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ABSTRACT 

Problems of operational and physically based stochastic 
modelling of rainfall-runoff relations are discussed, dangers of the 
reliance on stochastic methods of model building are illustrated, and the 
need for developing stochastic rainfall-runoff models on the basis of 
sound hydrological concepts is emphasized. 

INTRODUCTION 

The title of this symposium suggests that the subject matter to 
be discussed is not hydrology. For if it were we would not be talking 
about rainfall-runoff modelling but about the modelling of the land phase 
of the hydrologic cycle. The domain of "rainfall-runoff relations" 
(hereafter usually RRR) originated of course from a problem caused by a 
hydrological event, namely floods. The problem as such, however, was not 
hydrological - it was an engineering problem or, to put it in our modern 
jargon, a decision problem: how to build a bridge across a river so that 
it would not be washed away or, at any rate, seriously damaged, by a 
flood. The following quotation from Sokolovskii (1971, pp. 322, 323) 
sets the scene: 

"In the following we shall review computation formulas for 
maximum discharge developed in Czarist Russia... 
The first computation formula developed at the Ministry of 
Railroad Transportation in Czarist Russia was introduced in 
connection with directives to determine storm runoff norms, and 
was developed by the Austrian engineer Koestlin in 1868. As a 
result of the incorrect design of a bridge and conduits for the 
passage of storm water, this structure collapsed and resulted 
in a train crash on the Moscow-Kura railroad near Kukuevo 
station. After this catastrophe the following formula was put 
into use in 1882: 

Q = kdaaF, 

where a is the theoretical storm in tens i t y , . . . F is the 
drainage-basin area; kj is a dimensional factor, equal for 
measurement in the metric system to 16.67.. . ; a is a factor 
allowing for losses of storm water by seepage and for the 
non-uniformity in their time lag to the ou t l e t . . . 
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A subsequent train accident in 1900 as a result of a storm, on 
the Kharkov-Balashov railroad, made it necessary to undertake 
special studies on the usefulness of the Koestlin formulas. 
Chairman Nikolai of a special investigation commission received 
expert opinion from the railroad administration and concluded 
that for such a vast territory as Russia the Koestlin norms were 
in general unsatisfactory, since 40 supported the norms in 
their present state while 60 were in favor of increasing 
them..." 

Similar histories are behind all "flood formulae", (sometimes 
they are alluded to even in their names, as for instance in the cases of 
the Bavarian Railways formula or the U.S. Bureau of Public Roads formula) 
and, by implication, behind the whole domain of RRR. To put it briefly, 
the decision maker needed a "maximum", "mean", "minimum", discharge or 
water level and ordered his engineers to get it, and get it fast, because 
... some Governor was ordered by some High Commissar to build a bridge at 
some Kukuevo within two years..., etc., where one can freely substitute, 
say, Glen Canyon Dam for Kukuevo bridge, Senator for High Commissar, 
promised to his constituency for was ordered to, etc., etc., as the case 
may be. 

And, since every schoolboy knows that floods come from rains and 
droughts from no rains, it is quite obvious where to look for quick 
answers. Given the additional fact that hydrology still is basically in 
the hands of engineers (as a rule having its academic home in Civil 
Engineering departments of universities and obtaining research funds from 
water resource management sources), it is quite understandable that, 
instead of improving hydrologic knowledge and understanding, we have been 
devoting most of our efforts to the thankless task of improving 
operational models for RRR. 

For, from the hydrological point of view, these relations are of 
necessity very loose. As D.W. Mead put it more than 60 years ago: 

"It is evident... that there exists no simple relation between 
rainfall and runoff from which either monthly or annual stream 
discharges can be calculated with any great degree of 
accuracy... Runoff should be regarded as the overflow or 
residual remaining after various other demands are supplied and 
not as a proportion of rainfall" (Mead, 1950, p. 568). 

All one can add is that the same applies to the computation of 
maximum and minimum flows, in the latter case with the salutary exception 
that there is no runoff where there is no precipitation, which makes the 
modelling of RRR a rather promising and exact science in the conditions 
of Central Australia and Saudi Arabia. 

