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General characteristics of water management
problems

Hydrosystems are nonlinear with respect to their dynamics, operation
constraints and objectives

o Linear programming methods are extremely effective but are inappropriate
except for simple sub-problems within water management

Water management problems cannot be divided into sequential stages

o The overall reliability and performance cannot be assessed unless a global
view is acquired; thus, dynamic programming methods are inappropriate

Water control problems may involve many variables

o However, a parsimonious representation, in which the number of control
variables is kept at a minimum has advantages

Typical problems are highly nonconvex in terms of objective functions and
constraints, so that numerous local optima appear very often

o This renders classical (deterministic) optimization methods useless
Uncertainty is always present, albeit often missed to include in modelling

o Deterministic methods cannot deal with the uncertainty of future conditions
(inflows, demands, etc.); even stochastic extensions of these methods (e.g.
linear-quadratic-Gaussian control) necessitate drastic oversimplifications that
make the obtained results irrelevant to reality

Problems may be multiobjective (may involve several performance criteria)
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What is the Monte Carlo method?

Is it a method to generate random numbers?
Is it a method to perform random computer experiments?
Is it a method to deal with problems that involve randomness?

Is it a method to fool people when proper mathematical
methods become too difficult?

Definition (adapted from Wikipedia): The Monte Carlo method
is a class of computational algorithms that rely on repeated
random sampling to compute their results

Note: “Monte Carlo” is synonymous to “stochastic”

In other words, the Monte Carlo method is a numerical method
which, like other numerical methods, becomes useful when
analytical solutions do not exit (that is, almost always...)

While the Monte Carlo method seems to be a natural choice
when the problem studied involves randomness, it is also
powerful even for purely deterministic problems
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Stanislaw Ulam, the solitaire and the conception
of the Monte Carlo method
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and the MONTE CARLO METHOD

he Monte Carlo method is a sta-

tistical sampling technique that

over the years has been applied

successfully to a vast number of
scientific problems, Although the com-
puter codes that implement Monte Carlo
have grown ever more sophisticated, the
essence of the method is captured in some
unpublished remarks Stan made in 1983
about solitaire,

“The first thoughts and attempts |
made 10 practice [the Monte Carlo
method|] were suggested by a question
which occurred to me in 1946 as | was
convalescing from an illness and play-
ing solitaires. The question was what
are the chances that a Canfield solitaire
laid out with 52 cards will come out
successfully? After spending a lot of
time trying to estimate them by pure

combinatorial calculations, | wondered
whether a more practical method than
“abstract thinking™ might not be to

lay it out say one hundred times and
simply observe and count the number
of successful plays. This was already
possible 1o envisage with the begin-
ning of the new era of fast computers,
and | immediately thought of problems
of neutron diffusion and other gues-
tions of mathematical physics, and more
generally how to change processes de-
scribed by cerain differential equations
into an equivalent form interpretable

as a succession of random operations.
Later,..[in 1946, 1] described the idea
to John von Neumann and we began to
plan actual calculations.”

Von Neumann was intrigued. Statis-
tical sampling was already well known

by Roger Eckhardt

in mathematics, but he was taken by
the idea of doing such sampling using
the newly developed electronic comput-
ing techniques. The approach seemed es-
pecially suitable for exploring the behav-
ior of neutron chain reactions in fission
devices. In particular, neutron multiplica-
tion rates could be estimated and used to
predict the explosive behavior of the var-
ious fission weapons then being designed,

In March of 1947, he wrote to Rob-
et Richtmyer, at that time the Theoretical
Division Leader at Los Alamos (Fig. 1).
He had concluded that “the statistical ap-
proach 1s very well suited 1o a digial
treatment,” and he outlined in some de-
tail how this method could be used to
solve neutron diffusion and multiplica-
tion problems in fission devices for the
case “of ‘inent’ criticality” (that is, ap-
proximated as momentarily static config-

Stanislaw Ulam (13 April
1909 — 13 May 1984): Polish-
American mathematician;
since 1943 he worked in Los
Alamos National Laboratory
(Manhattan Project under
leadership of Robert
Oppenheimer)

