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* The probability P(A) of an event A; can be interpreted as a measure of our
uncertainty about the occurrence or nonoccurrence of A in a single
performance of the underlying experiment S (certain event).

« We are interested in assigning a measure of uncertainty to the occurrence or
nonoccurrence not of a single event of S, but of any event A; of a partition A
of S, where a partition is a collection of mutually exclusive events whose
union equals S.

« The measure of uncertainty about A will be
denoted by H(A) and will be called the entropy of
the partitioning A.
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* In his landmark paper, Shannon (1948) derived the functional H(A) from a
number of postulates based on our heuristic understanding of uncertainty.
The following is a typical set of such postulates:

= H(A) is a continuous function of p, = P(A).

= Ifp,=...=py=1/N, then H(A) is an increasing function of N.
= If a new partition B is formed by subdividing one of the sets of A, then
H(B) = H(A).

* It can be shown that the following sum satisfies these postulates and it is
unique within a constant factor:

N
H(A)=-) p,logp,
i=l1
« The above assertion can be proven, but here we propose to follow the
Papoulis (1991) approach by introducing the above formula as the definition

of entropy and developing axiomatically all its properties within the
framework of probability.

Shannon, C.E., A Mathematical Theory of Communication, Bell System Technical Journal, vol. 27, pp. 379-423, 623-656, July, October, 1948.
Papoulis, A., Probability, Random Variables and Stochastic Processes, 3rd edition, McGraw Hill, 1991. 4
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« The applications of entropy can be divided into two categories:

1. Problems involving the determination of unknown distributions:

the available information is in the form of known expected values or
other statistical functionals, and the solution is based on the principle of
maximum entropy;

determine the unknown distributions so as to maximize the entropy
H(A) of some partition A subject to the given constraints.

2. Coding theory:

in this second category, we are given H(A) (source entropy) and we
wish to construct various random variables (code lengths) so as to
minimize their expected values;

the solution involves the construction of optimum mappings (codes) of
the random variables under consideration, into the given probability
space.
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* In the heuristic interpretation of entropy the number H(A) is a measure of our
uncertainty about the events A, of the partition A prior to the performance of
the underlying experiment.

 If the experiment is performed and the results concerning A, become known,
then the uncertainty is removed.

 We can thus say that the experiment provides information about the events
A, equal to the entropy of their partition.

 Thus uncertainty equals information and both are measured by entropy.




Examples

1. Determine the entropy of the partition A = [even, odd] in the fair-die
experiment. Clearly, P{even} = P{odd} = 1/2. Hence

H(A)=-1/2logl/2—1/210g1/2 = log2

2. In the same experiment, G is the partition consisting of the elementary
events {f}. In this case, P{f} = 1/6; hence

:‘ZP{ JlogP{f,}=log6 TS

3. We consider now the coin experiment where
P{heads} = p. In this case, the entropy of G
equals

H(G)=—-plog p—(1-p)log(l- p)=r(p) memmp

0.5 +
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* An important application of entropy is the determination of the probabilities p;
of the events of a partition A subject to various constraints, with the
maximum entropy (ME) method.

« ME principle states that the unknown p.’'s must be so chosen as to maximize
the entropy of A subject to the given constraints (Jaynes, 1957).

« The ME principle is equivalent to the principle of insufficient reason
(Bernoulli, 1713): “In the absence of any prior knowledge, we must assume
that the events A; have equal probabilities”. This conclusion is based on the
subjective interpretation of probabilty as a measure of our state of
knowledge about the events A..

« Operationally, the ME method simplifies the analysis drastically when, as is
the case in most applications, the constraints are phrased in terms of
probabilities in the space S" of repeated trials (i.e., the resulting product
space from the experiment S repeated n times).

Jaynes, E. T., Information Theory and Statistical Mechanics, Physical Review, 106(4), 620-630, 1957.
Bernoulli, J., Ars Conjectandi, 1713.
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Determine the probabilities p; of the six faces of a die, having access to no
prior information. The ME principle states that the p/s must be such as to
maximize the sum

H(G)=-p,logp, —...— pslog p,
Since p, + ... + p, =1, this yields p, = ... = p; = 1/6, in agreement with the
classical definition.