The mainstream of the current practice in the development of 
stochastic models of RRR makes me feel uncomfortable by evoking a 
familiar parallel. Consider a trial. The prosecution (Water Management) 
charges the accused relatives, Rainfall and Runoff, that a close 
relationship exists between them. The prosecution has a vested interest 
in the conviction but not enough evidence to prove the case. It thus 
provides incentives (Research Grants, Prestige) to its investigator 
(Modeller) to obtain a confession from the accused. The investigator 
lets them "speak for themselves" but they have little to say beyond 
admitting that they may be relatives of some kind but know no details. 
The investigator records the result on a standard form (Regression) and 
reports back. The prosecutor is not satisfied and encourages the 
investigator to try harder. The investigator has two options. He can 
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recommend that external evidence be gathered because he satisfied himself 
that the accused said all they knew and nothing new could be learned from 
them. This does not happen too often because he knows it is exactly what 
the prosecutor does not want to hear and may fire him. Thus he usually 
takes the second option, goes back, extorts the confession by torture 
(High Calibre Mathematics) and/or compiles it on the basis of his own 
imagination and the prosecutor's wishes (Arbitary Assumptions). The case 
is successfully tried on the basis of such fabricated evidence and the 
facade of scientific respectability of stochastic RRR modelling gets a 
fresh coat of a brighter paint - another impressive-looking operational 
model of no hydrologic consequence. 

LIMITATIONS OF OPERATIONAL AND CAUSAL 
MODELLING OF RRR 

An operational model such as a regression relation, a polynomial 
fit, a transfer function model, etc. is perfectly in order if it 
formalizes an empirically established relationship or pattern (e.g. 
Clarke, 1980) and the modeller or user does not transgress its inherent 
limitations. In particular, it should be clear that 

(1) An operational model is nothing more than "geometrical" 
interpolation formula and will give best results in the range where 
the amount of empirical evidence is largest; 

(2) There is no reason inherent in the mathematical structure of the 
model why it should be valid outside the range of data to which it 
has been fitted. 

(3) Improvement of an operational model requires either more empirical 
data or more causal input, i.e. more information on the phenomenon 
being modelled. It cannot be achieved merely by more mathematics. 
The degree of mathematical sophistication has no point beyond the 
"carrying capacity" of the amount of the physical information 
available. 

(4) Even if the empirical relationship being modelled by an operational 
model is very close, it does not necessarily imply that it is causal 
in the sense that a change of one variable would necessarily lead to 
a change in the other variable as "predicted" by the model. 

As a consequence, it is obvious that operational models of RRR 
cannot provide reliable information where it is most needed, i.e. beyond 
the range of observed runoff and for other conditions than those to which 
the data correspond. Their development has reached a dead end because 
the only way to progress, other than turning to physically based 
modelling of the hydrologic cycle, is to wait for more empirical data. 
And in the context of stochastic modelling, "more" means "more by an 
order of magnitude" which unpleasant fact "cannot be overcome by any 
mathematical sleight-of-hand" (Moran, 1957). The presently fashionable 
polishing of operational stochastic RRR models can hardly be considered 
as more than a mathematical pastime to fill the intervening 500 years or 
so before the data base catches up. 

Compared to operational modelling of RRR, the physically based 
stochastic modelling of the hydrologic cycle represents a jump over 
perhaps several orders of magnitude in terms of difficulty. An 
indication of this difficulty can be obtained from Eegleson's study 
(1978) which is the only work to date that can be properly classified as 
an attempt at physically based stochastic modelling of the hydrologic 
cycle. The difficulty has several aspects. One is the inclusion of all 
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the important mechanisms involved in the transformation of precipitation 
into runoff. So far only the simplest hydromechanical mechanisms have 
been considered while the thermodynamical ones which dominate the mass 
balance (70 to 100% of the precipitation does not reach the runoff stage) 
have been drastically simplified as well as the electro-chemical and 
other mechanisms in the soil-vegetation interphase which control the 
distribution of precipitation into the various phases of surface and 
subsurface runoff. Another aspect is an adequate description of the soil 
matrix and of the boundary conditions of the water-carrying medium. Yet 
another aspect is the modelling of the inputs into the system, namely of 
the processes of precipitation and the various energy fluxes. These can 
be represented only by operational models since they are outside of the 
necessary "free body cut" defining the hydrologic model (Klemes, 1981). 