Source: Eckhardt (1989)
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Nicholas Metropolis and the “birth certificate” of
the Monte Carlo method

Nicholas Metropolis (11 June
1915 — 17 October 1999): Greek-
American physicist; since April
1943 he worked in the
Manhattan Project in Los Alamos

JOURNAL OF THE AMERICAN
STATISTICAL ASSOCIATION

Number 247 SEPTEMBER 1949 Volume 44

THE MONTE CARLO METHOD

Nicroras MEeTrRoPOLIS AND S, ULam
Los Alamos Laboratory

We shall present here the motivation and a general descrip-
tion of a method dealing with a class of problems in mathe-
matical physics, The method is, essentially, a statistical
approach to the study of differential equations, or more
generally, of integro-differential equations that occur in
various branches of the natural sciences,

LREADY in the nineteenth century a sharp distinction began to ap-
pear between two different mathematical methods of treating
physical phenomena. Problems involving only a few particles were
studied in classical mechanics, through the study of systems of ordinary
differential equations. For the description of systems with very many
particles, an entirely different technique was used, namely, the method
of statistical mechanies. In this latter approach, one does not concen-
trate on the individual particles but studies the properties of sets of
particles. In pure mathematics an intensive study of the properties of
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Integration: Classical numerical method

" In the numerical integration of a function f of a scalar variable u, a definite
integral is approximated by the relationship (known as the trapezoidal rule)

u)du = Z an(%)
n=0

where m is a positive integer and w, denotes a weight, equal to 1 / 2m for
the endpoints n =0 and n =m, and equal to 1 / m for all intermediate n

" Likewise, in the numerical integration of a function of a vector variable of
size s in the space I’ := [0, 1], the relationship becomes

ff (u) du =~ Z Z Whp, ... Wy f (nl cn) %j

nl—O n—

*" The computational nodes form a rectangular grid with equidistance 1/m

= Their number is N = (m + 1)° and the computational error is O(m™) = O(N'Z/S)

" Consequently, for a specified acceptable error, N increases exponentially
with s (curse of dimensionality)
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‘ Integration: The Monte Carlo method

" |n the Monte Carlo integration, the N points for the evaluation of f(u) are
taken at random (rather than at the nodes of a grid) and the weight is 1/N, so
that (Niederreiter, 1992)

1 N
Sfiu) du =77 D fixn)
Is n=1

where x3, ..., Xy are independent random points over the space
" For an arbitrary integration space B the relationship becomes

1 N
Sfu) du =~ D flxs) Uslx,)

where Ug(x,) = 1 if x, € B while Ug(x,) = 0 if x, ¢ B; according to a classical
statistical law, the computational error is O(N'l/z)

" Observation: The error does not depend on the dimensionality s

" Conclusion: Comparing the errors of the classical and Monte Carlo methods,
we readily obtain that the latter is preferable when the dimensionality s > 4

" Remark: For large dimensionality s, e.g. > 20, the classical method is infeasible
while the Monte Carlo is always feasible
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‘ The Monte Carlo method is part of routine
numerical modelling

The screen on the €  C  © reference wolfram com/mathematicaftutorial/NintegratelntegrationStrategies htm#20795 ¥ | I, [@ X
right shows how the FODUCTS  SOLUTONS  FURGHASE  SUPPORT  CONPAY  OURSTES
Mathematica
software implements s Wolfram Mathematica

various versions of POCUMERTATION CENTER @ New to Mathematica? Find your learning path >
the Monte Carlo
method for numerical
integration

This is nhot jUSt an NIntegrate Integration Strategies

/ ﬁ Mintegrate Integration Stra

m| s

= = > >

MATHEMATICA TUTORIAL [Related Tuterials »| [More About »| [Functions

additional option Introduction
An integration strategy is an algorithm that attempts to compute integral estimates that satisfy user-

Wit h i n a re pe rtOi re Of specified precision or accuracy goals.

available OptiOnS; for | Crude Monte Carlo and Quasi Monte Carlo Strategies

The crude Monte Carlo algorithm estimates a given integral by averaging integrand wvalues over uniformly

h Ig h -d I I I le n S I O n a | distributed random points in the integral's region. The number of points iz incremented until the estimated

standard deviation iz small enough to satisfy the specified precizion or accuracy goals. A Monte Carlo

S pa Ces it iS th e O n |y algorithm is called a quasi Mente Carle algorithm if it uses equidistributed, deterministically generated

zequences of points instead of uniformly distributed random points.

pOSSi bi I ity Here is a crude Monte Carlo integration.

