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Abstract 6 

Theoretically, if the distribution of daily rainfall is known or justifiably assumed, then one could 7 

argue, based on extreme value theory, that the distribution of the annual maxima of daily rainfall 8 

would resemble one of the three limiting types: (a) type I, known as Gumbel, type II, known as 9 

Fréchet and, type III, known as reversed Weibull. Yet, the parent distribution usually is not 10 

known and often only records of annual maxima are available. Thus, the question that naturally 11 

arises is which one of the three types better describes the annual maxima of daily rainfall. The 12 

question is of great importance as the naïve adoption of a particular type may lead to serious 13 

underestimation or overestimation of the return period assigned to specific rainfall amounts. To 14 

answer this question, we analyze the annual maximum daily rainfall of 15 137 records from all 15 

over the world, with lengths varying from 40 to 163 years. We fit the Generalized Extreme Value 16 

(GEV) distribution, which comprises the three limiting types as special cases for specific values 17 

of its shape parameter, and analyze the fitting results focusing on the behavior of the shape 18 

parameter. The analysis reveals that: (a) the record length strongly affects the estimate of the 19 

GEV shape parameter and long records are needed for reliable estimates, (b) when the effect of 20 

the record length is corrected the shape parameter varies in a narrow range, (c) the geographical 21 



location of the globe may affect the value of the shape parameter, and (d) the winner of this 22 

battle is the Fréchet law. 23 
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1. Introduction 26 

“Φύσις κρύπτεσθαι φιλεῖ”— Heraclitus of Ephesus 27 

Arguably, the statistical behavior of the annual maximum daily rainfall has been the cornerstone 28 

of statistical hydrology, as it is directly related to the design of hydraulic infrastructures and to 29 

extreme floods. In hydrology, the study of rainfall or flood extremes has been an active research 30 

field and a matter of debate for more than half a century dating back to the works of E. J. 31 

Gumbel in 1940s; however, the field of extreme value theory seems to have originated more than 32 

three centuries ago in the works of Nicolaus Bernoulli [see e.g. Gumbel, 1958]. Yet, it was 33 

during the 20th century when the theory was rapidly evolved and found applications in 34 

astronomy, hydrology and engineering in general.  35 

 A detailed historical survey on the subject would be out of the scope of this study. 36 

Nevertheless, we mention here some of the milestones of this fascinating field [for a more 37 

complete historical note see e.g. Kotz and Nadarajah, 2000]. It seems that the first methodical 38 

approach was due to von Bortkiewicz [1922] regarding the range of random samples. In the 39 

sequel, Fréchet [1927] identified one of the asymptotic distributions of maxima, and, soon after, 40 

Fisher and Tippett [1928] showed that there are only three possible limiting distributions for 41 

extremes. These findings were strengthened by von Mises [1936] who identified some sufficient 42 

conditions for convergence to the three limiting laws. Yet, it was Gnedenko [1943] who set the 43 

solid foundations of the asymptotic theory of extremes providing the precise conditions for the 44 

weak convergence to the limiting laws. All these initial theoretical results were refined and 45 

generalized later in the works of Juncosa [1949], Smirnov [1949], Watson [1954], Jenkinson 46 

[1955], Barndorff-Nielsen [1963], Berman [1964], de Haan [1971], Balkema and de Haan 47 

[1972], Galambos [1972] and Pickands III [1975] to mention some of them. Numerous real-48 



world applications followed this theoretical progress not only in flood and rainfall analysis. It is 49 

worth noting in this respect Gumbel’s [1958] celebrated book who was one of the pioneers 50 

promoting and applying the formal theory into engineering practice. 51 

 Accordingly, the central question in extreme rainfall analysis is: which one of the three 52 

extreme value distributions, i.e., the Gumbel, the Fréchet or the reversed Weibull, should we 53 

choose to describe extreme rainfall? Its answer is not only of academic interest, but mainly 54 

constitutes a practical matter of eminent significance as the wrong choice may severely 55 

underestimate the design rainfall of hydraulic infrastructures leading thus to infrastructure 56 

failures and other negative consequences. Overestimation can also be a possibility, which again 57 

has negative consequences in terms of the infrastructure cost. During the last decades, 58 

accumulation of observations and advances in computers facilitated the analysis of extreme 59 

rainfall and literally thousands of studies or technical reports have been published using, or 60 

arguing for or against, a particular extreme value distribution. Yet, most of these studies are of 61 

“local” character, e.g., case studies analyzing extreme rainfall in particular areas. As an 62 

exception, the study by Koutsoyiannis [2004a,b] used records from several sites in the globe but 63 

the number of records was small (169 rainfall records worldwide each having 100-154 years of 64 

data). Here, we aim to investigate the behavior of the annual maximum daily rainfall at a global 65 

scale, using more than 15 000 rainfall records distributed across the globe, and to provide a better 66 

answer to the question we address.  67 



2. Theoretical issues of extreme analysis 68 

2.1 The three limiting laws 69 

It is well known that if a random variable (RV) X follows the distribution FX(x) then according to 70 

the classical extreme value theory the distribution function of the maximum of n independent and 71 

identically distributed (iid) RV’s, i.e., Yn = max(X1,…,Xn) is given by 72 

  ( ) ( )
n

n

Y XG Fx x  (1) 73 

Now, loosely speaking, if n   three limiting laws can emerge from Eq. (1). Actually, as 74 

 lim ( )
n

n F x  results in a degenerate distribution, the limiting laws are obtained from 75 

 lim ( )
n

n n nF a x b   for appropriate constants an > 0 and bn [Fisher and Tippett, 1928]. In 76 

addition, these limiting laws emerge not only for iid RV’s as Juncosa [1949] extended these 77 

results to the case of non-iid random variables and Leadbetter [1974] proved that the limiting 78 

distributions hold also for dependent random variables, given that there is no long range 79 

dependence of high level exceedences. 80 

 The three limiting laws are the type I or Gumbel (G), the type II or Fréchet (F) and the type 81 

III or reversed Weibull (RW) with distribution functions respectively given by 82 
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All three distributions comprise a location parameter α  and a scale parameter β  > 0, with 86 

the Fréchet and the reversed Weibull distributions having the additional shape parameter γ  > 0. 87 

Although the expressions of the Fréchet and the reversed Weibull distributions look very similar, 88 

i.e., they differ in a couple of signs, the distributions behave completely differently as the first is 89 

bounded from below while the second is bounded from above. Noteworthy, the exponential form 90 

of the Fréchet distribution does not imply an exponential right tail, i.e., the Fréchet distribution 91 

behaves like a power-type distribution as it can be easily proved that for γ > 0 the function 92 