This last aspect seems to make a physically-based approach to 
stochastic modelling of RRR self-defeating since one may say that there 
is no point in replacing an operational model of RRR with a physically 
based model if the latter is to be fed with operationally modelled 
inputs. There are at least three arguments to the contrary. The first 
is that these inputs should have a simpler stochastic structure than that 
of the runoff because they are largely unaffected by the complex 
processes operating in the basin. Since, at the same time, they are 
usually documented by longer records than runoff, their operational 
models should be more reliable than those of the runoff itself. The 
second is that, eventually, operational models of these inputs are likely 
to be replaced by causal models as a result of physically based climatic 
modelling. The third is that even if the two former assumptions di-d not 
materialize, a physically based hydrologic model would at least make it 
possible to assess the consequences of various more-or-less plausible 
input "scenarios" and consider them in water resource planning and design. 

In summary, the situation in stochastic modelling of RRR can be 
described as follows: 

There are, generally speaking, two circumstances in which it is 
now difficult to develop a reliable stochastic model of the 
rainfall-runoff relationship: the first is when we treat it as 
empirical; the second is when we treat it as causal*. 

However, the second alternative has the distinct advantage that 
it involves more than merely improving the pavement on a dead-end street. 

THE STARTING POINTS 

For the purpose of physically based modelling of the land phase 
of the hydrologic cycle the system to be modelled can be divided into the 
two following broad categories: (1) Inputs and boundary conditions 
represented by operational models and (2) hydrodynamical, thermodynamical, 
electro-chemical, and other processes within the basin to be described by 
the respective physical laws. 

In the first category, the interest has concentrated on the 
modelling of the precipitation process. The evidence indicates that, 
with the exception of the smallest basins, the classical assumption of 

*) A paraphrase of B.L. Hendrics as quoted in Berlinski (1976, 
p. 112): "There are generally speaking, two circumstances in which it is 
difficult to analyze mathematically a social system: the first is when 
the system is not linear; the second is when it is." 
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uniform basin rainfall modelled as a one-dimensional process in discrete 
time (hourly, daily, not to say monthly, intervals) is" too crude and 
invalidates the result of even the most adequate basin response model. 
Attention has therefore turned to event-based space-time models (e.g. 
Sorman, 1975; Duckstein et al., 1979; Gupta and Waymire, 1979; Waymire 
and Gupta, 1980) which bring with them the problem of the sampling 
uncertainty introduced by point measurements of the rainfall field (e.g. 
Wilson et al., 1979; Bras, 1979). Stochastic modelling of the energy 
inputs does not seem to have been attempted in the context of hydrologic 
models, probably because the amount of noise in their components 
(temperature, radiation, albedo) is thought to be much lower than that in 
the precipitation and can, in the first approximation, be neglected. 

In the second category, attention has been directed almost 
exclusively to the effect of various hydro dynamic subsystems, such as 
storage reservoirs and their systems, channels-, hillslopes, etc., on the 
stochastic properties of their inputs. A survey of these efforts is 
given in Klernes (1978) and some newer results appear, and are referenced 
in, for example, Singh and Birsoy (1977), Sagar (1979), Anis et al. 
(1979), Smith and Freeze (1979a, b) Freeze (1980), Glynn (1981). 

A typical objective of such investigations is to seek the 
relationship between some statistical parameters of the (precipitation) 
input and the corresponding parameters of the (runoff) output which is in 
concert with the central objective of stochastic RRR modelling: the 
determination of the unknown stochastic properties of runoff from the 
known properties of rainfall. 

As an example, one may consider the effect of a storage 
reservoir on statistical parameters of an input process X routed 
through it. In the simplest case the routing mechanism can be 
represented by the momentum equation reduced to the familiar form: 

Y = aSb (1) 

where Y i s the output r a t e , S is the instantaneous water storage and a 
and b are pos i t i ve constants. When the problem is cast in discrete time 
so tha t X is a time ser ies X i , X2, . . . . Xi (which is of ten the 
case in s tochast ic model l ing) , then Y and S in (1) have a subscript i and 
both are in volume dimensions. 