~[xtayt
In[2]:= NIntegrate[e (x5 ], fz, -2, 2}, {v, -2, 2}, Hethod -+ "l-icntel:arlc“]
out[3]= 3.29043

Here is a crude quasi Monte Carlo integration.

~[xtayt
In[4]:= NIntegrate[e (< ], f{x, -2, 2}, {v, -2, 2}, Method - "l:ruasiLfcnter:aﬂc"]
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‘ Typical optimization of a scalar function of a
scalar variable: deterministic approach

Attraction Attraction
basin 1 basin 2

1/(N - 1)

. Local
" 'minimum

L=1

N
>

A

!
A
—

Sought global minimum

With the chosen A > §, the global minimum
will not be found

Assumption: We have an
effective deterministic local
search algorithm (e.g.
parabolic interpolation) that,
starting from an initial point,
will determine the local
minimum located in the
corresponding attraction
basin

Strategy: We determine the
global minimum using a
multistart search, starting
from a set of N initial points
at equidistance A along the
axis

Conclusion: We will locate

the global minimum if
ALd

Hence, N_.. = 1/6
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‘ Typical optimization of a scalar function of a
scalar variable: stochastic (Monte Carlo) approach

Attractio
basin 1

A

n Attraction
basin 2

)

L=1

Y

4
/
[

Sought global minimum

Assumption: The same as in
the deterministic approach

Strategy: We try a number N
of initial points chosen at
random

Conclusion: The probability
to locate the minimum with
one trial is 1/6; the
probability to find it starting
from N initial points chosen
at random is
p,=1-(1-6)N=1—-eoN
Hence, even with a few
points, there is a possibility
(not certainty) to find the
minimum
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Optimization of a scalar function of a vector
variable

If the attraction basin at a
manifold of dimension s (=
size of vector variable) has
characteristics lengths per

dimension 6., 6,, ..., 6., with
;l

WV ) ssﬂw%;»,. ) volume a =6, 6, ... 6, then:
? . ’l ? a { H
. *ﬂ T : According to the

F}ﬁt‘l '."bw i

deterministic approach (initial
points at a grid), the global
minimum will be found only if
N .. =1/(min 6,

According to the Monte Carlo
approach, where the initial
points are chosen at random,
there is always a non-zero
probability to find the

An example: the Griewank function for n = 2 Lnlzlrlnijra,_ecg[liﬁlztcl) _ g-aN
fXy Xpy weey Xa) = (X2 + X% + ...+ X,2)/400 Note that 6, and a are not
— cos(x,/N1) cos(x,/N2) ... cos(x /\Nn) + 1 known a prilori
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‘ A comparison of the deterministic and stochastic
(Monte Carlo) approaches: a numerical example

We assume a 2D optimization problem with a hypothetical attraction basin
a=6,06,=(1/10) (1/100) = 1/1000

Deterministic approach: N_. =1/ (1/100)% = 10 000

Stochastic (Monte Carlo) approach p, =1 —(1—1/1000)N = 1 — g=V/1000

/ Note: This type of stochastic
algorithm is known as a

Deterministic multistart algorithm (local
approach .

search algorithm separate of
the global strategy)

There exist other stochastic
algorithms (evolutionary,
simulated annealing) that
do not separate the local
and global search and may
be more efficient

1

Stochastic
approach

Pe

0.1 -

0.01 1

0.001 T T T
1 10 100 1000 10000

N
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Additional reasons for adopting a stochastic
approach in water management

In water management decisions are made with reference to the
future

The future is (and most probably will always be) unknown
Methods assuming known future conditions are common but
inappropriate