1 − exp(−x−1/γ) is asymptotically equivalent to x−1/γ (it is reminded that two functions f(x) and g(x) 93 

are asymptotically equivalent if lim ( ) / ( ) 1x f x g x  ). Likewise, the double exponential form 94 

of the Gumbel distribution does not imply a double exponential tail, as its right tail is 95 

asymptotically equivalent with the exponential tail, i.e., exp(−x). 96 

 Now, any specific parent distribution FX(x) belongs to the domain of attraction of one the 97 

aforementioned limiting laws. To which one depends mainly on the form of its right tail. Several 98 

formal mathematical conditions determine the distribution’s domain of attraction (formed 99 

originally by von Mises [1936] and Gnedenko [1943] and extended by several other authors [for 100 

a complete account see e.g. Embrechts et al., 1997; Reiss and Thomas, 2007]). Generally 101 

speaking, distributions with right tail regularly varying in infinity or, equivalently, not having all 102 

of their moments finite, belong to the domain of attraction of the Fréchet law. These include 103 

power-type distributions like the Pareto, the Burr type XII and III, the Log-Gamma, the Cauchy 104 

and others. In contrast, in the domain of attraction of the Gumbel law belong all distributions 105 

with right tail tending to zero faster than any power-type tail, or equivalently distributions having 106 

all of their moments finite, e.g., Normal, Lognormal, Gamma, Weibull and others. Finally, in the 107 



domain of attraction of the reversed Weibull law belong distributions bounded from above [see 108 

e.g. Kotz and Nadarajah, 2000]. 109 

 The afore mentioned three limiting distribution laws can be unified into a single expression 110 

known as the Generalized Extreme Value (GEV) distribution (also known as the Fisher-Tippet) 111 

with probability distribution function given by 112 
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This parameterization was proposed by von Mises [1936], although it is commonly attributed to 114 

Jenkinson [1955]. The distribution comprises the location parameter α  the scale parameter 115 

β  > 0 and the shape parameter γ . It can be easily seen that for γ > 0 it is bounded from 116 

below, ( /x α β γ  ) while for γ < 0 it is bounded from above ( /x α β γ  ) (notice that here 117 

positive γ means a GEV bounded from below, while some texts use opposite sign convention). 118 

Essentially, the GEV distribution formula can be seen as a simple reparameterization of the 119 

Fréchet formula as the Fréchet parameters (indexed with F in Eq. (3)) are related with the GEV 120 

parameters, i.e., F /α α β γ  , F /β β γ  and F  γ γ . This simple reparameterization exploits the 121 

limiting definition of the exponential function, i.e.,   1/

0lim 1 exp( )
γ

γ γ x x


     so that the 122 

Gumbel distribution emerges for 0γ . 123 

2.2 Convergence to the limiting laws 124 

The distribution of the maximum value, given in Eq. (1), converges to one of the three liming 125 

laws (depending on the parent distribution) given that the maximum value is selected from a 126 

number of variables which tends to infinity. In real world, convergence practically holds if this 127 

number is very large. However, in daily rainfall it seems that this number is not even large as in 128 



the best case it would equal the number of the year’s days, i.e., 365 or 366 values. Actually, the 129 

number of rainy days NR that depends on the probability dry is always smaller than the number 130 

of year’s days and varies from year to year. Thus, whether or not the annual maximum can 131 

actually be modeled by one the three limiting laws should not be taken for granted [see also 132 

Koutsoyiannis, 2004a]. 133 

 To demonstrate this issue, we use results from a previous study [Papalexiou and 134 

Koutsoyiannis, 2012] where we analyzed more than ten thousand daily rainfall records and we 135 

found that the Burr type XII distribution (BrXII) and the Generalized Gamma distribution (GG), 136 

are both very good models for describing the non-zero daily rainfall. Their probability density 137 

functions are given, respectively, by 138 
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Hence, if we assume that both of these distributions can serve as parent distributions, then for a 141 

constant number of rainy days NR we could form the exact distribution of the annual maximum 142 

that would respectively be   R

BrXII BrXII( ) ( )
N

G Fx x  and   R

GG GG( ) ( )
N

G Fx x . It is noted that the 143 

BrXII distribution as a power type distribution belongs to the domain of attraction of the Fréchet 144 

law; in contrast, the GG distribution is of exponential type, having all of its moments finite and 145 

thus belonging to the domain of attraction of the Gumbel law. So, theoretically speaking the first 146 

is expected to converge to the Fréchet law and the second to the Gumbel law. 147 



 The different daily rainfall records analyzed in the aforementioned study had different 148 

statistical characteristics, yet, in order to illustrate the convergence rate based on real world 149 

evidence we proceed as follows. First we consider as representative statistics of the nonzero 150 

daily rainfall the median (closer to the mode than the mean value) of the sample estimates of the 151 

first L-moment λ1 (mean), of L-variation τ2 and of L-skewness τ3; their numerical estimates are 152 

λ1 = 9.86, τ2 = 0.58, τ3 = 0.45 (all parameters with dimensions, e.g., λ1 or scale parameters, are 153 

expressed in mm). Additionally, the median of probability dry was 76.3% corresponding 154 

approximately to NR = 87 rainy days. These statistics can be reproduced by a BrXII distribution 155 

with parameters β = 8.47, γ1 = 0.91, γ2 = 0.18, and a GG distribution with parameters β = 1.83, 156 

γ1 = 1.16, γ2 = 0.54. For these parent distributions and for NR = 87 we calculated (numerically) 157 

the parameters of the exact distribution of the annual maximum for each case. Namely, the GBrXII 158 

would have λ1 = 77.62, τ2 = 0.23, τ3 = 0.30 and the GGG would have λ1 = 73.71, τ2 = 0.20, 159 

τ3 = 0.24. Next we found the corresponding GEV and Gumbel distributions to these parameters, 160 

i.e., for the GBrXII parameters the GEV will have α = 60.71, β = 20.85, γ = 0.19, and the Gumbel 161 

will have α = 62.72, β = 25.80. Likewise, for the GGG parameters the GEV will have α = 60.48, 162 

β = 19.15, γ = 0.10, and the Gumbel will have α = 61.43, β = 21.28. 163 

 This analysis is graphically depicted in Figure 1 where the fitted distributions are formed in 164 

a Rainfall vs. Return period plot. It can be easily shown that the exact annual maximum laws, 165 

i.e., the GBrXII and the GGG are given by the relationship   R1/

| 0( ) 1 1/
N

X Xx T Q T  , where T 166 

denotes the return period in years and QX|X>0 the quantile function of the representative BrXII or 167 

GG distribution describing the nonzero daily rainfall. The graph reveals that the exact annual 168 

maximum law, assuming as a parent distribution the BrXII, quickly converges to the anticipated 169 

Fréchet law or GEV with positive γ. Noteworthy, the tail index of the representative BrXII, 170 



expressed by the shape parameter γ2, and the shape parameter γ of the GEV distribution, 171 

theoretically should be the same. In reality, while they are not exactly the same, they are very 172 

close, i.e., γ2 = 0.19 and γ = 0.18, verifying thus a satisfactory convergence. On the other hand, 173 

assuming the GG as a parent distribution, we see that not only does the exact law GGG not 174 

converge to the Gumbel law as theoretically expected, but it is better described by the Fréchet 175 

law. In this case the GEV overestimates the rainfall for large return periods, yet, it is on the safe 176 

side, whereas it is clear that the Gumbel distribution severely underestimates it. 177 

 This analysis indicates that even if the parent distribution of daily rainfall is of exponential 178 

type, belonging thus theoretically to the domain of attraction of the Gumbel law, the annual 179 

maximum is better described by the Fréchet law [see also Koutsoyiannis, 2004a]. Is this a 180 

paradox? The answer is no. The reason is that the convergence to the Gumbel law is very slow; 181 

actually, it does not converge satisfactorily even for n = 107 as our tests showed. On the contrary, 182 

the additional shape parameter of the Fréchet law or of the GEV distribution, adds the required 183 

flexibility to this distribution to “imitate” the shape characteristics annual maxima even if the 184 

parent distribution does not belong to its domain of attraction. Thus, although the Fréchet law 185 

has a power type tail, its flexibility enables it to better describe, compared to Gumbel law, other 186 

heavy-type tails like the stretched exponential or the lognormal. Noteworthy, a recent study 187 