Figure 1 shows the inf luence of the constants a and b on the 
coe f f i c i en t of va r i a t i on Cv and the coe f f i c i en t of skewness Cs of 
output Y for reservo i r input X represented by a random series wi th a 
two-parameter lognormal d i s t r i b u t i o n with mean E[X] = 1 and variance 
VAR[X] = 1 so tha t CV[X] = 1 and CS[X] = 4 ( t h i s fo l lows from the 
wel l known r e l a t i o n Cs = 3CV + Cv

3 va l i d for the lognormal d i s t r i b u t i o n ) . 
For the l i near reservo i r ( b = l ) , the re la t ionsh ip between the two input 
and output parameters and the constant a i s (Klernes, 1978). 

(a + 2) 2 C [ x ] 
CS[Y] = -2 5 c | 

s a ' + 3a + 3 Cy[x] v 

In F ig . 1 t h i s r e l a t i onsh ip is represented by the s o l i d curve drawn 
between the o r i g i n (a » 0) and the input Cv and Cs coordinates 
(a » 00). The four dashed curves represent s im i la r re la t ionsh ips for the 

143 



nonlinear reservo i r wi th b = 1/5, 1/2, 2 , and 5, respec t i ve ly , as 
obtained by Monte Carlo s imulat ion (a closed-form mathematical r e l a t i o n 
analogical to eq. 2 has so far not been developed; the attendant 
mathematical d i f f i c u l t y w i l l be explained l a t e r ) . F i g . 1 shows t h a t , fo r 
a nonl inear rese rvo i r , the re la t i onsh ip between the two output parameters 
i s qu i te complex. I t is in te res t ing to note tha t whi le the output Cv 

i s always lower than i t s input value, the output Cs can be both lower 
and higher than i t s input value depending on a and b, and can become 
negative even for a h igh ly p o s i t i v e l y skewed input (Klemes, 1970). 

THEORETICAL INPUT Cv 

1 2 3 4 5 

COEFFICIENT OF SKEWNESS, Cs 

F i g . 1 Relat ionship between coe f f i c i en t of va r i a t i on Cv and 
c o e f f i c i e n t of skewness Cs of output from nonlinear reservo i r 
def ined by Y = aSb (see eq. 1) fo r b = 1/5, 1/2, 1 , 2 and 5, 
as obtained by Monte Carlo s imulat ion for various values of a 
(shown by numbers) using the same input (random series wi th 
lognormal d i s t r i b u t i o n with mean = 1 , Cv = 1 and Cs = 4 ) . 
Sol id l i n e shows theore t ica l so lu t ion for l i near reservoir 
a f ter KlemeS (1978). 

The inves t iga t ion of e f fec ts of various simple systems on 
s tochast ic i npu ts , whi le being a necessary stage in the research program, 
cannot be regarded as more than a "warm-up". The main event can s t a r t 
only a f te r these simple systems have been uniquely i d e n t i f i e d with t h e i r 
prototypes in the bas in . This w i l l not be simple and almost c e r t a i n l y 
not possible v ia c lass ica l stochast ic analysis as w i l l be demonstrated in 
the next sec t i on . The i d e n t i f i c a t i o n w i l l require both theoret ica l 
analysis of r e d u c i b i l i t y and sepa rab i l i t y of mathematical formulations o f 
the physical mechanisms involved and empir ical v e r i f i c a t i o n of resu l t s in 
the f i e l d (experimental research bas ins ) . For example, a speci f ic r i v e r 
may be representable by a l inear channel at low f lows, at higher f lows 
i t s behaviour may be wel l approximated by a cascade of l inear r ese rvo i r s , 
whi le at extremely high flows one or two nonl inear reservoirs may provide 
the most adequate simple representat ion. 

I t is unfor tunate that the most common present approach to model 
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conceptualization is to postulate the conceptual elements rather 
arbitrarily on the basis of a high-school image of the hydrologic cycle 
and then calibrate their parameters by minimizirg the difference between 
the modelled and recorded outputs. Needless to say, such a conceptual 
model is essentially a convoluted operational model - an inflated 
interpolation formula - disguised in a physically sounding jargon. 