Only probabilistic approaches offer a scientifically rigorous
method to cope with future uncertainty
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A ge nerda I Parameters of Parameters of

methodological modelled e aregsem
inputs, u

scheme for water randomness, « parameter space, 8

management v

1. Stochastlc model of inputs (stochastic hydrological simulation)

Mathematically, water
engineering and v
management problems / Hydrological inputs (e.g. river flow, rainfall), x := x(u, w) /
include two sub-problems:

An integration problem to

y

find the performance 2. Transformation model (hydrosystem simulation) N
measure of the v

hydrosystem, System outputs (e.g. flood, water availability), z(x(u, w), A)

J(p, A) = E[L(z(x(u, w), A))] / /
Note: expectation means r

integration 3. Estimation of the performance measure (e.g. reliability, cost)
A constrained optimization v

problem, in which we seek Sample performance measure of the system, L(z(x(u, w), A
the hydrosystem operation [Samplep ystem, L(zx(u, w), 4) /

parameters A that optimize ,
the performance J(u, A) 4. Ensemble average (or time average in steady state simulation)

For both sub-problems the v

Monte Carlo method offers _
3 feasible and consistent / Performance measure of system, J(&) := E[L(z(x(u, w), A))] /

solution Source: Koutsoyiannis and Economou, 2003
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A demonstration using a simple water
management problem: reservoir sizing




“Textbook” methodology (for kindergarten...)

The problem is stated as follows: If i, denotes the inflow to a reservoir for
timet=1, 2, ..., n, where nis a control horizon, we wish to find the smallest
reservoir storage capacity, A, that sustains a steady state release d

Sadly, the textbooks still provide an inconsistent deterministic
methodology not differing from the original Ripple (1883) ‘mass-curve’
technique; although the method is presented as intuitive and helpful for
understanding, it develops an incorrect understanding

Subsequent tabulated versions of the method, e.g. the sequent-peak
technique (Thomas and Burden, 1963) are equally misleading

Other versions of the method that use synthetic, instead of historical, time
series (Schultz, 1976) do not make any difference, as long as they do not
make consistent use of probability and the notion or reliability

= Reliability, i.e. the probability that the system will perform the required
function, was introduced by Hazen (1914)

= lronically, while Hazen was American, the Americans did not fully embrace the
notion of reliability

m It was the Soviet engineering community (Kritskiy and Menkel, 1935, 1940;
Savarenskiy, 1940; Pleshkov, 1939) which advanced Hazen’s idea

m For a history of the developments on this problem see Klemes (1987)
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‘ Linear programming solution (for elementary
school...)

There is a linear programming problem formulation (ReVelle, 1999, p. 5), i.e.:

minimize A

s.t. S;=S,_ti,—d-w,, t=1,2,..,n
st <A, t=1,2, ...,
S, 2 S,
S, W, A, d20, t=1,2,..,n

where s, and w;, is the reservoir storage and spill, respectively, at time t

While the actual control variable is only one (the reservoir size A) this
formulation uses a number 2n of additional control variables, s, and w,, as
well as a total 3n + 3 constraints (e.g. for n = 1000, we will have 2001 control
variables and 3003 constraints); the high dimensionality is not fortunate

The tacit assumption is that the future inflows i, are known

This formulation assumes full reliability (a = 100%), which is consistent with
the deterministic problem formulation; ReVelle (1999) provides another
formulation that can deal with reliability a < 100%, but the logical coherence
is questionable (why a < 100% if inflows are deterministic?)

The method can hardly incorporate nonlinear system components (e.g.
leakage or evaporation that are nonlinear functions of storage)
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Consistent solution (for adults only...)

The consistent formulation is very simple, elegant and generic:
minimize J(u A)=A
s.t. Pir,=d}2a (alternatively E[r,]/d 2 a)
where A is the reservoir capacity, p is a vector of parameters of
hydrological inflows, J is the performance measure to be minimized
(here equal to A), P{ } denotes probability, a is the acceptable
reliability and r, and s, are the reservoir release and storage,

respectively, at time t, treated as random variables and
deterministically related to inflows i, via the system dynamics, i.e.,

re=min(d, s,_,+1i), s,=min(A, max(0, s,_, +i,—d))
Here we have only one control variable and one constraint

The performance measure depends not on the inputs i, but on the
parameters thereof, u