[Papalexiou et al., 2012] where more than 15 000 daily records were analyzed focusing on the 188 

tail behavior of the parent distribution, revealed that the daily rainfall tail is better described by 189 

heavy tails. This offers a theoretical argument favoring the use of the Fréchet law in any case 190 

instead of Gumbel. 191 



3. The original dataset 192 

In this study we use more than 15 000 rainfall records distributed across the globe. The original 193 

data were daily rainfall records obtained from the Global Historical Climatology Network-Daily 194 

database (version 2.60, www.ncdc.noaa.gov/oa/climate/ghcn-daily) which includes thousands of 195 

records worldwide. We mention though, that many records of this database have a large 196 

percentage of missing values, are short in length, e.g., just a few years, or, contain suspicious 197 

values in terms of quality (for the quality flags used refer to the aforementioned website). 198 

  Thus, among the several thousands of records we studied only those satisfying the 199 

following criteria: (a) record length greater or equal than 50 years, (b) percentage of missing 200 

values per record less than 20%, and (c) percentage of values assigned with “quality flags” per 201 

record less than 0.1%. Special attention was given to values assigned with quality flags “G” 202 

(failed gap check) or “X” (failed bounds check) as these values are suspiciously large, e.g., could 203 

be orders of magnitude larger compared to the record’s second larger value. These extremely 204 

large values (probably resulting from recording or registering errors), could alter the record’s 205 

statistics, and thus we had to identify and delete them (yet, only 594 records contained such 206 

values and typically one or two values at each record had to be deleted). The resulted number of 207 

records after screening with these criteria is 15 137. The locations of those records are depicted 208 

in the map given in Figure 2. 209 

4. A method for extracting the maxima 210 

4.1 Selection procedure 211 

The original dataset comprises daily rainfall records, thus, in order to study the annual maximum 212 

daily rainfall we must form the time series of annual maxima. If the original records did not 213 

contain any missing-values then forming the annual maximum time series would be trivial. Yet, 214 



missing-values occur commonly, and specifically, in the dataset analyzed here records may 215 

contain up to 20% of missing-values. Usually, within a record only some years are incomplete, 216 

(contain missing-values); hence, the problem is how we can extract the maximum value of 217 

incomplete years. Evidently, the recorded maximum value of an incomplete year may not be the 218 

real one, as it is likely for a larger value to have occurred in days of missing data. Moreover, as 219 

the percentage of missing values gets higher the more probable it becomes that the real 220 

maximum has been recorded. Thus, years with missing values, if not treated appropriately, could 221 

result in significant errors that may affect the conclusions drawn from the data analysis. 222 

 Basically, one could think of three different methods to extract the annual maxima from a 223 

daily time series containing missing values: (a) in the first method (M1), specific criteria are used 224 

to assess the validity of the annual maxima, e.g., the annual maximum value could be considered 225 

valid only if the missing-values percentage is small, (b) in the second method (M2), only the 226 

maxima of complete years are accepted as valid while those of incomplete years are assumed 227 

unknown, and (c), in the third method (M3), the annual maxima are extracted irrespective of the 228 

years’ missing-values percentage. Clearly, the method M3 is not safe because, if the missing-229 

values percentage is high, it will result in underestimated maxima. Method M2 is safe and we 230 

could be sure that the extracted maxima are the real ones, yet it does not fully utilize the 231 

available information. For example, a record may contain many years with just a few missing 232 

values per year; according to method M2 all these years would be excluded, thus leading to an 233 

unjustifiably small sample. So, it is clear that the most reasonable choice is to set some criteria 234 

that need to be fulfilled in order to accept an extracted annual maximum as valid. 235 

 It is reasonable to assume that it is safe to extract the annual maximum of those years with 236 

small missing-values percentage. Nevertheless, two problems arise. First, the definition of 237 



“small” would be subjective, e.g., 1% or 10% could be considered small, and second and most 238 

important, maxima of incomplete years may be much greater compared to those of complete 239 

years. For example, a year with 90% of missing values may contain the record’s maximum; 240 

would it be rational to exclude this value? Of course, larger values may have occurred within an 241 

incomplete year but this would be unlikely. For these reasons we deem that the acceptance or not 242 

of a value extracted from an incomplete year, as the annual maximum, should be based on two 243 

criteria; first, on the missing-values percentage, and second, on the value’s rank, i.e., its relative 244 

position in the extracted sample of maxima after it has been sorted in ascending order (the 245 

smallest rank is given to the smallest value). 246 

 Accordingly, the annual maxima time series are formed in two steps: (a) the maximum of 247 

each year is extracted irrespective of the year’s missing-values percentage and, (b) the values of 248 

this initial series are tested according to the criteria set and those not fulfilling them are deleted 249 

from the time series, i.e., they are assumed unknown. Namely, two criteria, whose validity is 250 

justified in section 4.3, were set to justify deletion of a value whenever both hold: (a) the rank is 251 

smaller or equal than 40% × N (where N is the sample size) which means that the particular value 252 

belongs to the 40% of the lowest values, and (b) the missing-values percentage within a year is 253 

larger than or equal to 1/3 which means that in the particular year approximately the values of 254 

more than four months are missing. The method is graphically explained in Figure 3 which 255 

depicts along with the annual maxima time series the corresponding percentages and ranks of 256 

missing values. Essentially, the method’s rationale is simple; if an incomplete year has a high 257 

percentage of missing values and its maximum is small compared to the maxima of the other 258 

years, then there is a high probability for larger values to have occurred within this year and thus 259 

this value should not be accepted as the real annual maximum. 260 



4.2 Validation of the method 261 

One could argue that the criteria defined previously are subjective and different values could be 262 

set as thresholds both for the rank and percentage of the missing values. Yet, these thresholds 263 

where not selected unjustifiably, but rather emerged after extended Monte Carlo simulations. 264 

Particularly, a Monte Carlo scheme was planned and performed in order to validate the method 265 

performance and specify the appropriate criteria values. The Monte Carlo scheme could be 266 

summarized in four basic steps: (a) a subset of complete daily records is selected and the annual 267 

maxima series are created, (b) this daily-records subset is modified to contain missing values, (c) 268 

annual maxima series are extracted from the modified daily-records subset by utilizing the 269 

maxima extraction method for various criteria values, and (d) the real maxima series created in 270 

step (a) are compared with those created in step (c). In other words, the basic idea is to find, if 271 

possible, those threshold values resulting in maxima series with statistical characteristics similar 272 

to the real ones. 273 

 Obviously, to validate the method we need daily time series that are complete. Yet, only 274 

few records of the dataset are totally complete, hence, for start we selected those with very small 275 

missing-values percentage, i.e., less than 0.1%, and we deleted, if existed, the few incomplete 276 

years per record in order to be absolutely certain for the resulting annual maxima series. The 277 

result was 1 003 daily rainfall records with lengths varying from 38 to 155 years.  278 