An indispensable component of any hydrologic model worthy of 
that name must be a submodel of the processes operating on energy inputs 
and its coupling with the hydrodynamic submodel. This aspect has so far 
been almost totally neglected despite the fact that energy inputs govern 
the long-term water balance of the basin, as well as the initial moisture 
conditions and thus basin responses to individual precipitation events. 

RESULTS OF SOME SIMPLE EXPLORATIONS OF NONLINEAR 
STOCHASTIC SYSTEMS 

The prevailing concept of stochastic hydrologic modelling has 
been its identification with the fitting of operational stochastic models 
to historic hydrologic series. This concept has been considerably 
reinforced during the past five years or so by a flood of papers on ARIMA 
modelling inspired by the undoubtedly important book by Box and Jenkins 
(1970). However, the main emphasis of this book is on short-term 
forecasting and control, i.e. on stochastic interpolation. This aspect 
has not been much emphasized in the publicity campaign in hydrologic 
literature. On the contrary, more emphasis has so far been given to 
applications of Box-Jenkins techniques to hydrologic extrapolation, (e.g. 
to the modelling of long hydrologic series and their long-term properties 
such as the Hurst effect) than to forecasting. Hydrologic forecasting, 
of course, is extrapolation in time; however, in the stochastic framework 
it is cast as an interpolation problem in the sense that the forecast 
period is treated simply as a time lag between two observations and an 
operational statistical relationship between them is established on the 
basis of correlation between the historic pairs of observations with the 
same lag. It is obvious that a forecasting model has the same 
limitations as those listed in the second section of this paper. It 
cannot correctly portray long-term properties or extreme values of the 
process being modelled if the historic series does not reflect them. Its 
application for short-term forecasting can, however, be very useful 
because the bulk of routine forecasts, i.e. paired observations, will be 
within the range of values of similar pairs on record. The danger is 
that forecasts of the occasional extreme events may be grossly 
inaccurate. On the other hand, even here there is a distinct possibility 
that the inaccuracy could be significantly reduced by a physically based 
mode 1. 

From the recent literature, one gets the impression that the 
most important thing in designing a reliable stochastic model of a 
hydrologic process is not so much the amount and quality of the available 
empirical data, (saying nothing about an understanding of the 
hydrological mechanisms involved) but simply a strict observance of 
detailed mathematical rules in the "identification, calibration and 
diagnostic checking (verification)" stages of model design. The purpose 
of this section is to demonstrate that it would be naive to expect that 
this approach must necessarily lead to stochastic RRR models with the 
correct structure and thus contribute to hydrologic knowledge. ("The 
words identification, calibration, and verification are misleading 
because of their connotation of greater understanding of and control over 
the physical processes than actually exist. Perhaps the words selection, 
parameter estimation and acceptance are more in line with the true 
capabilities of modelling" - Matalas and Maddock, 1976.) 
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It is known from theory as well as from experience that many 
processes of the hydrologic cycle are nonlinear. The well known simple 
example is the nonlinearity of the relation between the volume of water 
in storage and the corresponding rate of spontaneous discharge (eq. 1). 
This example will be used to demonstrate that stochastic properties of 
input and output as estimated from observations are a poor indicator of 
the dynamic structure of the system. The relationships between the input 
and output Cv and Cs shown in Fig. 1 will be used as a basis for the 
demonstration. 

The Problem of Inseparability of Parameter and Model Uncertainty 

In stochastic modelling it is customary to separate parameter 
uncertainty from model uncertainty for the simple reason that the 
structure of the model is usually postulated a priori which makes it 
possible to separate out parameter uncertainty and study it as a sampling 
problem of the given model. A satisfactory method for separating model 
uncertainty does not seem to be feasible because the problem of model and 
parameter uncertainty is asymmetrical: while a given model is fully 
specified by a small number of parameters, a given set of parameters can 
be used for the specification of an unlimited number of different 
models. For example, the first three statistical moments can be common 
to many three-parameter probability distribution models. Thus even if we 
knew the population values of these three moments we would not be able to 
make an exhaustive analysis of model uncertainty. 