A player places a bet of one euro on "odd" and he wins, on the average, 20
cents per game. We wish again to determine the p/’s using the ME method,;
however, now we must satisfy the constraints

P+ pst+ps=0.6 p,+p,+p, =04

This is a consequence of the available information because an average gain
of 20 cents means that P{odd} - P{even} = 0.2. Maximizing H(G) subject to
the above constraints, we obtain

p=p;=ps;=02 p,=p,=p,=0.133
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« The ME method is thus a valuable tool in the solution of applied problems. It
can be used, in fact, even in deterministic problems involving the estimation
of unknown parameters from insufficient data.

 We should emphasize, however, that as in the case of the classical definition
of probability, the conclusions drawn from the ME method must be accepted
with skepticism particularly when they involve elaborate constraints.

« Concerning the previous examples, we conclude that all p/s must be equal in
the absence of prior constraints, which is not in conflict with our experience
concerning dice. The second conclusion, however, is not as convincing, we
would think, even though we have no basis for any other conclusion.

« One might argue that this apparent conflict between the ME method and our
experience is due to the fact that we did not make total use of our prior
knowledge. This might be true; however, it is not always clear how such
constraints can be phrased analytically and, even if they can, how complex
the required computations might be.
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Axiomatic: P(A) is a number assigned to the event A. This number satisfies
the following three postulates but is otherwise arbitrary

= The probability of an event A is a positive number, P(A) = 0
= The probability of the certain event S equals 1, P(S) = 1
= |fthe events A and B are mutually exclusive, P(A + B) = P(A) + P(B)

Empirical: For large n, P(A) = kin, where k is the number of times A occurs

in n repetitions of the underlying experiment S.

Subjective: P(A) is a measure of our uncertainty about the occurrence of A

in a single performance of S.

Principle of insufficient reason: If A, are N events of a partition A of S and

nothing is known about their probabilities, then P(A,) = 1/N.

11



Interpretation of Entropy

Axiomatic: H(A) is a number assigned to each partition A = [A,, ..., A,] of
S. This number equals the sum =) p; In p, where p,=P(A)andi=1, ..., N

Empirical: This interpretation involves the repeated performance not of the
experiment S, but of the experiment S” of repeated trials. In this experiment,
each specific typical sequence t = {A; occurs n; = np; times in a specific
order j} is an event with probability

P(tj): plnl pZ}N ~ enpllnP1+'--+nlenpN _ e_nH(A)

Applying the relative frequency interpretation of probability to this event, we
conclude that if the experiment S” is repeated m times and the event ¢,
occurs m; times, then for sufficiently large m,

m. 1. m.
P(t ; ) =W~ 1; hence H(A)x——In—L
m n m
This relates the theoretical quantity H(A) to the experimental numbers m,

and m.

12



Interpretation of Entropy

3. Subjective: H(A) is a measure of our uncertainty about the occurrence of
the events A, of the partition A in a single performance of S.

4. Principle of maximum enrtropy: The probabilities p;, = P(A;) must be such
as to maximize H(A) subject to the given constraints. Since it can be
demonstrated that the number of typical sequences is n, = e""A), the ME
principle is equivalent to the principle of maximizing n,. If there are no
constraints, that is, if nothing is known about the probabilities p,, then the
ME principle leads to the estimates p, = 1/N, H(A) = InN, and n, = N".

13
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Conditional Entropy

The entropy H(A) of a partition A = [A] gives us a measure of uncertainty
about the occurrence of the events A; at a given trial.

If in the definition of entropy we replace the probabilities P(A;) by the
conditional probabilities P(A,|M), we obtain the conditional entropy H(A|M) of

A assuming M H(A‘M)= -y P(Az M)log P(Ai M)

From this it follows that if at a given trial we know that M occurs, then our
uncertainty about A equals H(A|M).

If we know that the complement M¢ of M occurs, then our uncertainty equals
H(A|MC).