 Now, the records of the dataset analyzed here contain missing-values up to 20%, and these 279 

values are distributed among some of the record’s years, i.e., only a percentage of the record’s 280 

years are incomplete. To identify how the percentage of incomplete years per record is 281 

distributed we studied all 15 137 records. The empirical distribution is presented in Figure 4, as 282 



well as a fitted Beta(α,β) distribution, that will be valuable in the sequel, with estimated 283 

parameters α = 1.32 and β = 2.41. 284 

 In order to construct time series with missing values distributed similar to the real ones we 285 

modified each one of the aforementioned daily records by the following procedure: (a) we 286 

generated a random number pMV less than 20% that represents the missing-values percentage of 287 

the record, (b) we set the record’s total missing-values number then as nMV = pMV×365×N, 288 

where N is the record’s length in years, (c) we distributed the nMV missing values to 289 

NMV = pY×N ≥ nMV / 365 years, where pY is the percentage of incomplete years and is randomly 290 

generated from the fitted Beta distribution depicted in Figure 4, (d) we randomly split the number 291 

nMV into NMV parts in order to define the number of missing values for each incomplete year, and 292 

(e) we selected NMV years randomly from the record and we deleted the number of values 293 

previously defined randomly from each year. 294 

 Finally, the annual maxima series extracted by the modified records were compared to the 295 

corresponding real ones based on four basic statistics, i.e., the mean as a measure of central 296 

tendency, the L-variation as a measure of dispersion, and the L-skewness and L-kurtosis as 297 

measures of shape characteristics. We applied the maxima extraction method (M1) repeatedly by 298 

altering the criteria values until the resulting series were statistically similar to the real ones; this 299 

led to the aforementioned threshold values. We also compared the maxima series extracted by 300 

methods M2 and M3 to the real ones. Figure 5 presents the box plots formed by the 1 003 301 

differences between the statistics of the real annual maxima series and the ones extracted from 302 

the daily series modified to contain missing values.  303 

 As expected, method M3 (the one in which maxima are extracted irrespective of the 304 

percentage of missing-values) is inappropriate because it significantly alters the statistical 305 



character of the extracted maxima series while method M2 does not. Interestingly, not only does 306 

method M1 preserve the statistical characteristics (the median is zero and approximately equals 307 

the mean as the box plots are almost symmetric) but performs better than method M2. The 308 

explanation is that method M1 generates time series with larger length, compared to those of 309 

method M2, as fewer values are deleted. Apparently, larger time series means more information 310 

and thus more accurate sample estimates. Finally, it is worth noting that the overall range of the 311 

differences, taking into account that sample estimates of shape characteristics are usually very 312 

uncertain, is very small. 313 

5. Analysis and results 314 

5.1 Fitting results 315 

The application of the maxima extraction method (it is noted that the annual maximum value is 316 

determined per calendar year, which is a more appropriate time basis for a study of global 317 

rainfall) produced 15 137 annual maximum daily rainfall time series with length varying from 40 318 

to 163 years. To obtain a general idea of the statistical behavior of the annual maximum daily 319 

rainfall we calculated basic summary statistics for all records of maxima. The results are given in 320 

Table 1. Noteworthy, all statistical characteristics (mean, standard deviation, skewness, L-321 

skewness, L-kurtosis) vary significantly; for example, the mean ranges, from 9.1 mm to 322 

863.7 mm and the standard deviation from 3.9 mm to 430.7 mm. In particular, the large variation 323 

of shape characteristics, indicates that any distribution with fixed shape will be inadequate for 324 

describing the annual maximum daily rainfall. Consequently, this portends the Gumbel 325 

distribution’s inability as a universal model as its shape characteristics are fixed. 326 

 We can expect that in some cases the Gumbel distribution suits better, while in other cases 327 

the Fréchet, or, even the reversed Weibull are more appropriate; in fact all three distributions 328 



have been used in the literature. Theoretically, the estimated shape parameter of a fitted GEV 329 

distribution reveals which one of the three distributions performs better, as all of them emerge 330 

for specific values of γ. Yet, the Gumbel distribution arises for 0γ , and thus, even if the 331 

sample is indeed drawn from a Gumbel distribution the estimated GEV shape parameter 332 

(irrespective of the fitting method used) will never be exactly zero. In the literature more than 333 

thirteen tests can be found for testing whether the estimated GEV shape parameter can be 334 

assumed zero [Hosking, 1984]. Nevertheless, all these tests examine whether the null hypothesis 335 

H0: γ = 0 can be rejected or not. Clearly, a sample not rejecting the null hypothesis does not 336 

imply that γ = 0, or equally, that the underlying distribution is the Gumbel. It is highly probable 337 

for a null hypothesis with small values of γ, e.g., H0: γ = −0 .01, or, H0: γ = 0.01, not to be 338 

rejected. Hence, we deem that it is not possible to conclude with certainty applying statistical 339 

tests whether the underlying distribution is Gumbel or GEV with γ close to zero. 340 

 Nevertheless, apart from the aforementioned tests, graphical tools exist that are especially 341 

useful when dealing with a large number of records, which can help to make inference about the 342 

underlying distribution. A graphical tool that has gained popularity over the last decade, 343 

introduced by Hosking [1990], is provided by the L-moments ratio diagrams. L-ratio plots have 344 

superseded classical moments ratio plots as they are superior in many aspects [see e.g., Hosking 345 

and Wallis, 1993; Hosking, 1992; Peel et al., 2001; Vogel and Fennessey, 1993]. Essentially, this 346 

tool provides a graphical comparison between observed L-ratio values and points or lines or even 347 

areas formed by the theoretical formulas of parametric distributions. Figure 6 depicts in an L-348 

kurtosis vs. L-skewness plot the 15 137 observed points as well as the theoretical point and line 349 

corresponding to the Gumbel and the GEV distributions, respectively. Interestingly, only 20% of 350 

points lie on the left of the Gumbel distribution (corresponding to a GEV distribution with γ < 0; 351 



reversed Weibull law), while 80% of points lie on the right (corresponding to a GEV distribution 352 

with γ > 0; Fréchet law). Also it is worth noting that the average point lies almost exactly on the 353 

GEV line and corresponds to γ ≈ 0.1. Figure 6 may not reveal the percentage of points that could 354 

be described by a Gumbel distribution, yet, it offers a clear indication that the Fréchet law 355 

prevails. 356 

 As mentioned before, the GEV shape parameter value indicates the type of the limiting 357 

law, a fact that emphasizes the importance to study in depth the behavior of this parameter. To 358 

this aim, we fitted the GEV distribution to all available records, and for the completeness of the 359 

analysis we also fitted the Gumbel distribution. Both distributions were fitted using the method 360 

of L-moments [see e.g., Hosking, 1990], as especially for the GEV distribution it has been shown 361 

[Hosking et al., 1985] that L-moments estimators are even better than maximum likelihood 362 

estimators in terms of bias and variance for samples up to 100 values. The fitting results are 363 

shown in Table 2 where various summary statistics of the estimated parameters are given. The 364 

table shows the large variation of the estimated GEV shape parameter, which ranges from −0.59 365 

to 0.76 with mean value 0.093; the 90% empirical confidence interval is evidently much smaller, 366 

i.e., form −0.11 to 0.28 . The empirical distribution of the GEV shape parameter is depicted on 367 

Figure 7 along with a fitted normal distribution with mean 0.093 and standard deviation 0.12. 368 

5.2 GEV shape parameter vs. record length 369 

Larger samples offer more accurate estimates because, obviously, the variance of an estimator 370 

decreases as the sample size gets larger. Unambiguously thus, the estimate of the GEV shape 371 

parameter is expected to be more accurate if based for example on a 100-year record rather than 372 

on a ten-year record. In this respect, we study the estimated GEV shape parameter in relationship 373 

with the record length as our records vary in length from 40 to 163 years. First, we grouped the 374 