The formulation is highly nonlinear, yet extremely easy to solve (e.g.
in a spreadsheet) by Monte Carlo simulation (the integration part
refers to the determination of P{r, = d} or E[r,])

Any nonlinear adaptation of dynamics is readily incorporated
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Typical results of the consistent method (storage-
yleld rellablllty rEIatlonShlp) Design reliability level (a, %)

90 95 98 99

Assumptions and characteristic
quantities

Inflows independent identically
and normally distributed
(seasonal variation neglected)

U : mean inflow

o : standard deviation of inflow
a : reliability

T:=1/(1-a): return period of
reservoir emptying

d: demand

A : reservoir storage capacity

Kk :=A/ o:standardized reservoir Design return period (T, years)
storage capacity

= (u— 6)/o : standardized
mean loss

Standardized resenwoir size (k)

Results (for T>2 or a > 0.5)
In(T—1) =2 (e +0.25) (k + 0.5)%8 or
In(T—1) ==In(1/aa—1) = (2/0 18) (u + 0.250 - 6) (A + 0.50 )%

For details see
Koutsoyiannis (2005)
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Extensions of results for more complex stochastic

structure of inflows

X 6
L £=02,a=9gy
(7)) 5 -
2 41
Q
o]
ﬁ 3_ 5:0_2,a=90%
S r-———————-
©
e 2
5 €=0.8, a =98y
(0))]

1 -]

0 - - ' '

0 0.2 0.4 0.6 0.8

Coefficient of skewness of inflows (Cs)

Effect of skewness (Results for independent

gamma distributed inflows)

1

—~ 10 [ 4
x .
~ 94 —— Short-term percistence /
N g (AR(D)) /
2 — Long-term percistence ¥
s 71  (FGN) A
§ 6 1 P \e =0.2
o =90%
5 5 - / /0( (0}
N
'-§ 4 . L -
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i 2
)
14 £=0.8, a=98%
O I I I I
0 0.1 0.2 0.3 0.4

0.5

Lag one autocorrelation (o)

Effect of persistence (Results for

normally distributed inflows)

system dynamics and stochastic structure of inflows

discretization of the reservoir space) and their usefulness is questionable

m For details see Koutsoyiannis (2005)

While there exist in the literature different approaches (e.g. the formulation by Moran, 1954,
based on Markov chains, as well as recent attempts) these involve radical simplifications (e.g.

While the case presented is simple, the method is fully generic and can perform with any type of

D. Koutsoyiannis, A Monte Carlo approach to water management
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Application to a hypothetical system of
two reservoirs

This full study can be found in Koutsoyiannis and
Economou (2003)



Hypothetical hydrosystem

Inflow

Two reservoirs
forming a system

that serves a joint gy

objective such as: KN

Maximization of

release for water 3

supply or " /

irrigation Discharge ¥
capacity ¢

Minimization of

cost for water !

Power plant

conveyance

Maximization of
benefit from
energy production

Reservoir 1
Storage
capacity A!

Target energy
(water use:

energy production)

Reservoir 2
Storage
capacity A2

Inflow

Spill

___ Discharge
capacity c?

y

Outflow to river
in case of energy
production

Target release

(water uses: irrigation,
water supply)

D. Koutsoyiannis, A Monte Carlo approach to water management 24



Study details

Tested approach: The general, doubly Monte-Carlo, methodological
scheme

Benchmark procedures

o A high-dimensional perfect foresight method (control variables
are the complete series of releases) combined with an
evolutionary optimization method

o An “equivalent reservoir method”, in which the reservoir system is
replaced by one hypothetical reservoir with characteristics
merging those of the different reservoirs of the system (it provides
an upper bound for the system performance for some of the
problems)

Simulation scale: monthly (water supply: 12 months per year;
irrigation: 7 months per year)

Simulation period: 16-50 years, depending on the problem examined,
so that the total number of control variables in the high dimensional
approach be 400 or less (in order for the problem to be tractable
using a typical evolutionary solver)
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Parsimonious modelling and the PSO approach

Referring to a system optimization at a control horizon of 10 years at
monthly scale, what is more meaningful result of an optimized system
operation e.g. at time step 100 (that is some 8 years from now), for a
projected demand of 270 hm3?

