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1. Abstract

It has now been well recognized that hydrological processes
exhibit a scaling behaviour, also known as the Hurst
phenomenon. An appropriate way to model this behaviour is to
use the Hurst-Kolmogorov stochastic process. This process is
associated with large scale fluctuations and also enhanced
uncertainty in the parameter estimation. When we have to make a
prognosis for the future evolution of the process, the total
uncertainty must be evaluated. The proper technique to this is
provided by Bayesian methods. We develop a Bayesian
framework with Monte Carlo implementation for the uncertainty
estimation of future prognoses assuming a Hurst-Kolmogorov
stochastic process with a non-informative prior distribution of
parameters. We derive the posterior distribution of the parameters
and use it to make inference for future hydroclimatic variables.




2. Examined cases — data sets
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The cases examined here are:

e Temperature, rainfall and runoff at the Boeoticos Kephisos river basin which is part of
the water supply system of Athens. Its climate is Mediterranean.

* Temperature at Berlin which has a humid continental climate.
* Temperature at Vienna which lies within a transition of oceanic climate and humid

COIltlIlel’ltal Chmate' Kephisos Boeoticos river basin
Runoff (mm) Rainfall (mm)  Temperature (°C)
Start year 1908 1908 1898
End year 2003 2003 2003
. Size, n 96 96 106
Examined data sets Berlin Vienna
Temperature (°C) Temperature (°C)

Start year 1756 1775
End year 2009 2009

Size, n 254 235




3. Definitions

We assume that {x;} 1s a stationary Gaussian stochastic process with mean u, standard
deviation ¢ and autocorrelation matrix R, with elements r; = pj—;, ij = 1,2, ...,n, where pj,
the autocorrelation function (ACF), is a function of a parameter ¢ and @ = (i, o°, @) the
parameter of the process. The distribution of the variable x, = (x; ... x,,) is given by

F0al0) = Q)" |6 Rl ™2 expl(—1/26%) (x — 1 €)" Ry (0 — 11 €)] (1)

where e, = (11 ... 1) is a vector with » elements.
For white noise (WN), the ACF is given by

po=1,p=0,k=12,..., )

For a first-order autoregressive (AR(1)) stochastic process, the ACF is given by

k
pr=01,k=0,1,..., ¢ <1 3)

For a Hurst-Kolmogorov (HK) stochastic process, the ACF is given by
pr=lk+ 112+ k=1 72— k" k=0,1,...,0<H<1 (4)




4. Posterior distributions of the parameters

We assume that the non-informative distribution of @ is
7(6) o< 1/6° (5)

The posterior distribution of the parameters does not have a closed form. It is easily
shown (see also Falconer and Fernadez, 2007" for some results and Tyralis and
Koutsoyiannis, 2012 for more detailed results) that

5 T -1 T -1 5, T -1
ulo®, ¢, x,~N[(x, R, e;)/(e, R, e,),0/(e, R, e,)] (6)
5 T -1 T -1 T -1 T -1
o’le, x, ~ Inv-gamma{(n—1)/2,[e, R, e, x, R, x,—(x, R, e,)]/(2e, R, e,)} (7)
_ T -1 T -1 T -1 o T -1 _
w(@lx,) < Ry "> [, Ry €nXn Ry Xpn— (xu Ru €)1 " V% (e R, €)™ ! (8)

We can obtain a simulated sample from this mixture (see for definition of mixture
Gamerman and Lopes, 2006,'”) simulating from z(p|x,) using a MCMC algorithm and later
from the known normal and inverse gamma distributions.

(DFalconer, K., and Fernadez, C. (2007). “Inference on fractal processes using multiresolution approximation”,
Biometrica, 94 (2), 313-334.

@Gamerman, D., and Lopes, H. (2006). “Markov Chain Monte Carlo Stochastic Simulation for Bayesian inference”,
second edition, Chapman & Hall, London.

®)See details concerning our method in Tyralis, H., and Koutsoyiannis, D. (2012). “A Bayesian statistical model for
posterior prediction of hydroclimatic variables”, (in preparation).




5. Posterior predictive distributions

We define X1 00m = (Xp+15-.--Xn+m). The posterior predictive distribution of X1+, given 6
and x,, 1S

— 2\—m/2 -1/2 _ 2 . T -1 B
f(xn+l,n+m|0>xn) - (27[0_ ) |Rm\n| eXP[( 1/20- ) (xn+1,n+m ,um]n) Rm|n (xn+1,n+m ,um\n)] (9)

where u,,, and R,,, are given by:

T -
Hjn = Uem T R ((r+1):(0tm)] [1:m] B (1] [1:0] (X — 1€1) (10)

T 1
R = Rint1):0tm)] [+ 1):004m)] — B [1:0] (0040 :0m)] B [1:0] [1:0] B 1] [(041):004m)] (11)

The posterior predictive distribution of X, 1 tmtr = Xntmt1s- - - Xntm+1), glven x, and 6 as m —
00 18S:

_ _ -1
f(xn+m+1 ,n+m+l|09xn):(2n0-2) = |Rl|n| 1/2eXp [(_ 1 /20-2)(xn+m+1 ,n+m+l_,ul|n)Rl|n(xn+m+l ,n+m+l_,ul|n)T] ( 1 2)

where Hin = Ué and R1|n = R[l:l] [1:0]-




6. Climatic variable of interest

Following the framework by Koutsoyiannis et al. (2007") we define the climatic variable of
interest to be the 30-year moving average as follows:

n t t
Xy =130 Sxt Y x)t=ntl, ... nt29 andx s =(1/30) Y xi, =n+30, n+31, ... (13)
[=t-29 [=n+1 I=t—-29

To simulate from the distribution of this variable, we first simulate from (6),(7),(8) and then
use the posterior samples (u,0,H) to simulate from (9) or (12). We examine the following
cases.