15 137 estimated shape parameter values into nine groups based on the length of the record that 375 

were estimated; and second, we estimated various statistics for each group. The summary 376 

statistics of each group are given in Table 3, while the mean value and the percentage of records 377 

with positive shape parameter in each group are depicted in Figure 8. Clearly, Figure 8 indicates 378 

an upward “trend” in the mean shape parameter value over record length, e.g., for the 40-50 379 

years group the mean value of γ is 0.077 while for the last group (with ≥ 121 years) it is 380 

markedly larger, i.e., 0.116. Additionally, as the values of Table 3 attest, the standard deviation, 381 

as expected, decreases over the record length, e.g., for the 40-50 years group it is 0.141 while for 382 

the one with ≥ 121 years it is 0.088. Obviously the smaller the standard deviation the smaller the 383 

parameter range, yet we note the drastic decrease, e.g., in the 90% empirical confidence interval 384 

(ECI) of γ, which for the 40-50 years group is [−0.152, 0.312] while for the one with ≥ 121 years 385 

it is [−0.029, 0.263]. Another key issue to emphasize is the upward “trend” of the percentage of 386 

positive γ over record length. This percentage is large (71.8%) even in the 40-50 years and for 387 

the group with ≥ 121 years it gets as high as 91.0%, providing a clear indication that the Fréchet 388 

law prevails. 389 

 The previous analysis gave a clear indication that a relationship between the estimated 390 

GEV shape parameter and the record length exists, yet, this relationship is not exactly revealed 391 

as the variation in the mean value, as shown in Figure 8, does not suggest a precise law. 392 

Nevertheless, if such a law exists, we should conclude that the previous grouping technique fails 393 

to reveal its exact form because the record length is not uniformly distributed within the groups 394 

(e.g., the 51-60 years group contains 3610 records but this does not imply that there are 361 395 

records of 51 years, 361 records of 52 years, etc.). Thus, in order to create records with exactly 396 

the same length, we modified the existing ones by partitioning or cutting off a number of values. 397 



Specifically, we selected records with length greater or equal than 80 years (5 049 records; it 398 

would be extremely laborious to use all records), and we partitioned each one into lengths 399 

ranging from ten to 115 years increased by a step of five years. The 115-year “upper limit” 400 

emerged by demanding at least 1000 records at each record length, a number we deem is large 401 

enough to offer a robust analysis (there are 1046 records with length ≥ 115 years and only 540 402 

with length ≥ 120 years). For instance, applying this technique, a 112-year record is partitioned 403 

into eleven 10-year records or yields only one 90-year record and obviously none 115-year 404 

record. In total the 5 049 selected records generated, for example, 49 270 ten-year records and 405 

1046 115-year records. For all these records at each record length we estimated the GEV shape 406 

parameter using the L-moments method. 407 

 Figure 9a depicts the observed mean and the 95% confidence interval (CI) values of the 408 

GEV shape parameter for the various record lengths as well as the corresponding fitted 409 

theoretical functions. The fitted curves have the form g(L) = a + b L–c, with c > 0, L denoting the 410 

record length and a, b, c parameters estimated here with a least square error fitting. This formula 411 

was figured out so as to have two desiderata: The first stems from the fact that the observed 412 

values indicate clearly that the mean and the CI values do not increase or decrease linearly over 413 

the record length. Rather, it is reasonable to assume that they tend asymptotically to a fixed 414 

value. Clearly, as L → ∞ the function g(x) → a with a thus expressing the limiting value. The 415 

second desideratum is this function to be simple and flexible. Indeed, for b < 0 it is concave and 416 

for b > 0 it is convex, thus being suitable to describe both upward and downward “trends” that 417 

converge to a liming value. The estimated parameters for the fitted curves are as follows: (a) for 418 

the lower CI curve, a = 0.021, b = −3.90, c = 0.80, (b) for the mean value curve, a = 0.114, b = 419 

−0.69, c = 0.98, and (c) for the upper CI curve, a = 0.195, b = 1.29, c = 0.55. Undoubtedly, 420 



Figure 9a indicates a perfect match of the fitted functions to the observed values, unveiling thus 421 

the underlying laws. Noteworthy, the 95% limiting CI is very narrow (0.021, 0.195) with the 422 

lower bound positive, while the mean value of γ converges to μγ ≃ 0.114. 423 

 In order to identify the true underlying distribution of the GEV shape parameter (assuming 424 

it is well approximated by a normal distribution), apart from the limiting mean value estimated 425 

before, we need to estimate the limiting value of the standard deviation. Figure 9b depicts the 426 

estimated standard deviation values versus record length and a fitted curve of the same form used 427 

for the mean. The estimated parameters of the fitted curve are a = 0.045, b = 1.27 and c = 0.70, 428 

indicating thus that the true standard deviation of γ is σγ ≃ 0.045, a value significantly smaller 429 

than the smallest observed. Interestingly, assuming that the shape parameter follows the 430 

estimated normal distribution, i.e., γ ~ N(μγ, 2
γσ ), the 95% CI of γ would be (0.03, 0.21) which is 431 

very close to the limiting CI estimated and depicted in Figure 9a. Furthermore the 99% CI 432 

(rounded at the second decimal digit) is estimated at (0, 0.23), and apparently the probability for 433 

a negative shape parameter to occur is only 0.005. 434 

 Additionally, Figure 9c depicts the percentage of records with negative γ over record 435 

length. Evidently, the observed points suggest a quickly non-linear decreasing “trend”. The fitted 436 

curve has the same simple form as above but with c < 0. With estimated parameters a = 221.3, 437 

b = −154.1, c = −0.067 it crosses the horizontal axis at L = (−a/b)−1/c ≈ 226 years, implying that 438 

for record length greater than 226 years the percentage of records with negative γ would be zero. 439 

Indeed, none of the 16 records available with length greater than 140 years resulted in negative γ. 440 

This indicates a deviation from the fitted curve; yet, the number of stations for this record length 441 

is very small to take it into account but this is additional evidence that the Fréchet law prevails. 442 



 Finally, based on the previous findings, it is possible to create an “unbiased” or record-443 

length-free estimator for the GEV shape parameter that incorporates its relation with the record 444 

length. Given that the true distribution of γ is the N(μγ, 2
γσ ) while for specific record length n is 445 

the N(μγ(n), 2 ( )γσ n ), with μγ(n) ൌ μγ – 0.69 n−0.98 and σγ(n) ൌ σγ + 1.27 n−0.70 being the functions 446 

fitted previously for the mean and the standard deviation, it can be easily proved that an 447 

“unbiased” estimator ( )γ n  is the 448 

  ˆ( ) ( )
( )
γ

γ γ
γ

σ
γ n γ μ n μ

σ n
    (8) 449 

where n is sample size (number of years), γ̂  is the L-moments estimate of γ, whereas μγ ≃ 0.114 450 

and σγ ≃ 0.045 are the limiting mean and standard deviation values estimated previously. 451 

5.3 Monte Carlo validation of the results 452 

In order to validate our results regarding the underlying distribution of the GEV shape parameter 453 

we performed a Monte Carlo simulation. Specifically, we generated 15 137 random samples, 454 

with sizes precisely equal with the original records lengths, from a GEV distribution with the 455 

shape parameter being randomly generated from the anticipated normal distribution, i.e., the 456 