o High dimensional approach (the releases are the control
variables): The optimal release from reservoir 1 should be 100 hm3
and that of reservoir 2 should be 170 hm3

o Parsimonious approach: Determine the optimal releases, not now
but then, so that the quantities of water stored in each reservoir
have some balance

The latter approach necessitates the use of an operation rule that
quantifies what the balance is

It is reasonable to assume that this quantification should include some
parameters, which become the control variables to be determined by
the Monte Carlo optimization

This gives rise to the so-called Parameterization-Simulation-
Optimization (PSO) approach
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I = 300
Reservolr system 2 yaa
° ° ~— 250* """""""""""""""""""""""""
parameterlzatlon &
. . £ 200
A simple operation rule can be 5 AL =150.0 :
formulated so as to give the target 3 150ReserVOIrz """"""""""""""""""" g
storage . of reservoir jas a linear  § 100 s
function of the storage capacity of & S3
that reservoir, A/, and of the ‘g 50 ¥— Reservoir 1 'i
system, A, as well as the total © 0 :

system ;torage, 5/ '-e-:. 0 50 100 150 200 250 300 350 400 450
S.=AN—-dA+bVs
where ¢ and b/ are the parameters = 300

Total system storage (hm3)

to be determined (2 control E  y=2532
variables per reservoir) ED 250 g
The linear rule needs some £ 200 Reservoir 1
nonlinear adjustments to assure 12 1507_/_1_1_;__1_5_0_.0 ______________ Y
physical consistency (Nalbantisand g o
Koutsoyiannis, 1997) % 100 8

. . . v S
The flgurgs exemp.llfy the optimized = 50 Reservoir2 1
parametric operating rules for one :
of the examined problems (upper: + O
rule for the refill period; lower: rule 0 50 100 150 200 250 300 350 400 450
for the drawdown period) Total system storage (hm?)
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Results from a large family of tests

Maximization of reliable release for water supply or irrigation

o The PSO methodology with 5 control variables and zero foresight resulted
in practically the same performance as in the perfect foresight method
with 351 control variables

o Even with 2 control variables the PSO method with zero foresight is very
effective as the reduction in performance is only 1.68%

Minimization of cost (assuming different unit cost to convey water from
each reservoir)

0 The results of the PSO with 4 control variables and zero foresight are
almost identical to those of the perfect foresight method with 350
variables (irrigation) or 192 variables (water supply)

Maximization of benefit from energy production

o The reduction in performance of the PSO methodology is no more than
3% with respect to the high dimensional perfect foresight method

0o Careful inspection showed that the 3% improvement in the high
dimensional method is fake as it is associated with the perfect foresight
aspect (avoidance of spill by unjustified more intense energy production
in earlier months)

General conclusion: The PSO method performs practically as well as
benchmark methods and has many additional advantages
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Application to a demanding real world
system: The water resource system of
Athens

For details see: Koutsoyiannis and Economou (2003);
Koutsoyiannis et al. (2002, 2003); Efstratiadis et al. (2004)
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Typical problems to be answered

Find the maximum possible annual reliable release from the system:

o for a certain (acceptable) reliability (steady state conditions)

o for a certain combination of the system components

and determine the corresponding:

o optimal operation policy (storage allocation; conveyance
allocation; pumping operation)

o cost (in terms of energy; economy; other impacts)

Find the minimum total cost

o for a given water demand (less than the maximum possible annual
release)

o for a certain (acceptable) reliability

and determine the corresponding:

o combination of the system components to be enabled

o optimal operation policy (storage allocation; conveyance
allocation; pumping operation)

o alternative operation policies (that can satisfy the demand but
with higher cost)
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Categories of problems

Steady state problems for the current hydrosystem

0 (e.g. previous slide)

Problems involving time

0 Availability of water resources in the months to come

o Impact of a management practice to the future availability of water
resources

o Evolution of the operation policy for a temporally varying demand
Investigation of scenarios

0 Hydrosystem structure: Impacts of new components (aqueducts,
pumping stations etc.)

o Demand: Feasibility of expansion of domain

Adequacy/safety under exceptional events — Required measures
o Damages

a Special demand occasions (e.g. 2004 Olympic Games)