In practice, even the theoretically feasible first part of the 
problem is out of reach of purely stochastic analysis because the latter 
cannot unambigously specify the correct model: its structure must either 
be deduced from a physical theory or else, and this is the course 
normally taken in stochastic analysis, rather arbitrarily selected from 
the repertoire of models that are currently in use. This selection, 
euphemistically called stochastic model identification, is based on a 
tortuous cross-examination of the various inherently uncertain sample 
parameters so that the uncertainty of the chosen model is directly 
proportional to the parameter uncertainty. 

Parameter Uncertainty of Nonlinear Model 

A mathematical analysis of parameter uncertainty of a nonlinear 
model given by eq. 1 is a difficult problem because it does not seem 
possible to obtain the parameters in an explicit form. For example, 
output variance involves the second, the (l/b)th and (1/b + l)st moments 
of output, and output skewness involves the following output moments: 
3rd, (l/b)th, (1/b + 2)nd, (2/b)th and (2/b + l)st. Qualitatively it is 
immediately obvious that the uncertainty will be high because of the 
order of moments involved. Thus for b = 0.5 the coefficient of output 
skewness would involve the 3rd, 4th and 5th moment of output and for 
b = 0.2 the 3rd, 5th, 7th, 10th and 11th moment. 

An indication of parameter uncertainty for the nonlinear case 
can be obtained from the linear case where the exact population 
parameters of output can be computed from specified input parameters (for 
independent input see Klemes, 1978). Table 1 shows an example of the 
rate of convergence of the sample coefficient of skewness CS[Y] of 
output from a linear reservoir Y = aS for the case shown in Fig. 1. The 
table gives the differences between the sample estimate of CS[Y] and 
its true value, expressed in percent of the true value. The dependence 
on a (a determines the output serial correlation) is quite obvious but it 
is clear that the sample values fluctuate widely and that the convergence 
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rate is slow. For the nonlinear case such a comparison cannot be made 
but one can get some idea from a comparison of fluctuations of sample 
estimates of Cs with similar fluctuations for the linear case. Such a 
comparison is shown in Fig. 2 for two reservoirs which reduce the input 
variability to approximately the same value (see Fig. 1). The result 
indicates that, for the nonlinear case, even a sample size n = 106 does 
not give a clear indication of the population value of the coefficient of 
skewness. 

Table 1 Differences between Samples Values of Skewness Coefficient of Output 
from a Linear Reservoir and Population Value (in percent of Population Value) 

Sample 

Size n 

20 
40 
60 
80 
100 
200 
400 

2 000 
4 000 
6 000 
8 000 
10 000 
20 000 
40 000 
60 000 
80 000 
100 000 

0.03 

-2200 
- 246 
- 35 

45 
121 
130 
22 

- 11 
- 8.4 
- 30 
- 49 
- 54 
- 48 
- 15 
- 16 
- 7.5 
- 4.8 

Coefficient 

0.1 

-394 
-118 
-123 
- 78 
- 99 
15 

- 3.5 
24 
10 
3.9 

- 3.9 
- 5.2 
- 8.2 

1.4 
2.0 
3.2 
2.5 

a in eq. Y 

0.3 

170 
- 22 
- 87 
- 61 
- 84 
- 14 

3.8 
24 
9.5 
7.3 
3.2 
1.9 

- 1.1 
2.7 
2.7 
2.4 
1.6 

= aS 

1.0 

170 
31 
1̂4 

- 30 
- 38 
- 5.8 

5.3 
13 
5.4 
4.4 
2.6 
1.5 
0.23 
1.7 
0.82 
0.69 
0.52 

3.0 

197 
116 
52 
65 
59 
83 
87 
5.5 
2.2 
1.8 
1.2 
0.69 
0.17 
0.72 
0.13 
0.20 
0.19 

4.5-

Z 
S 

POPULATION Cs = ? 