N(μγ, 2
γσ ), and with the location and scale parameter fixed to their mean values given in Table 2 457 

as they do not affect the shape parameter estimates. In sequel, we estimated the shape parameter 458 

values of those samples and we formed the empirical distribution shown in Figure 10. We can 459 

see that while the prior distribution of γ was the N(μγ, 2
γσ ) the estimated posterior is almost 460 

identical with the empirical distribution emerged from the real records given in Figure 7. The 461 

comparison of the two distributions reveals a very close match, i.e., the empirical distribution 462 

emerged from the real records has mean and the standard deviation, respectively, equal to 0.092 463 



and 0.12 while the corresponding values for the empirical distribution emerged from the 464 

synthetic records are, respectively, 0.104 and 0.11.  465 

 This minor deviation is probably justified by the fact that the L-skewness and the L-466 

kurtosis of the empirical distribution of γ, which are −0.017 and 0.158, respectively, deviate 467 

slightly from the theoretical values of a normal distribution which are 0 and 0.123. The small 468 

negative skewness may have caused the slight decrease in the mean value while the higher L-469 

kurtosis implies more extremes γ values, both negative and positive, and this obviously leads to 470 

higher variance. The fact is that both the empirical evidence and the Monte Carlo simulation 471 

suggest that the distribution of the GEV shape parameter is very well approximated by the 472 

normal distribution N(μγ, 2
γσ ). Even if the shape characteristics between the empirical and the 473 

Monte Carlo distributions do not match exactly (mainly the L-kurtosis) this is something 474 

anticipated; when a set of 15 137 real-world records is analyzed we should expect that some 475 

records may either contain incorrectly recorded values or some extraordinary events occurred, 476 

leading thus to unrealistically small or large shape parameter estimates. For example a couple or 477 

even one “extremely” extreme event in a relatively small sample, e.g., 40-60 years may alter 478 

significantly the value of L-skewness and consequently the estimate of the shape parameter γ 479 

resulting thus in a distribution that may not describe realistically the behavior of the rainfall in 480 

general. “Errors” of this kind are unavoidable as it is possible for a small sample to contain, e.g., 481 

the 1000-year event. 482 

 The previous analysis also indicated that the true mean value of the underlying distribution 483 

of the GEV shape parameter is μγ = 0.114, markedly larger than zero, i.e. the value specifying the 484 

Gumbel distribution. This consequently leads us to assume that the Gumbel distribution is not a 485 

good model in general for annual maximum daily rainfall. Nevertheless, it does not reveal how 486 



bad or good the Gumbel model is if compared to the GEV model or more specifically to the 487 

Fréchet law. Obviously the GEV and the Gumbel distributions cannot be compared directly in 488 

the sense that the first one is a three-parameter model while the second one is a two-parameter 489 

model and a special case of the first one. For this reason we compare here the Gumbel 490 

distribution with a representative fixed-shape-parameter GEV distribution, i.e., a GEV with 491 

shape parameter equal to μγ = 0.114. 492 

 Specifically, we generated 15 137 random samples, with sizes equal to those of the original 493 

records using: (a) a Gumbel distribution, and (b) a GEV distribution with γ = 0.114 (the location 494 

and scale parameters were fixed in both distributions as their values do not affect the shape 495 

characteristics). Next, we estimated the Monte Carlo (MC) L-kurtosis vs. L-skewness points and 496 

depicted them in comparison with the observed ones already presented in Figure 6. The idea is to 497 

compare the extent of the area formed by the MC points with the area formed by the points of the 498 

real records. 499 

 The results of this Monte Carlo simulation are presented in Figure 11. For the Gumbel case 500 

(upper graph) we note that indeed there is a spread around the theoretical Gumbel point, yet, the 501 

area covered by the MC points is significantly smaller than the one formed by the observed 502 

points and the cloud of points are placed toward the left. Clearly, the Gumbel distribution fails to 503 

generate points with high values of L-skewness. In the GEV case with fixed γ (lower graph) we 504 

observe not only the expected shift of the cloud of the MC points toward the right, but also the 505 

expansion of this cloud, so that the area formed is much larger compared to that of the Gumbel 506 

case. In addition, the MC area better fits the one formed by the empirical points. This reveals that 507 

the GEV distribution with fixed γ performs in general much better compared with the Gumbel 508 

distribution. 509 



5.4 Geographical variation of the GEV shape parameter 510 

The previous analysis reveals that the GEV shape parameter estimates depend on the record 511 

length and that essentially the parameter varies in the interval (0, 0.23). Thus, the question that 512 

naturally arises is how the parameter varies over geographical location, as it is reasonable to 513 

expect that different areas of the world exhibit different behavior not only in the mean annual 514 

rainfall but also the in the shape of distribution of the annual extremes. Yet, we should bear in 515 

mind that even if the behavior of extreme rainfall is the same in a big area, in practice the 516 

estimated GEV shape parameters in different locations within the area will differ due to sampling 517 

effects. As a consequence, the different estimates may lead to false conclusions. 518 

 Thus, in order to reduce the sampling effect and to investigate the geographical distribution 519 

of the GEV shape parameter seeking to reveal any kind of geographical pattern, we divided the 520 

earth’s surface into cells and studied the mean value of the GEV shape parameter within the cell; 521 

obviously the mean value offers a simple and rational smoothing. Each cell is defined by a 522 

latitude difference of Δφ = 2.5° and longitude difference of Δλ = 5°; as latitude φ ranges from 523 

−90° to 90° and longitude λ from −180° to 180°, a total of 5 184 cells emerged. The mean value 524 

of the GEV shape parameter of each cell is simply estimated as the average of those shape 525 

parameter estimates that correspond to stations lying within the cell, given that the cell contains 526 

at least two records, Clearly, the number of stations within each cell is not constant, and most of 527 

the cells (notably those in the oceans) do not contain any stations while there are 258 cells 528 

containing only one record. Specifically, from the 5184 cells formed, only 792 cells had 529 

available records and only 534 had at least two records, while there are 46 cells with more than 530 

100 records each. The results using the typical (record-length dependent) estimates of the GEV 531 

shape parameter are depicted in the world map given in Figure 12 where the cell’s mean value is 532 



expressed by coloring the cell according to the map’s legend. It is noted that the values defining 533 

the bins in the map’s legend are defined by the minimum value, the Q10, Q25, Q50, Q75, and Q90 534 

empirical quantile (or percentile) points and the maximum value of the 534 mean shape 535 

parameter values after rounding off to the second decimal, e.g., the central 50% of values or the 536 

interquartile range is approximately form 0.06 to 0.14. The numbers of cells with mean values at 537 

each successive bin (from low to high values) are: 57, 76, 146, 115, 89 and 51, while the number 538 

of cells with negative mean values is 52. Clearly, the map reveals that large and discrete areas 539 

exist with the same behavior in extreme rainfall manifested by the approximately equal GEV 540 

shape parameter values.  541 

 Nevertheless, the analysis of the previous section unveiled the clear relationship of the 542 

estimated GEV shape parameters with the record length. Consequently, a more accurate map 543 

should incorporate these findings as a region contains records of variable length leading thus to a 544 

record-length depended estimate of the mean value. Additionally, we showed that the GEV 545 

shape parameter estimates can be corrected by Eq. (8) to be record-length free and follow the 546 

normal distribution N(μγ, 2
γσ ) which constitutes a very good approximation of the true 547 

distribution of the GEV shape parameter. For these reasons, we reconstructed the map by using 548 

the unbiased (free of record-length dependence) estimate of the shape parameter values 549 

according to Eq. (8). The results are presented in Figure 13. As in the previous map, the bins are 550 

defined the same way but obviously the values differ as the range of variation is much smaller. 551 