D. Koutsoyiannis, A Monte Carlo approach to water management 32



Control variables — Parameterization

We assume a control horizon of 10 years and monthly scale of
simulation; the network includes 60 branches
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Number of
control
variables:

According to a
conventional
approach:

1 variable/
branch/month x
60 branches x
120 months =
7200

According to
the PSO
approach:

4 reservoirs x 2
parameters/
reservoir = 8
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Simulation and optimization

Assuming that parameters a; and b, of the operation rule are
known, the target releases from each reservoir will be also
known at the beginning of each simulation time step

The actual releases depend on several attributes of the
hydrosystem (physical constraints)

Their estimation is done using simulation

Within simulation, an internal optimization procedure may be
necessary (typically linear, nonparametric)

Because parameters a; and b, are not known, but rather are to
be optimized, simulation is driven by an external optimization
procedure (nonlinear)
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Flowchart of the
PSO method

. . Problem | Control | Objective function
Implementation desiderata | | variables | | and constraints
AN ﬂ\
= Parametric
e expressions | _ . Y
£ S R Problem solving procedure / Global optimization
Z’,% operation Simulation techniques | Nonlinear optimization
= | to provide initial values ' methods
S FEIEDEE > Stochastic simulation of
hydrological processes J
Hydrosystem Simulation to evaluate Linear optimization
structure and > the objective function |[«—{ methods to solve simple
© operation data and constraints problems within simulation
(O
_g Hydrological data
[ series (historic, :
2 real time) Problem solution
7))
Synthetic data |« Problem Optimal Optimal value of
series desiderata parameters objective function
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Milestones in the development of the methodology and
the software system

Project initiation: 1999
First master plan of the hydrosystem: Koutsoyiannis et al. (2000)

Completion of a decision support tool: Nalbantis et al. (2004)

ATHENS 2004

QP
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Hydrognomon: Software for the management and
processing of hydrological data

K3 Hydrognomon
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All software tools are available online and free; itia.ntua.gr/en/software/
See also poster A121 at the Session on Open Source Computing in Hydrology (25 Apr 17:30-19:00)
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Hydronomeas: Software for hydrosystem optimization
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All software tools are available online and free; itia.ntua.gr/en/software/
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A human-modified inadequately
measured basin: hydrological model
calibration and water management

See details in: Efstratiadis et al. (2008); Nalbantis et al. (2011)



The Boeoticos Kephisos hydrosystem

Domination of groundwater flow (karst area)
High withdrawal of groundwater—but not measured

Modelling of surface water and groundwater flows cannot be
separated from each other and from a water management model

D Sub-basin
B Lake

River segment
Aqueduct
Spring

® Borehole

( Vasilika-
Parori
boreholes |

Melas
‘Mavroneri

{ springs i I

4 Pumping to :

o~ Mornos channel ~ * -

(Athens water  Pumping to |

L supply) Kopais plain

0 5km L_Sirrigatio[n)”_‘

The Boeoticos Kephisos River Sketch of the water management

basin (~¥2000 km?) and the main network in the middle part of the
hydrosystem components basin
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Hydrogeios: Software for holistic river basin simulation
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Instead of conclusions

Classical approach

Inconsistency

New approach

Input time series
are known

Water management is made
with reference to the future,
which is unknown

The parameters of a stochastic
(Monte Carlo) model of
inflows are known

Control variables
are the controlled
water fluxes per
time step

This results in inflationary
modelling which contravenes
the principle of parsimony and
is meaningless due to the
uncertain future

The parameterization
approach, in which the control
variables are the parameters
of operation rules, radically
reduces dimensionality

Simplified system
representation

Common simplifications (e.g.
discretization, avoidance of
probabilistic constraints)
annuls the optimality of the
solutions determined

Faithful system representation
and assessment of
performance via stochastic
(Monte Carlo) simulation

Use of simplified
optimization
methods, such as
linear or dynamic
programming

Water management problems
are highly nonlinear (except
some simple sub-problems);
dynamic programming is
inappropriate

Nonlinear stochastic (Monte
Carlo) optimization
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