Assuming that the binary partition M = [M, MC] is observed, the uncertainty
per trial about A is given by the weighted sum

H(A|M) = P(a)H(A[p )+ P(3 € )r(A]pr€)

15



Mutual Information

If at each trial we observe the partition B = [B], then we show that the
uncertainty per trial about A equals H(A|B)

Indeed, in a sequence of n trials, the number of times the event Bj OCCurs
equals n; = nP(B)); in this subsequence, the uncertainty about A equals
H(A|B)) per trial. Hence, the total uncertainty about A equals

;nj H(A[B, )~ ;nP(Bj)H(A‘Bj): nH(A[B)

and the uncertainty per trial equals H(A|B)

Thus the observation of B reduces the uncertainty about A from H(A) to
H(A|B). The mutual information

I(A,B)=H(A)-H(AB)
Is the reduction of the uncertainty about A resulting from the observation of
B. I(A, B) can be interpreted as the information about A contained in B.

16



Definitions

A partition whose elements are the elementary events {{} of the space S will
be denoted by G and will be called the element partition.

A refinement of a partition A is a partition B such that each element B, of B
is a subset of some element A; of A. We shall use the following notation:

The product of two
partitions A and B is
a partition whose
elements are all
intersections ANB,; of
the elements of A
and B. This new
partition is denoted
by A « B.

B<A < v]'ai:ngA,.l

17



Considerations

If B is a refinement of A, it can be shown that H(A) < H(B).
Then, for any A we have H(A) < H(G), where G is the element partition.

If B is a refinement of A and B is observed, then we know which of the
events of A occurred. Hence H(A|B) = 0.

Thus, for any A we have H(A|G) = 0.

For any A and B, we have that HA - B) =2 H(A) and H(A « B) = H(B),
because A ¢ B is a refinement of both A and B.

If the partitions A and B are independent (i.e., their events are all
independent of each other) and B is observed, then no information about A
is gained. Hence H(A|B) = H(A).

18
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6. If we observe B, our uncertainty about A cannot increase.
Hence H(A|B) < H(A).

7. To observe A * B, we must observe A and B. If only B is observed, the
information gained equals H(B). Therefore, the uncertainty about A
assuming B, equals the remaining uncertainty, H(A|B) = H(A « B) — H(B).

8. Combining 6 and 7, we conclude that H(A « B) < H(A) + H(B).

9. If B is observed, then the information that is gained about A equals I(A, B).
= |fBis arefinement of C and B is observed, then C is known.
= But knowledge of C yields information about A equal to I(A, C).
* Hence, if B is a refinement of C, then I(A, B) 2 I(A, C).
= Equivalently, we have also that H(A|B) < H(A|C).
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3. RANDOM VARIABLES AND
STOCHASTIC PROCESSES

20
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 We are given an experiment specified by the space S, the field of subsets of
S called events, and the probability assigned to these events.

« To every outcome ¢ of this experiment, we assign a number x(¢{). We have
thus created a function x with domain the set S and range a set of numbers.
This function is called random variable (RV) if it satisfies the following
conditions but is otherwise arbitrary:

* The set of experimental outcomes {x < x} is an event for every x.
= The probabilities of the events {x = «} and {x = — «} equal 0.

« The elements of the set S that are contained in the event {x < x} change as
the number x takes various values. The probability P{x < x} is, therefore, a
number that depends on x.

« This number is denoted by F(x) and is called the cumulative distribution
function (CDF) of the RV x: F(x) = P{x < x}




Random Variables
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The RV x is of continuous type if its CDF F(x) is continuous. In this case, we
have: P{x = x} = 0.

The RV x is of discrete type if its CDF F(x) is a staircase function. Denoting
by x; the discontinuity points of F(x), we have: P{x = x} = p..

The derivative f(x) of F(x) is called the probability density function (PDF) of
the RV x

d Flx

f(x)= 2F0)

dx
If the RV x is of discrete type taking the values x; with probabilities p;, then

f(x)zzi:piﬁ(x—xl.) pi:P{X:xi}

where 5(x) is the impulse function. The term p,;5(x — x;) can be shown as a
vertical arrow at x = x; with length equal to p;.

22



Entropy of RVs

Entropy is a number assigned to a partition. To define the entropy of an RV
we must, therefore, form a suitable partition.

This is simple if the RV is of discrete type. However, for continuous-type
RVs we can do so only indirectly.

Suppose that the RV x is of discrete type taking the values x; with

probabilities P{x = x;} = p;.

= The events {x = x;} are mutually exclusive and their union is the certain
event; hence they form a partition.

