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A premise on terminology

• Spatially-distributed model: model’s equations are applied at local instead of 
catchment scale. Spatial discretization is obtained by subdividing the catchment in 
subunits (subcatchments, regular grids, etc).

• Deterministic model: model in which outcomes are precisely determined through 
known relationships among states and events, without any room for random variation. 
In such model, a given input will always produce the same output

Physically-based, spatially-distributed and deterministic are often used as 
synonyms. This is not correct.

• Physically-based model: based on the application of the laws of 
physics. In hydrology, the most used physical laws are the 
Newton’s law of the gravitation and the laws of conservation of 
mass, energy and momentum.

Sir Isaac Newton 

(1689, by Godfrey Kneller)
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A premise on terminology

Fluid mechanics obeys the laws of physics. However:

• Most flows are turbulent and thus can be described only probabilistically (note that the 
stress tensor in turbulent flows involves covariances of velocities).

• Even viscous flows are au fond described in statistical thermodynamical terms 
macroscopically lumping interactions at the molecular level.

It follows that:

• A physically-based model is not necessarily deterministic.

A hydrological model should, in addition to be physically-based, also consider chemistry, 
ecology, etc.

In view of the extreme complexity, diversity and heterogeneity of meteorological  and 
hydrological processes (rainfall, soil properties…) physically-based equations are 
typically applied at local (small spatial) scale. It follows that:

• A physically-based model often requires a spatially-distributed representation.
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A premise on terminology

In fact, some uncertainty is always present in hydrological
modeling. Such uncertainty is not related to limited 
knowledge (epistemic uncertainty) but is rather 
unavoidable.

It follows that a deterministic representation is not possible
in catchment hydrology.

The most comprehensive way of dealing with uncertainty
is statistics, through the theory of probability.

Therefore a stochastic representation is unavoidable in catchment hydrology
(sorry for that...     ).

The way forward is the stochastic physically-based model, a classical concept that needs to be 
brought in new light. 

Figure taken from http://hydrology.pnl.gov/
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Formulating a physically-based model
within a stochastic framework

Hydrological model:

in a deterministic framework, the hydrological model is usually defined as a single-

valued transformation expressed by the general relationship:

Qp = S (εεεε, I)

where Qp is the model prediction, S expresses the model structure, I is the input data 
vector and ε the parameter vector.

In the stochastic framework, the hydrological model is expressed in stochastic terms, 

namely (Koutsoyiannis, 2010):

fQp (Qp) = K f
ε, I(εεεε, I)

where f indicates the probability density function, and K is a transfer operator that 

depends on model S.
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Formulating a physically-based model
within a stochastic framework

Assuming a single-valued (i.e. deterministic) transformation  S(εεεε, I) as in previous slide, 

the operator K will be the Frobenius-Perron operator (e.g. Koutsoyiannis, 2010). 

However, K can be generalized to represent a so-called stochastic operator, which 

corresponds to one-to-many transformations  S.

A stochastic operator can be defined using a stochastic kernel k(e, ε, I) (with e
intuitively reflecting a deviation from a single-valued transformation; in our case it 

indicates the model error) having the properties

k(e, ε, I) ≥ 0     and      ∫e k(e, ε, I) de = 1
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Formulating a physically-based model
within a stochastic framework

Specifically, the operator K applying on f
ε, I (ε, I) is then defined as (Lasota and 

Mackey, 1985, p. 101):

K f
ε, I(ε, I) = ∫ε ∫I k(e, ε, I) f

ε, I (ε, I) dε dI

If the random variables εεεε and I are independent, the model can be written in the form:

fQp
(Qp) = K [f

ε
(e) fI (I)]

fQp 
(Qp) = ∫ε ∫I k(e, ε, I) f

ε
(εεεε) fI (I) dε dI
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Estimation of prediction uncertainty:

Further assumptions:

1) model error is assumed to be independent of input data error and model parameters.

2) Prediction is decomposed in two additive terms, i.e. :

Qp = S(ε, I) + e

where S represents the deterministic part and the structural error e has density fe(e).