The numbers of cells with values spotted in each successive bin are different from the previous 552 

map, i.e., 59, 88, 105, 143, 93 and 46 (due to rounding of the quantile values), while the number 553 

of points representing negative values is now zero. Comparing the two maps we note that they 554 

look almost the same but in fact they differ. Finally, it is notable that large areas or zones are 555 



formed by points representing shape parameter values belonging in a very narrow range. For 556 

example, in the US there are two large zones where the shape parameter ranges from 0.10 to 0.11 557 

in the one (green color) and from 0.11 to 0.13 in the other (yellow-green color); additionally, in 558 

the entire Atlantic coasts of South America a zone of low values is formed while a large area of 559 

high values can be spotted in South-West Australia. 560 

 Obviously, the accuracy in the estimation of the shape parameter mean values is not the 561 

same for every cell as the number of records per cell is not constant. Thus, in order to provide a 562 

measure of uncertainty or a measure of estimation error, we constructed the map given in Figure 563 

14 that presents each cell’s standard error (SE) values with respect to the mean values given in 564 

the map Figure 13 (unbiased estimates). The SE is defined as SE /σ n  and in this case σ is 565 

the sample standard deviation of the shape parameter values of the cell and n the number of those 566 

values. In order for the estimates of SE to be relatively accurate we selected only those cells that 567 

contain at least six records (a total of 281 cells), as it is well-known that the estimation of the 568 

standard deviation is markedly biased for very small samples. A cell’s SE expresses the standard 569 

deviation of the cell’s shape parameter mean value, and can be used directly to calculate the 95% 570 

CI of this estimate as it is well-known that the 95% CI is given by 1.96 SEγ  , where γ  is the 571 

cell’s shape parameter mean value. The values defining the bins of SE in the map’s legend 572 

(Figure 14) are defined by the minimum value, the Q25, Q50, Q75 empirical quantile (or 573 

percentile) points and the maximum value of the 281 SE values after rounding off to the third 574 

decimal, e.g., the 50% of SE values are less than 0.008. The numbers of cells with SE values at 575 

each successive bin (from lower to higher values) are: 67, 75, 68, and 71. As expected, areas 576 

with high density of stations and large records have very low values of SE. 577 



6. Summary and conclusions 578 

Extreme value distributions have been extensively used in hydrology for more than half a 579 

century as a basic tool for estimating the design rainfall of infrastructures or assessing flood 580 

risks; however, selecting the appropriate law is usually based on small samples without 581 

guaranteeing the correct choice or the accurate estimate of the law’s parameters. Here, we 582 

analyze 15 137 rainfall records from all over the world aiming to assess which one of the three 583 

limiting distributions better describes the annual maximum daily rainfall. Initially, we formed a 584 

method comprising two simple criteria, in order to treat the very common problem of extracting 585 

annual maxima of daily rainfall from records containing missing values. The method was 586 

successfully validated and applied to form the annual maximum daily rainfall records. 587 

 The question, which of the three limiting extreme value distributions to use, is the focus of 588 

this study. Starting from the reversed Weibull distribution, we may note that it implies a parent 589 

distribution for daily rainfall with an upper bound; we contend that this is physically inconsistent 590 

and moreover, to our knowledge distributions bounded from above have never been used for 591 

daily rainfall in competent studies. With reference to the Fréchet vs. Gumbel “battle”, we showed 592 

that, as strange it may seem, annual maxima extracted from a parent distribution that belongs to 593 

the domain of attraction of the Gumbel law, are better described by the Fréchet law. This occurs 594 

for two reasons: first, the convergence rate to the Gumbel law is extremely slow, and second, the 595 

shape parameter of the Fréchet law enables the distribution to approximate quite well not only 596 

distributions with power-type tails but also other heavy-tailed distributions. 597 

 The empirical investigation using 15 137 records started with an L-moments ratio plot 598 

which reveals that 80% of observed points are located on the right of the “Gumbel point” 599 

providing clear evidence that the Fréchet law prevails. Additionally, the analysis of the estimated 600 



GEV shape parameters unveils a clear relationship between the shape parameter value over the 601 

record length, implying that only very large samples can reveal its true distribution or the true 602 

behavior of the extreme rainfall. The “asymptotic” analysis performed, based on the fitted 603 

functions to the mean and standard deviation of the GEV shape parameter over record length, 604 

suggests that the distribution of the GEV shape parameter that would emerge if extremely large 605 

samples were available is approximately normal with mean value 0.114 and standard deviation 606 

0.045. The meaning of this finding is that the GEV shape parameter is expected to belong in a 607 

narrow range, approximately from 0 to 0.23 with confidence 99%. Essentially, the analysis 608 

shows that we cannot trust blindly the data, as small samples may distort the true picture. In this 609 

direction, we propose the use of Eq. (8) that corrects the L-moments estimate of the GEV shape 610 

parameter removing the bias due to limited sample size.  611 

 While originally a small percentage of records have negative shape parameter (reversed 612 

Weibull law), the analysis reveals that this percentage rapidly decreases over sample size, while 613 

the fitted function indicates that for record length greater than 226 years this percentage would 614 

be zero. Interestingly, none of the 16 records available with length greater than 140 years 615 

resulted in negative γ. Moreover, the probability for a negative shape parameter to occur, 616 

according to the distribution fitted, is only 0.005, and combined with the previous findings 617 

suggests that a GEV distribution with negative shape parameter (bounded from above) is 618 

completely inappropriate for rainfall. Concerning the geographical distribution of the GEV shape 619 

parameter, the constructed maps show that large areas of the world share approximately the same 620 

GEV shape parameter, yet different areas of the world exhibit different behavior in extremes. 621 

 We believe the “verdict” is clear: the Fréchet law, or else the GEV law with positive shape 622 

parameter, should prevail over the Gumbel law and a fortiori over the reversed Weibull law, with 623 



latter suggesting a dangerous choice. If we had to form a rule of thumb, we would propose that in 624 

the case where data suggest a GEV distribution with negative shape parameter, this should not be 625 

used. Instead it is more reasonable to use a Gumbel or, for additional safety, a GEV distribution 626 

with a shape parameter value equal to 0.114. The prevailing practice of the past that favored the 627 

use of the Gumbel distribution does not suggest a proof of its outperformance over the Fréchet 628 

law, as it seems it takes a long time to reveal Nature’s “secrets” and its true behavior. As 629 

Heraclitus of Ephesus stated more than 2500 years ago in the aphorism given in the introduction 630 

(loosely translated) “Nature loves to hide”. 631 
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 706 

Tables 707 

Table 1. Basic summary statistics of the 15 137 records; Q indicates the empirical quantile. 708 