= This partition will be denoted by A, and will be called the partition of x.

Definition: The entropy H(x) of a discrete-type RV x is the entropy H(A,) of
its partition A,:
H(x)=H(A,)=—> p,Inp,

23
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The entropy of a continuous-type RV cannot be so defined because the
events {x = x;} do not form a partition (they are not countable).

To define H(x), we form, first, the discrete-type RV x; obtained by rounding
off X, so as to make it a staircase function: x;=ndif n6— 6 < x < ng, hence

P(x, =n6)=P(n5-5 <x<nd)=[" f(x)dx=5F(n0)

where f(n&) iIs a number between the maximum and the minimum of f(x) in
the interval (no— o, no).

Applying the definition of the entropy of a discrete-type RV to x; we obtain
H(x,)=— Y 6F(n8)n[s F(no)

Nn—=—0a0

where;:

24



Continuous type
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«  After algebraic manipulations, we conclude that

H(x,)=—Ino - i5f(n5)lnf(n5)

* As o0— 0, the RV x;— x, but its entropy H(x;) — « because: — Ind — oo.

* For this reason, we define the entropy H(x) of x not as the limit of H(x) but
as the limit of the sum: H(x;) + Ino, as 6 — 0. This yields

H(x,)+Ins————| f(x)nf(x

« Definition: The entropy of a continuous-type RV x is by definition the integral

H(x)= —fw f(x)Inf(x)dx

« Example: If x is uniform in the interval (0, a), where f(x) = 1/a, then

H(x):—ljalnldlena
a’ a

25
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The entropy H(x;) of x5 is a measure of our uncertainty about the RV x
rounded off to the nearest no. If 6is small, the resulting uncertainty is large
and it tends to o as 06— 0.

This conclusion is based on the assumption that x can be observed
perfectly; that is, its various values can be recognized as distinct no matter
how close they are.

In a physical experiment, however, this assumption is not realistic. Values of
x that differ slightly cannot always be treated as distinct (noise
considerations or round-off errors, for example).

Accounting for the term In¢ in the definition of entropy of a continuous-type
RV x is, in a sense, a recognition of this ambiguity.

26



LINI

-

Considerations

'ERSITA DEGLI STUDI

 As in the case of arbitrary partitions, the entropy of a discrete-type RV x is
positive and it is used as a measure of uncertainty about x.

 This is not so, however, for continuous-type RVs. Their entropy can take

any value from — « to «© and it is used to measure only changes in
uncertainty.

« The various properties of partitions also apply to continuous-type RVs if, as
is generally the case, they involve only differences of entropies.

27
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The entropy of a continuous-type RV x can be expressed as the expected
value of the RV y = — In f(x):

H(x)=E{~Inf(x)}= - foo f(x)Inf(x)dx

Similarly, the entropy of a discrete-type RV x can be written as the expected
value of the RV —In p(x):
H(x)=E{-Inp(x)j=-2_p,Inp,

where now p(x) is a function defined only for x = x; and such that p(x;) = p;.

If the RV x is exponentially distributed, then f(x) = Ae**U(x), where U(x) is
the Heaviside step function. Hence: e
H(x)=E{~Inf(x)j=1-InA = lnz

If the RV x is normally distributed, then
(x—p)
f(x)= L e 2 H(x)=E{-Inf(x)}= ln(c)' 27ze)

28



Joint Entropy

Suppose that x and y are two discrete-type RVs taking the values x; and y;

respectively with P{x = x,, y = y;} = p;.

Their joint entropy, denoted by H(x, y), is by definition the entropy of the
product of their respective partitions. Clearly, the elements of A, « A, are the

eenis X=Xy =) Hene - y(x,y)=H(A, A,)=-Y p,Inp,
L]

The above can be written as an expected value:

H(x.y)=E{-Inp(x.y)}
where p(x, y) is a function defined only for x = x;and y = y; and it is such that
P(X; ¥)) = Py

The joint entropy H(x, y) of two continuous-type RVs x and y is defined as
the limit of the sum: H(x, y,) + 2 Ing, as 6 — 0, where x; and y; are their
staircase approximation Thus we have:

_[ j x,y)Inf(x,y)dxdy = E{~Inf(x,y)}

29
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« Consider two discrete-type RVs x and y taking the values x; and y;
respectively with ( B )_ B
PX—xl. / _ﬂ-ji_pji/pj

« The conditional entropy H(x|y;) of x assuming y = y; is by definition the
conditional entropy of the partition A, of x assuming {y = y}. From the

above it follows that: H(X‘ v, ): _Z 7,

« The conditional entropy H(x|y) of x assuming y is the conditional entropy of
A, assuming A,. Thus

H(X‘y)z _Z P H(X‘yj): _iji In 7T i
J L]
« For continuous-type RVs the corresponding concepts are defined similarly

(x)= ] el t{ss = B nly )y =

H(Xy):—:_oooo ( ) (x‘y dy——j j X y lnf(x‘y)dxdy { lnf(x‘y)}

30
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We shall define the mutual information of the RVs x and y as follows
I(x,y)=H(x)+H(y)-H(x.y)

I(x, y) can be written as an expected value

y)=F{in g )

Since f(x, y) = f(x|y)f(y) it follows from the above that
I(x,y)=H(x)-H(xly)= H(y) - H(y}x)

The properties of entropy, developed before for arbitrary partitions, are
obviously true for the entropy of discrete-type RVs and can be established
as appropriate limits for continuous-type RVs.

31



Transformations of RVs

We shall compare the entropy of the RVs x and y = g(x).

If the RV x is of discrete type, then H(y) < H(X)
with equality if and only if the transformation y = g(x) has a unique inverse
x = g-(y).

If the transformation y = g(x) has not a unique inverse (it is not one-to-one),
then y = y, for more than one value of x. This results in a reduction of H(x).

If the RV x is of continuous type, then H(y) < H(X)+ E{ln‘g' (x)(}

where g'(x) is the derivative of g(x). The equality holds if and only if the
transformation y = g(x) has a unique inverse.

Similarly, ify; = g{x4, ..., X,), i =1, ..., n, are n functions of the RVs x, then
H(yl,...,yn)s H(xl,...,xn)+E{ln‘J(x1,...,xn)(}

32
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The statistics of most stochastic processes are determined in terms of the
joint density f(x4, ..., x,,) of the RVs x(t,), ..., x(t,).

The joint entropy of these RVs is the mth-order entropy of the process x(t)

H(xl,...,xm)zE{—lnf(xl,...,xm)}

This function equals the uncertainty about the above RVs and it equals the
information gained when they are observed.

In general, the uncertainty about the values of x(t) on the entire t axis or
even on a finite interval, no matter how small, is infinite.

However, we assume Xx(f) expressed in terms of its values on a countable
set of points, then a rate of uncertainty can be introduced. It suffices,
therefore, to consider only discrete-time processes x,..

33



ROMA
TRE Entropy of Stochastic Processes

RSITA DEGLI STUDI

A

« The mth-order entropy of a discrete-time process x, is the joint entropy
H(x,, ..., X,,) ofthe mRVs: x_, x, _, ..., X

n-m+1

 We shall assume throughout that the process x, is strict-sense stationary
(SSS). In this case, H(x,, ..., X,,) is the uncertainty about any m consecutive
values of the process x,,.

« The first-order entropy will be denoted by H(x) and equals the uncertainty
about x, for a specific n.

« Recalling the properties of entropy, we have:

H(xl,...,xm)ﬁ H(X1)+...+H(xm):mH(x)

- Example: If the process x,, is strictly white, that is, if the RVs x,, x_ ,, ... are
independent, then H(Xl, X ) - H(x)
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* The conditional entropy of order m, H(x,|X,, ..., X,,_,), Of a process X, is the
uncertainty about its present under the assumption that its m most recent
values have been observed.

« Recalling that H(x]y) < H(x), we can readily show that:
H(X Xn_l,...,xn_m)s H(Xn Xn-1>--->xn-m-1)

« Thus the above conditional entropy is a decreasing function of m. If,
therefore, it is bounded from below, it tends to a limit. This is certainly the
case if the RVs x, are of discrete type because then all entropies are
positive.

n

* The limit will be denoted by H_(x) and will be called the conditional entropy
of the process x,,: :
P § Hc(x): lim H(xn xn_l,...,xn_m)

« The function H(x) is a measure of our uncertainty about the present of x,
under the assumption that its entire past is observed.
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The ME method is used to determine various parameters of a probability
space subject to given constraints.