4) Kernel independent of ε, I (depending on e only), i.e.:

k(e, ε, I) = fe(e)

Formulating a physically-based model
within a stochastic framework

fQp
(Qp) = ∫

ε
∫I fe(Qp - S(ε, I)) f

ε
(ε) fI (I) dε dI

By substituting in the equation derived in the previous slide we obtain:
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Symbols:

- Qp true (unknown) value of the hydrological variable to be predicted

- S(εεεε,I) Deterministic hydrological model 

- e Model structural error 

- εεεε Model parameter vector

- I Input data vector

From the deterministic formulation:

Qp = S(ε, I)

to the stochastic simulation:

fQp
(Qp) = ∫ε ∫I fe(Qp - S(ε, I)) fε(ε) fI(I) dε dI

Formulating a physically-based model
within a stochastic framework



AGU FALL MEETING
San Francisco, 

13-17 December 2010

UNIVERSITY OF BOLOGNA 
Alma Mater Studiorum

DATAERROR
Research Project

This presentation is available for download at the website: http://www.albertomontanari.it

Information: alberto.montanari@unibo.it

Formulating a physically-based model
within a stochastic framework

Pick up a parameter vector εεεε
from the model parameter 

space accordingly to 
probability f

εεεε
(εεεε)

Input data vector
(certain) Problems:

1)computational demands;
2)estimate f

εεεε
(εεεε) and fe (e)

An example of application: model is generic and possibly physically-based. Let us 

assume that input data uncertainty can be neglected, and that probability distributions 

of model error and parameters are known.

Repeat j
tim

es

Compute model 
output and add n

realisation of model 
error from probability 

distribution fe(e)

Obtain n • j

points lying on 
fQp (Qp) and 

infer the 
probability 
distribution

p
(x
)
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Example: linear reservoir rainfall-runoff model
at monthly time scale

Synthetic data: monthly rainfall is Gaussian and independent. Monthly river flow Q’(t) 

is generated  with a linear reservoir model with parameter g = 800.000 s. Finally, river 

flow data are corrupted to account for model structural uncertainty:

Q(t) = Q΄(t) + c(t) Q΄(t)

where c(t) is a realisation from a Gaussian white noise.

Calibration of g was performed over a sample of 1500 

observations by using DREAM (Vrugt and Robinson, 2007).

Probability density distribution of g turned out to be Gaussian with

mean value equal to 800.000. 

Probability density of g

Linear reservoir
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Estimation of the predictive distribution

We estimated model predictive distribution by using 1500 “new” rainfall data in input to 

the linear reservoir model. We sampled 200 values from the parameter distribution and 

generated 200 “deterministic predictions”.

Then, to each prediction and for each time t we added 100 outcomes from the probability 

distribution of the model  error e.

95% confidence bands and 

true values
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Research challenges

To include a physically-based model within a stochastic framework is in principle easy. 
Nevertheless, relevant research challenges need to be addressed:

• numerical integration (e.g. by Monte Carlo method) is computationally intensive and 
may result prohibitive for spatially-distributed models. There is the need to develop 
efficient simulation schemes;

• a relevant issue is the estimation of model structural uncertainty, namely, the 

estimation of the probability distribution f(e) of the model error. The literature has 
proposed a variety of different approaches, like the GLUE method (Beven and Binley, 
1992), the meta-Gaussian model (Montanari and Brath, 2004; Montanari and Grossi, 
2008), Bayesian Model Averaging. For focasting, Krzysztofowicz (2002) proposed 
the BFS method;

• estimation of parameter uncertainty is a relevant challenge as well. A possibility is the 
DREAM algorithm (Vrugt and Robinson, 2007).
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Concluding remarks

• A deterministic representation is not possible in hydrological modeling, because 
uncertainty will never be eliminated. Therefore, physically-based models need to be 
included within a stochastic framework.

• The complexity of the modeling scheme increases, but multiple integration can be 
easily approximated with numerical integration.

• The computational requirements may become very intensive for spatially-distributed 
models.

• How to efficiently assess model structural uncertainty is still a relevant research 
challenge, especially for ungauged basins.

• MANY THANKS to: Guenter Bloeschl, Siva Sivapalan, Francesco Laio

http://www.albertomontanari.it - alberto.montanari@unibo.it
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