of deviations 
from a constant long-term mean x. 

Fig. 2 Illustration of constant and time-variant mean of a time series 

These two observations have lead the author to experiments with processes which have a 
time-variant mean. It was found that the simplest type of process exhibiting the Hurst 
phenomenon is one where the mean has constant value xj within an epoch of some finite 
duration tj, then suddenly takes on a different value xj which is maintained during an epoch 
of duration tj, after which another sudden change takes place, etc. Another type of process 
which leads to almost identical results is one where the values of the means xj, xj, .....within 
epochs tj, tj,..., are not constant but vary as linear trends. Sample series of these two pro
cesses are shown in Figure 3. 
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Fig. 3 Two types of constationary processes exhibiting the Hurst phenomenon 

a) constant means within epochs 
b) linearly changing means within epochs. 
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When such processes are treated as if they were stationary, i.e.. if a fictitious constani 
long-term mean is assumed and all the deviations entering R and Sare taken from this value 
both processes exhibit the Hurst phenomenon. If, however, the deviations are properly taken 
from the actual time-variant mean, then the Hurst phenomenon disappears and the exponent 
h in eq. 2 approaches assymptotically the value of 0.5. This indicates that the Hurst phe
nomenon may arise from an incorrect interpretation of a process, specifically from assuming 
stationarity when the process is in fact nonstationary in the mean. 

The type of probabilistic distribution of the mean 3F itself and of the deviation x-x does not 
seem to be important for the result nor does the stochastic structure of the process within a 
single epoch. The crucial thing is the distribution of epoch length t. It was found that the 
probabilities of epochs must be roughly inversely proportional to epoch lengths which implies 
that long stationary-looking periods exist but are very rare. A reasonably good approximation 
of the probability density of t appears to be 

2t - 1 

g(t) = _ f t (3) 
t - 1 

where the mean epoch length t can vary from 1 to «• , its different values giving rise to diffe
rent values of the power h in eq. 2. 

In physical terms the central tendency of a series reflects the overall energy level of the 
process. Physical causes of sudden changes in this energy level can be very diverse and can 
range from man-made effects on the environment, through processes in the earth crust, to 
extraterrestrial phenomena. 

Conclusions 

The purpose of this paper has been to point out that the behaviour of time series of long 
historic records of geophysical processes is compatible with the concept of catastrophic 
evolution, more specifically with the occurrence of sudden changes in the environment 
which take place at irregular time intervals. While it does not exclude other interpretations, 
for instance the presence of long persistence or storage effects which can be associated with 
certain types of processes, the concept of time-variant central tendency offers, in the au
thor's opinion, the physically most plausible explanation, especially as far as long geological 
time scales are concerned. 
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