- White Noise.

- AR(1).

- Asymptotic behaviour of AR(1) (m — o0).

- HK, where we consider that A is known and equal to its maximum likelithood estimate (see
Tyralis and Koutsoyiannis, 2011%).

- HK, where we consider that A is unknown.

- Asymptotic behaviour of HK (m — o, H unknown).

# Koutsoyiannis, D., Efsratiadis, A., and Georgakakos, K.P. (2007). “Uncertainty assessment of Future Hydrovlimatic
Predictions: A Comparison of Probabilistic and Scenario-Based Approaches”, Journal of Hydrometeorology”, 8 (3),
261-281.

®)Tyralis, H., and Koutsoyiannis, D. (2011). “Simultaneous estimation of the parameters of the Hurst-Kolmogorov
stochastic process”, Stochastic Environmental Research & Risk Assessment”, 25 (1), 21-33.
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Posterior distributions for the parameters of Aliartos rainfall

Posterior distributions for the parameters of Boeoticos runoff

7. Posterior probability distributions for the AR(1)

and HK parameters for Boeoticos Keph
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8. Posterior probability distributions for the AR(1)
and HK parameters for the temperature at Berlin and
Vienna

Posterior distributions for the parameters of Berlin temperature

Density of u for the AR1 process

Density of o for the AR1 process
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Case Mean 25%  25%  50%  75% 97.5%
Berlin temperature
u 9.181 9.009 9.122  9.18 9.238 9.353
4 0.9275 0.84 0.8934 0.9245 0.9583 1.0319
2 0.3767 0.2601 0.3365 0.3766 0.4167 0.4937
u 9.2790997  8.803 9.125 9.274 9.427 9.785
o 0.935 0.8322 0.8914 0.9280 0.9703 1.0784
H 0.7459 0.6722 0.7192 0.7450 0.7717 0.8251
Vienna temperature
u 9.581 9.423  9.527 9.581 9.634 9.738
o 0.8825 0.7995 0.8505 0.88 0.9117 0.9799
3 0.309 0.1858 0.2666 0.3090 0.3514 0.4328
u 9.6400404 9.269  9.52  9.637 9.757 10.028
o 0.876 0.7863 0.8396 0.8716 0.9072 0.9918
H 0.7093 0.6374 0.6830 0.7082 0.7345 0.7876

Density of ¢, for the AR1 process
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Posterior distributions for the parameters of Vienna temperature

Density of u for the AR1 process Density of o for the AR1 process Density of ¢4 for the AR1 process
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- Medians (50% quantiles) of u are almost equal, irrespective of the
model.

- Posterior medians of i can be used as estimates of u. (Robert, 2006(®))

- Distribution and confidence regions of ¢ are wider in the case of HK.

- Medians (50% quantiles) of ¢ are almost equal, irrespective of the
model.

- Confidence regions of ¢ are wider in the case of HK, because the
distribution is skewed to the right. As a result quantiles smaller than
50% are almost equal.

- Distributions of , H, ¢, are almost symmetrical.

©Robert, C. (2007). “The Bayesian Choice: From Decision-Theoretic Foundations to Computational Implementation”,
Springer, New York.




9. Hydroclimatic prognosis for the Boeoticos
Kephisos river basin
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10. Hydroclimatic prognosis for temperature at

Berlin and Vienna

95% confidence regions for
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11. Hydroclimatic prognosis for Berlin and Vienna,
excluding historical data from last 90 years

95% confidence regions for ; ‘ ‘ ‘ ‘
the 30-year moving average =
- Here these regions were calculated £ . ___________.__;::1‘::__]___:________________:;‘_”:':‘:'.‘—;'—’_‘—“;“—_"—;—'_'—':—_”—;—'_'—':a:—'_'—'_
excluding the last 90 years from the data
sets. These years were used for T
validation. T T T 1 1
- In the case of Berlin it seems that when 1800 1850 1900 1950 2000

examining the asymptotic behavior of : ‘ . ‘ i
the HK, the model seems to behave well

- Additionally the widest confidence
regions are almost equal to that derived
from the full data set.

- In contrast, in the case of Vienna none of
the models was able to catch the
temperature increase that appeared in the ~

Temperature
9

last years. The smaller data set examined
here gives smaller confidence regions. 1800
Notice that in frame 10 the confidence
regions are wider.
- It is important to take account of the
variability of the parameters. For
example the case where H is considered
known results in narrower confidence
regions, compared to the case where H is
considered to be unknown.




12. Conclusions

Here we developed a Bayesian statistical methodology to make hydroclimatic
prognosis in terms of estimating future confidence regions on the basis of a
stationary stochastic process.

We applied this methodology to five cases, namely the runoff, the rainfall and
the temperature at Boeoticos Kephisos river basin, as well as the temperature
at Berlin and the temperature at Vienna.

We derived the posterior distributions of the parameters of the models. It
turned out that when we took into account the Hurst-Kolmogorov behaviour
of the examined process, the confidence regions of the parameters became
wider.

This resulted in a wider confidence region for the 30-year moving average,
which represents a climatic variable.

In all cases the HK model seemed to work well. WN and AR(1) did not seem
to capture the variability.

In one case, when we excluded the last 90 years of the data set of the Vienna
temperature, it seemed that due to the increase of temperature in last decades,
the model did not work well. But when we examined the full data set, the
behaviour in last 90 years did not appear extraordinary.