The resulting problem can be solved, in general, only numerically and it
involves the evaluation of the maximum of a function of several variables.

In a number of important cases, however, the solution can be found
analytically or it can be reduced to a system of algebraic equations.

We consider herein certain special cases, concentrating on constraints in
the form of expected values.

For most problems under consideration, the following inequality is used. If
f(x) and @(x) are two arbitrary densities, then it can be proven that:

~[ plx)nep(x)dx<-[" px)inf(x)dx

37



Example

In the coin experiment, the probability of heads is often viewed as an RV p
(bayesian estimation).

We shall show that if no prior information about p is available, then,
according to the ME principle, its density f(p) is uniform in the interval (0,1).

In this problem we must maximize H(p) subject to the constraint (dictated by
the meaning of p) that f(p) = 0 outside the interval (0, 1).

1
The corresponding entropy is, therefore, given by H(p) = —J:) f(p)ln f(p)dp
and our problem is to find f(p) such as to maximize the above integral.

We maintain that H(p) is maximum if f(p) = 1, hence H(p) =0

Indeed, if @(p) is any other density such that ¢(p) = 0 outside (0, 1), then

_I p)ing(p dp<—j p)nf(p)dp=0=H(p)

38
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 We shall consider now a class of problems involving constraints in the form
of expected values. Such problems are common in hydrology.

« We wish to determine the density f(x) of an RV x subject to the condition
that the expected values n, of n known functions g,(x) of x are given

E{gi(x)} = J‘_OOOO gl.(x)f(x)dx =1]; i=1,...,n

 We shall show that the ME method leads to the conclusion that f(x) must be
an exponential

f(x)= dexpl-2 g,(x)-...~ 4, 2,(x)}

 Where A; are n constants determined from the above equations E{g(x)} and
A is such as to satisfy the density condition

A explt g,(x)-...— 4, g,(x)}dx =1

39



Proof

=
LA
-

Suppose that f(x)= Aexp{- 4 g,(x)-...— 4 g (x)}

In this case:
Iw f(x)Inf(x)dx = foo f(x)[In4-4 g (x)-...— 4 g, (x)]dx

— 00

Hence: H(x)= A7, +...+An —In4

Now it suffices, therefore, to show that, if @(x) is any other density satisfying
the constraints E{g(x)}, then its entropy cannot exceed the right side of the
above equation

—I x)In p(x dx<—_[ x)Inf(x)dx

_[ (x)[4, g,(x)+...+ 2 g (x)—1In A]dx
=An +...+An —InA4
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Stochastic Processes

A DEGLI STUDI

The ME method can be used to determine the statistics of a stochastic
process subject to given constraints.

Suppose that x, is a wide-sense stationary (WSS) process with
autocorrelation R[m] = E{x,,,,,, X}

We wish to find its various densities assuming that R[m] is specified either
for some or for all values of m.

The ME principle leads to the conclusion that, in both cases, x, must be a
normal process with zero mean. This completes the statistical description of
X, if R[m] is known for all m.

If, however, we know R[m] only partially, then we must find its unspecified
values. For finite-order densities, this involves the maximization of the
corresponding entropy with respect to the unknown values of R[m] and it is
equivalent to the maximization of the correlation determinant A.
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« Entropy is a valuable tool to provide a quantitative measure of uncertainty of
stochastic modelling of natural processes.

 An important application of entropy is the determination of the statistics of a
stochastic process subject to various constraints, with the maximum entropy
(ME) method.

« We should emphasize, however, that as in the case of the classical
definition of probability, the conclusions drawn from the ME method must be
accepted with skepticism particularly when they involve elaborate
constraints.

 Extremal entropy considerations may provide an important connection with
statistical mechanics. Thus, the ME principle may provide a physical
background in the stochastic representation of natural processes.
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“Von Neumann told me, ‘You should call it entropy, for two
reasons. In the first place your uncertainty function has
been used in statistical mechanics under that name. In the
second place, and more important, no one knows what
entropy really is, so in a debate you will always have the
advantage.”

Claude Elwood Shannon




