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1. Abstract

We derive an algorithm which calculates an exact confidence
interval for a distributional parameter of location or scale family,
based on a two-sided hypothesis test on the parameter of interest,
using some pivotal quantities. We use this algorithm to calculate
approximate confidence intervals for the parameter or a function
of the parameter of one-parameter distributions. We show that
these approximate intervals are asymptotically exact. We modify
the algorithm and use it to obtain approximate confidence
intervals for a parameter or a function of parameters for multi-
parameter distributions. We compare the results of the method
with those obtained by known methods of the literature for the
normal, the gamma and the Weibull distribution and find them
satisfactory. We conclude that the proposed method can yield
approximate confidence intervals, based on Monte Carlo
simulations, in a generic way, irrespectively of the distribution
function, as well as of the type of the parameters or the function of
parameters.




2. Computation of an approximate confidence
interval

* Suppose that we seek an approximate 1 — a confidence interval for 0, of the one
parameter distribution f(x | 0). We have proved that an asymptotically exact
confidence intervalis

[9+ 0 —v(0) Ny 0 —A(0) |

) where 1(0)= F'(a/2|0) and v(0) = F'(1 - 0/2)0
(doldO)o—y” ~ (dNdOy— (6) = F'(0/2(0) and v(6) = F'(1 - 0/2/6)

and @ is the maximum likelihood estimate.

* Suppose that we seek an approximate 1 — « confidence interval for § = h(0), of the
multi-parameter distribution f(x|0). We have proved that an asymptotically exact
confidence interval is again the above interval where we substitute for (dA/d0)-; ,
(dv/df)e-7 according to the following
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* In the following we will use the maximum likelihood estimators of the parameters of
interest.

e All derivatives are calculated using stochastic simulation

e The method extends, unifies and generalizes approximate confidence intervals by B.
Ripley (Stochastic simulation, John Wiley & Sons 1987)

See details concerning our method in Koutsoyiannis D., Kozanis S. and Tyralis, H. (2011) An algorithm to construct
Monte Carlo confidence intervals for an arbitrary function of probability distribution parameters (in preparation).




3. Determination of [ and u from an inversion of a
hypothesis test

From this figure we have that (9)_ 19 gg ~(Tp d9)| 0_b g
A A A A § 6
Solving for / and u, we find [/ = 0+ 0 —o(6) and u =~ 0+ MQL g
(doldb)g - (dildO)s -
According to the following, [/,u] is an exact 1 — a confidence interval for 6.
We construct a test Hy: 0 = Ovs H 10 0F 0 with acceptance region: /68 True parameter, e\
AB) = fx: F\(0/2]9) < B(x) < F'(1 — a/2/0)} (1)

/\
where B(X) is an estimator of the parameter 6, which is a size a test because f(60) =

1 — P(F (a218) < BOX) < F'(1 — a/2(0)|0 = 9) = 1 — [F(F"'(1 — a/210)|9) — F(F\(/2/9)|6)] =
1 — (1 —a/2 — a/2) = a. From this test we obtain the following 1 — a confidence interval for 6:

C(x) = {0: F\(a/2]0) < B(x) < F'(1 — o/2|9)} )
In our case we assume that we have an observation y = (y1,...,y,,). We obtain the following 1 -
a confidence interval for -

Cy) = {0: F '(0/210) < B(y) < F (1 — a/2/0)} 3)
Now we define / and u as the solutions of the equations:
v(/) = B(y) and A(u) = B(y) 4)
From the above equation we obtain that:
F ' (a/2|u) = B(y) and F'(1 — a/2|]) = B(y) (5)
We assume that C(y) = [0,,6,] where 01,0, are the solutions of the equations
F '(a/2]6:) = B(y) and F~'(1 — 0/2/6)) = B(y) (6)

Now it is obvious that [/,u] is an approximate 1 — a confidence interval estimate for 6.




4. Confidence interval for the scale parameter of an
exponential distribution
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The 1 — o exact confidence interval is obtained by the following equations.