 Record Length Median Mean SD Skew L-scale λ2 L-skew τ3 L-kurtosis τ4
min 40 7.40 9.10 3.94 -0.71 2.15 -0.16 -0.06
Q5 49 25.60 28.51 11.00 0.53 5.80 0.10 0.09
Q25 58 39.20 43.13 17.41 0.98 9.06 0.18 0.14
Q50 (Median) 68 57.20 62.24 23.73 1.35 12.35 0.23 0.18
Q75 91 77.50 83.96 33.84 1.84 17.43 0.28 0.22
Q95 117 114.80 126.23 57.81 3.03 29.86 0.37 0.30
max 163 864.50 863.69 430.69 9.87 244.66 0.76 0.73



Mean 74.85 61.97 67.73 27.72 1.51 14.40 0.23 0.18
SD 21.84 30.71 33.16 15.38 0.85 7.98 0.08 0.06
Skew 0.80 2.68 2.37 2.72 2.06 3.16 0.15 0.85
L-scale λ2 12.07 15.97 17.35 7.80 0.43 4.01 0.04 0.03
L-skew τ3 0.22 0.19 0.20 0.27 0.23 0.28 0.02 0.10

 709 

Table 2. Summary statistics of the estimated parameter of the fitted Gumbel and GEV 710 

distributions to the 15 137 annual maximum daily rainfall records; the fitting was done by the 711 

method of L-moments. 712 

 Gumbel parameters  GEV parameters 
 α β  α β γ 
min 6.81 3.10  6.00 2.66 -0.587 
Q5 23.21 8.37  22.59 7.36 -0.107 
Q25 35.26 13.07  34.67 11.71 0.020 
Q50 (Median) 51.54 17.82  50.82 16.16 0.093 
Q75 70.07 25.15  69.24 22.69 0.169 
Q95 102.54 43.09  101.14 38.53 0.283 
max 659.96 352.97  688.17 401.68 0.760 
Mean 55.74 20.77  54.95 18.71 0.092 
SD 27.21 11.51  27.08 10.68 0.120 
Skew 2.23 3.16  2.38 4.67 -0.130 
L-scale λ2 14.30 5.78  14.17 5.25 0.067 
L-skew τ3 0.18 0.28  0.18 0.27 -0.017 
L-kurt τ4  0.13 0.18  0.14 0.18 0.158 
 713 

Table 3. Summary statistics of the estimated GEV shape parameter for various record length 714 

categories. 715 

Record length  
(years) 

40 - 50 51 - 60 61 - 70 71 - 80 81 - 90 91 - 100 101 - 110 110 - 120 ≥ 121 

Records No. 1161 3610 3972 1467 1134 1164 1132 1017 480 
Records % (γ > 0) 71.8 72.9 77.8 83.6 85.0 86.8 88.1 91.1 91.0 
Records % (γ ≤ 0) 28.2 27.1 22.2 16.4 15.0 13.2 11.9 8.9 9.0 
 GEV shape parameter γ 
min -0.461 -0.587 -0.493 -0.307 -0.287 -0.283 -0.188 -0.193 -0.204 
Q5 -0.152 -0.156 -0.112 -0.086 -0.068 -0.048 -0.046 -0.035 -0.029 
Q25 -0.014 -0.009 0.011 0.030 0.036 0.042 0.049 0.047 0.060 
Q50 (Median) 0.079 0.082 0.086 0.102 0.100 0.106 0.108 0.102 0.118 
Q75 0.172 0.166 0.166 0.176 0.169 0.175 0.169 0.158 0.170 
Q95 0.312 0.290 0.291 0.285 0.268 0.271 0.271 0.247 0.263 
max 0.541 0.706 0.760 0.567 0.539 0.573 0.750 0.471 0.345 
Mean 0.077 0.077 0.089 0.103 0.101 0.108 0.110 0.105 0.116 
SD 0.141 0.138 0.124 0.112 0.102 0.100 0.096 0.088 0.088 



Skew -0.135 -0.253 0.120 0.096 -0.029 0.171 0.367 0.220 -0.137 
L-scale λ2 0.079 0.077 0.069 0.063 0.057 0.056 0.053 0.048 0.049 
L-skew τ3 -0.012 -0.034 0.015 0.006 0.002 0.014 0.023 0.024 -0.011 
L-kurt τ4  0.142 0.149 0.153 0.134 0.135 0.137 0.144 0.166 0.156 
 716 

Figures 717 

 718 

Figure 1. Demonstration of the convergence of the true distribution of maxima to the limiting 719 

laws. 720 



 721 

Figure 2. Locations of the 15 137 stations with annual maximum records of daily rainfall 722 

analyzed with number of values ranging from 40 to 163 years. Note that there are overlaps with 723 

points corresponding to high record lengths shadowing (being plotted in front of) points of lower 724 

record lengths. 725 



 726 

Figure 3. Explanatory plot of the maxima extraction method. The annual maximum daily rainfall 727 

is considered unknown (red rectancles) if its rank is in the smaller 40% of ranks (red shaded 728 

ranks) and the missing-value percentage (MV%) of the year it belongs is larger than 1/3 (red 729 

shaded percentages). 730 

 731 

 732 

Figure 4. Empirical distribution of the year’s percentage per record having missing values as 733 

resulted from the analysis of the 15 137 records; the solid line depicts a fitted Beta distribution. 734 



 735 

Figure 5. Box plots depicting the resulting sample differences of various statistics between the 736 

real annual maxima series and the ones created from the incomplete daily series. The advantage 737 

of the first method compared to the others is clearly seen by the smaller range of the box plots. 738 

The lower and upper fences of the box plots represent the sample quantiles Q1 and Q99, 739 

respectively. 740 



 741 

Figure 6. Observed L-kurtosis vs. L-skewness points of the 15 137 annual maximum daily 742 

rainfall records and the theoretical point and line of the Gumbel and GEV distribution, 743 

respectively. 744 

 745 

Figure 7. Empirical distribution of the GEV shape parameter as resulted by fitting the GEV 746 

distribution to the 15 137 annual maximum daily rainfall records. The solid line depicts a fitted 747 

normal distribution. 748 



 749 

Figure 8. Mean value of the GEV shape parameter for various categories of record length. The 750 

numbers in the boxes indicates the percentage of records with positive shape parameter value. 751 

 752 



 753 

Figure 9. (a) Mean, quantiles Q5 and Q95 as estimated for various records lengths and their fitted 754 

asymptotic values; (b) standard deviation; (c) percentage of records with negative shape 755 

parameter. 756 



 757 

Figure 10. Empirical distribution of the GEV shape parameter as resulted from the Monte Carlo 758 

simulation where 15 137 synthetic records generated with the shape parameter being randomly 759 

sampled from the N(μγ, 
2
γσ ). The solid line depicts the fitted normal distribution. 760 



 761 

Figure 11. Monte Carlo points estimated (a) for the Gumbel distribution, and (b) for the GEV 762 

distribution with fixed shape parameter γ = 0.114, depicted in comparison to the observed ones. 763 



 764 

Figure 12. Geographical distribution of the mean value of the GEV shape parameter (estimated 765 

by the standard L-moment estimator) in regions of latitude difference Δφ = 2.5° and longitude 766 

difference Δλ = 5°. 767 



 768 

Figure 13. Geographical distribution of the mean value of the GEV shape parameters estimated 769 

by the unbiased estimator of Eq. (8) that corrects the sample-size effect; notice the difference in 770 

the values of the legend with the legend of Figure 12. 771 



 772 

Figure 14. Standard error values of the GEV shape parameter mean values that are given in the 773 

map of Figure 13. 774 