Y = 0.3 S 

jL 
POPULATION Cs = 191 

-i-i-i-r 

10 s SAMPLE SIZE, n io6 

Fig. 2 Convergence of sample skewness of output from a nonlinear 
reservoir Y = 10-7 S5 and from a linear reservoir Y = 0.3 S. 
(Outputs from both reservoirs have approximately equal 
coefficients of variation, 0.34 and 0.36, respectively - compare 
Fig. 1). 
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A correct identification of model structure by stochastic 
analysis is virtually impossible, especially if nonlinear elements cannot 
be ruled out. As Moran (1975) observed, 

"... entirely different physical models may lead to the same 
stochastic behaviour and even if they do not, the difference may 
be too small for discrimination in a reasonable sample... 
Suppose into some system there is an observed input X(t) 
(-•»< t < oo), and an observed output Y(t). We take Y(T) to be a 
functional, F(X(t))... of X(t) for t < T . We seek to determine 
as much as possible of the structure of F(X(t)) from an observed 
record. This is the situation in studying rainfall runoff, and 
F(X(t)) may be highly nonlinear. Identifiability is then a key 
question... it is clear that nonlinearity is an all pervading 
problem and here we are confronted, if not with a brick wall, at 
any rate with a hill of rapidly increasing slope." 

As an illustration consider the following problem. In Fig. 1, 
an output with a given pair of Cv and Cs can be obtained from the 
input shown (random lognormal series with Cv = 1 and Cs = 4) in a 
unique way by one reservoir and in a countless number of different ways 
by two or more reservoirs. For example, one linear reservoir defined by 
Y = 0.26 S yields an output, Ya say, with Cv = 0.34 and Cs = 1.85; 
an output Y[j with the same parameters can be obtained when the input is 
routed through a cascade of 2 nonlinear reservoirs, Y] = 3,5 x 10 - 7 S5, 
and Y2 = 2.43 S? 1/ 5. Nevertheless, the two outputs, Ya and Yb,

 ] 

are significantly different. This is apparent from the distribution of the 
differences Ya-YD and from their autocorrelation function (Fig. 3 ) , as 
well as from the distributions of Ya and Yb (Fig. 4 ) ; however, the 
differences all but disappear in the autocorrelation functions of Ya 
and Yb (Fig. 5 ) . It must be pointed out that autocorrelation functions 
(together with their various modifications and transformations) are the 
main tool in stochastic model identification. The reason why these tools 
are quite useless for real identification of a hydrological model is that 
they are based on linear theory. To try to identify nonlinearity of a 
system from the autocorrelation function of its output is about as 
effective as trying to determine the degree of a polynomial from a 
straight line fitted to its segment. While this is well known to 
mathematicians, stochastic hydrologists keep pushing their heads into the 
sand and devising new "efficient" identification procedures based on one 
and the same linear theory. Let us return once more to Moran (1975): 
"Nearly all work done on time series has been from the point of view of 
spectral analysis which is a linear theory and is not invariant under 
nonlinear transformations of observed values. Thus many questions remain 
unanswered". 

Diagnostic Checking 

It could be argued that the final step in the recommended 
procedure for stochastic model design - the diagnostic checking - would 
reveal the inadequacy in model structure that may have slipped through 
the identification stage. Thus in the case discussed in the preceding 
section, the diagnostic check would show that the residuals Ya-Yb are 
neither normally distributed nor independent (Fig. 3). Hence the cascade 
of two nonlinear reservoirs yielding the output Yjj could not pass for 
an adequate model for a system which in reality consists of one linear 
reservoir and yields an output Ya, or vice versa. While this is true, 
there still are Moran's "many questions (that) remain unanswered". 
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to Fig. 3 ) . 

One problem is that it is a long way from showing that one 
particular model structure is inadequate to an identification of the 
correct structure. 

Another problem is that of sample size which in practice will 
often not be large enough to render the departures from normality and 
independence statistically significant. 