F(x|n,l/n)=1—a/2, F(x|n,u/n) = a/2
~x/0_k—1

where f(x|0,k) = F(k;C , x> 0 is the density of the gamma distribution, € > 0 is the scale parameter and £ > 0 is the shape parameter

The 1 — a approximate confidence interval is obtained by the following equation ),

- X X
LAV &' (1 - a2)A[m1 — &1 - a/z)/\/Z]

MCCI in the following will denote the 1 — a confidence interval obtained by our method.

. . . . . . . . /\
Here we have a simulated sample with 50 elements from an exponential distribution with ¢ = 1. For this sample ¢ = 1.002.
® Papoulis A, Pillai U (2002) Probability, Random Variables and Stochastic Processes. McGraw-Hill




5. Confidence interval for the location parameter of a
normal distribution
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The 1 — a exact confidence interval is obtained by the following equation.
_ s — s

= —t — — v+t _ —_

(6] = [ = tara(1 = o02) S+ (1 = @2) ]

The 1 — a interval obtained by Ripley’s first method designated as Ripley location.
Here we have a simulated sample with 10 elements from a normal distribution with ¢z = 0 and

o= 1. For this sample 12 = 0.026 and & = 1.023.




6. Confidence interval for the quantile u + 20 of a
normal distribution
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The 1 — o approximate confidence interval estimate is given by the following equation.
U@p&@pﬂ§+@y—¢%1—wmj%d1+én;+45+¢%1—mmj%d1+£nﬂﬂ
n n

The 1 — a Bayesian confidence interval ", if we choose a prior P(u,0) o 1/6%, is obtained by
a sampler based on the following mixture.

o’x ~ inv-y*(n—1,s%) and ulo” x ~ N(x,6°/n)
Here we have a simulated sample with 50 elements from a normal distribution with ¢ = 0 and
o= 1. For this sample,tAz = —0.027 and & = 0.998.

® Koutsoyiannis, D., (1997) Statistical Hydrology, Edition 4, National Technical University of Athens, Athens.
) Gelman A, Carlin J, Stern H, Rubin D (2004) Bayesian Data Analysis. Chapman & Hall/CRC.




7. Confidence intervals with confidence coefficient
0.99 of a normal distribution
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The 0.99 approximate confidence interval estimate is given by the following equation.
[1Ge),u(x)] = [ + zps — &' (1 — 0/2) \%\/1 T+ 225 + 25 + D1 — a2) \%7\/1 +22]
n

The 0.99 Bayesian confidence interval, if we chose a prior P(u,0) o 1/6%, is obtained by a
sampler based on the following mixture.

o’x ~ inv-y*(n—1,s%) and ulo” x ~ N(x,0°/n)
Here we have a simulated sample with 50 elements from a normal distribution with ¢ = 0 and

o= 1. For this sample,LAt — —0.027 and & = 0.998.
In the figure we calculate the confidence intervals for values of z, between —3 and 3.




8. Confidence interval for the scale parameter of a
gamma distribution
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The 1 — a approximate confidence interval is given by the following equation.

2nX 2nX *
[LX),UX)] = R A s 2, A ®
Yoiank(1 — a/2) = 2nk R,/c yvion(0/2) — 2nk R,/c

The 1 — a Bayesian confidence interval ™ if we chose a prior P(k,0) oc 1/6, is obtained by the following Gibbs sampler.

Olkx ~ IG(nk,l/_;xi)

where [/G(a,b) denotes the inverse gamma distribution with parameters a and b, with density function defined by flx|a,b) =
[I(a)b"] 'x “Vexp(~1/bx), x, a, b > 0. And

PO o« (TR0 127

. . . . . . . /\ /\
Here we have a simulated sample with 50 elements from a gamma distribution with £ =2 and 6 = 3. For this sample £ = 1.979 and § = 3.007.
© Bhaumik D, Kapur K, Gibbons R (2009) Testing Parameters of a Gamma Distribution for Small Samples. Technometrics 51(3):326-334
9 Son YS, Oh M (2006) Bayesian Estimation of the Two-Parameter Gamma Distribution. Communications in Statistics: Simulation and Computation 35(2):285-293




9. Confidence interval for the shape parameter of a
gamma distribution
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The 1 — a approximate confidence interval is given by the following inequality where we solve for £.

%? (0/2) <2R, < %R—)l (1 —a2)®

The 1 — o Bayesian confidence interval ©”, if we chose a prior P(k,0) o 1/0, is obtained by the following Gibbs sampler.
Olkx ~ IG(nk, 1/Z]x,-)

where [G(a,b) denotes the inverse gamma distribution with parameters a and b, with density function defined by Ax|a,b) =
[I(a)b"] 'x “Vexp(~1/bx), x, a, b> 0. And
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Here we have a simulated sample with 50 elements from a gamma distribution with £ =2 and 6 = 3. For this sample £ = 1.979 and 6 = 3.007.
© Bhaumik D, Kapur K, Gibbons R (2009) Testing Parameters of a Gamma Distribution for Small Samples. Technometrics 51(3):326-334
) Son YS, Oh M (2006) Bayesian Estimation of the Two-Parameter Gamma Distribution. Communications in Statistics: Simulation and Computation 35(2):285-293




10. Confidence intervals for the scale parameter of a
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Weibull distribution
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The 1 — a approximate confidence interval is given by the following equation ®),

25(b) b 25(b)

/b
cl)(zz,,(l —a/2)—2n(c; — 1) cl)(zzn(a/Z) —2n(c; — 1)) ]

[1(0),u(x)] = [(

where S(0) := Z:lx[; and ¢; ==4/1+0.607927-0.422642". We denote b the modified maximum likelihood estimate given by the minimization of

the following function

n—

b 2_ (n 'lel;lnxi)( Z:lxl;)_l + '; Inx; =0

L(b) =
and a the modified maximum likelihood estimate given by the following equation.
a=[(1/m Ex)"

N N
Here we have a simulated sample with 50 elements from a Weibull distribution with a =2 and b = 3. For this sample a = 2.022 and b = 3.097.
®) Yang Z, Xie M, Wong A (2007) A unified confidence interval for reliability-related quantities of two-parameter Weibull distribution. Journal of Statistical Computation

and Simulation 77(5):365-378




11. Implementation of the method in software
package Hydrognomon

Hydrognomon
Fle Edt View Series Hydrology Help -
= : = ° Weibul e Gamma
= y 2y [ - ) . . . . ——
4 B [BRBE-/00 3-X Sample limits 95,0000% ~ -------e- Confidence interval limits 95,0000%
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1975/12 169,40 275,60 99,20
1976/01 78,60 133,20 58,50 350
1976/02 187,00 135,20 55,60
1976/03 52,50 119,80 66,10
1976/04 52,80 81,50 42,20
197805 15,30 25,70 25,60 300
1976]06 7,20 39,20 28,70 INFILLING
1976/07 2,30 21,40 0,00
197606 14,50 10,70 0,00 250
1976/03 0,20 33,30 0,00
1976/10 75,50 132,00 73,80
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O The walue
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1977111 49,10 219,30 52,90 e flss IHELLING & [=on &
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. Monthly precipitation in Zographou campus.
User interface (November 1993-2006)
The sample is modelled by a gamma distribution.




12. Conclusions

Here we propose a generalized numerical method for the computation of
approximate confidence intervals of any distribution. The new algorithm
unifies the advantages of two Monte Carlo methods by Ripley (1987).

The most important characteristic of the method is its generic algorithm,
that does not depend on the distribution function.

Application of the algorithm in many cases and yields confidence
intervals better than Ripley’s or other approximate confidence intervals.

We propose this algorithm for a first approximation of an exact
confidence interval because it is easily applicable in every case and gives
good results.

Our method has already been applied to the software package
'Hydrognomon' (http://hydrognomon.org). 'Hydrognomon'

implements this method to estimate confidence intervals of the
parameters and quantiles of about 20 probability distributions.