The most important practical problem, however, is that a model 
may well have a correct structure even if the common diagnostic checks 
fail. The reason for this is the unknown noises in the inputs and in the 
system. Consider the following example. Rainfall X is measured by point 
measurements and rainfall input X' into the model is computed from them 
in some "standard" manner (e.g. by the Thiessen polygon method). Let us 
assume that the correct structure of basin model is one nonlinear 
reservoir specified by the relation Y = 0.02 S?. The recorded streamflow, 
YR, which we assume to be measured with a high accuracy, then 
represents the true output from this nonlinear reservoir fed with the 
true rainfall X which we do not know. In our rainfall-runoff model, we 
route the input X' through this nonlinear reservoir and obtain a model 
output Y^. To check the adequacy of our model, we subject the 
residuals AY = Y^ - YR to diagnostic checking. Let us assume that 
the true rainfall X is a random series with a lognormal distribution with 
parameters E[X] = 1, a[X] = 1 , as in our previous examples, and that our 
computed rainfall input X' contains a random noise z = z'- 0.1, where z" 
is lognormal with E[z'] = 0.1 and a[z'] = 0.1. In our model, X' = X + z 
is routed through the nonlinear reservoir to yield a noisy output Y^ 
which must be different from the recorded YR despite the fact that our 
basin model is perfect. The residuals AY have parameters E[AY] = 0, 
O [ A Y ] = 0.034 and Cs = 1.45, and their distribution and autocorrelation 
functions are shown in Fig. 6. Their properties clearly indicate that 
the model structure is wrong which, of course, is not true. By fudging 
the model to give residuals with "desirable" properties we would simply 
distort the basin model by making its parameters and structure compensate 
for the unknown noise in our rainfall input. Such a model might be 
adequate for interpolation of missing streamflow data and for runoff 
simulation for rainfall conditions generally the same as in the past, 
including the same method of rainfall measurement and rainfall input 
computation. The use of such a model, for instance, for an evaluation of 
the impact of different rainfall patterns (say due to climatic change), 
or for runoff simulation with rainfall data obtained by different 
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instruments or from a different network, or with basin rainfall computed 
in a different manner, etc., may lead to large errors, especially as far 
as extreme values are concerned. 

To summarize, the methods for stochastic diagnostic checking 
that are currently being advocated in the literature cannot be relied 
upon because they imply assumptions which are rarely satisfied in 
practice. 

CONCLUSIONS 

Stochastic modelling of RRR is in its early infancy. The models 
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in current use fall by and large into the category of operational models 
and can be considered merely as interpolation formulae of hydrologic 
variables within the period of record. Within this scope they can be 
useful for various water resource management purposes, such as short-term 
hydrologic forecasting, reconstruction of missing data, etc. Their use 
for extrapolation and for any estimates which by their nature are not 
verifiable by measurement and observation (e.g. 100-year flood, 
estimation of runoff properties for changed climatic conditions, etc.) 
may lead to large errors. Although these models have no intrinsic 
hydrologic value in the sense of their contribution to hydrologic 
knowledge, they can, in the absence of better tools, be of use in water 
management, not as recipes for truth, but as a basis for establishing 
conventions and standardization which are useful for planning and design 
even if their correctness cannot be guaranteed (if our 100-year floods 
are in fact 300-year floods it does not really matter; what matters is to 
have a reasonable convention for the computation of a reasonably rare 
flood). 

In order to be transformed into hydrologic models, stochastic 
models of RRR must be conceptualized, i.e. put on a physical basis. This 
however is also true for deterministic RRR models which, even when called 
conceptual, are in reality to a great extent only disguised operational 
models and cannot be relied on in situations for which they have not been 
"calibrated". 

The first prototype of a physically based stochastic RRR model 
is Eagleson's (1978) model for annual water balance. It shows both the 
potentials and the difficulties of this approach. The way to progress 
leads through a thorough understanding of the impacts of various physical 
(hydrodynamical, thermodynamical, etc.) systems on stochastic properties 
of their inputs, and of the consequences of the various uncertainties 
inherent in the systems for the validity of the empirical laws describing 
their behaviour. These laws (e.g. Darcy's law) are often "macroscopic", 
i.e. involve relations between averages of stochastic properties and may 

not be applicable for model formulations at deeper levels because of 
nonlinear transformations that have been involved in the formation of the 
averages to which our physical laws often relate. Hence the proper 
structure of stochastic RRR models cannot be identified by classical 
methods of stochastic time series analysis but must be derived from 
physical theory. The theory of stochastic analysis has been worked out 
chiefly for the simplest mathematical assumptions of normality and 
linearity. Whenever it is stretched beyond this framework, the results 
are uncertain and often misleading. It is a rather humorous paradox 
that, while mathematicians are seeking refuge from mathematical 
difficulties of stochastic analysis in the physical mechanisms underlying 
complex stochastic processes, physical scientists and engineers are 
looking up to simplistic stochastic analysis for an enlightenment on 
their complex physical systems. 
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