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Cover figure

Benard cells. Patterns of convection formed as a liquid is heated from below. Warmer, less dense
liquid rises in the center while colder, denser liquid sinks around the edges. The cells are visualized
by mixing metal particles in the liquid.

Benard cells are self-organized dissipative systems that arise in the presence of an energy flux, and
can potentially be explained by the law of maximum entropy production and the second law of
thermodynamics.

Trying to come up with an idea for a cover figure I almost fell victim to the common view that
entropy is a measure of “disorder”. Thus at first I considered finding a picture of a chaotic
phenomenon. In school I was taught that entropy means disorder, a view that was supported by
many books and articles that I read while preparing the thesis. But I consider this view to be wrong
and misleading; therefore I decided to use an image of Benard cells, which are a manifestation of the
second law of thermodynamics despite being self-ordered.

Source: liamscheff.com (http://liamscheff.com/wp-content/uploads/2010/07/convection-cells-
closeup.jpg)



Abstract

This thesis presents a review of literature related to the concept of entropy. Its aim is to
offer an introduction of the meaning and applications of entropy to a hydrological
engineering audience. Furthermore, it discusses some common misconceptions
surrounding the concept of entropy, the most important being the identification of entropy
with “disorder”.

Entropy and related concepts from probability theory, information theory and
thermodynamics are defined. In parallel with the definitions, the history of and the
technological, scientific and philosophical motivations for the concepts of interest are
presented. The main concepts in focus are the second law of thermodynamics;
thermodynamic and information-theoretic entropy; entropy production rate and the
maximization thereof; statistical inference based on the principle of maximum entropy.

The thesis presents examples of applications of entropy from the area of hydrology,
specifically from hydrometeorology and stochastic hydrology; from other natural sciences,
specifically from the theory of self-organizing systems with examples of such systems, and
from the Earth-System science; and from engineering, specifically an application of
measurement system configuration optimization.

The thesis discusses at various sections philosophical questions regarding the concept of
entropy.

Mepianym

H mtapovoa SImAwpatikn epyacia Tapouotdlel pia emokommnon e BLBALOYypa@iag oXeTIKA
HE TNV €vvola TNG EVTPOTILAG. ZKOTIOG TNG EVAL VA TIPOCPEPEL UL ELCAYWYN TNG ONUHACIAG
KaL TWV EQAPUOYWV TNG EVIPOTIAG 6€ UEPOAGYOUS unxavikoUs. [TapdAAnAa TpaypateveTAL
Slh@opeg ouVNBElS E0PAANEVEG QVTIANPELS OXETIKA UE TNV €Vvold TNG EVTPOTIAG, T
OTUAVTIKOTEPT) €K TWV OTOLWV VAL T) TAVTLON TG EVIPOTIAG HLE TNV «ATAL0».

OpilovtaLn evrpoTio KAl OXETIKESG EVVoLleG amd TN Bewpla Twv TOavotTwy, T Bewpla TG
TAnpo@opiag kat tn Beppoduvauikn. MapdAAnAa pe tToug oplopols Tapovolalovtal To
LOTOPKO TNG QVATTUENG TWV €EETACOUEVWV €VVOLWV KaBwG Kol Ta TEXVOAOYIKA,
EMOTNHOVIKA Kol PLA0CO@IKA KiviTpa Yl TNV avamtuén autr. Ot kOpleg €vvoleg Ttov
efetalovtal eivat o 8e0Tepog vOpog TG Oeppoduvapikng mn  Beppoduvapikny Kol
TANPOPOPLOBEWPNTIKN eVIpOTiA, 0 PLOUOG TTAPAYWYTNG EVIPOTING KAl 1) HEYLOTOTIOMONM
TOU, KOl 1 HEDOSOG OTATIOTIKNG emMAywyns HE PAon v apxn UEYLOTOTOMONG TNG
EVTPOTILQG.

H epyaola mapovoidlel mapadeiypata €@oappoyng tng evipomiag otnv YSpooyla,
OLYKEKPLUEVA atto TNV YOpopetewpoAoyla Kol T ZToxao Tk YSpoAoyia, oe AAAEG PUOIKES
EMOTNLEG, CUYKEKPLUEVA ATTO TN BEWPLA CUCTNUATWY AVTO-0PYAVWOTNG e Tapadelypata
TETOLWV OULOTNUATWY, kKal TV Emomun touv Tewovot)uatog, kat otnv TtexvoAoyiq,
OLYKEKPLUEVA Pl e@apuoyn BeATIOTOTIOMONG TNG SLATAENG LETPNTIKWY GUCTNUATWV.

H epyacia mpaypatevetal oe S1A@OPEG eVOTNTEG PLAOCOPIKA (NTUATA OYXETIKA HE TNV
évvola NG evtpoTiag.
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Below follows an extended abstract in Greek

Extetapévn MepiAnym

H mapovoa Simlwpatikn epyacia mapovotdlel pa emokommon g BLBAoypa@lag oxeTIka
He TNV €vvola g evtpomiag. To Mapdv KEQPAAALO TIPOCEPEPEL EKTETANEVN TeEpAnYm NG
epyaciag ota EAAnvika.

Ewocaywyn

ITO TPWTO KEPAAALO NG €PyAciag YIVETAL E€l0AywWYN OTNV £Vvold TG EVIPOTIAG.
Tuykekpluéva efnyeltat OTL Alyeg EMIOTNUOVIKEG £€VVOLEG Elval TOOO ONUAVTIKEG Kal
TaVTOXPOVA €XOUV TOGO ATPOadLOpLoT onuacia 660 1 evrpomia. H evipotia elonydn
APXIKA Yl va SWoel LabnpuaTikn pop@n oto SeUTeEPO VOO NG Ogppoduvapikng, Exel Bpet
OUWG EPUAPUOYEG OE HEYAAO €UPOG EMIOTNUWV cvuumepAapfavouévng g YdpoAoyiag. H
Tapovoa epyacia amevbVveTal KUplwg oe YSpoAdyous Mnyavikois. EToOX0G NG eival va
TPOCPEPEL Ula €loaywyn OTNV £Vvola TG EVIPOTING, VO TIAPOUCLACEL EQAPUOYES Kal
OUVETIELEG TNG Kal va EekaBaploel KATIOLEG CUVNOELG ECPAAUEVEG AVTIANYELG OYXETIKA UE TN
onuacio tmg.

TN ovvéxeEla TAPOVCLALETUL CUVTOUT GL{TNOT OXETIKA HE TN ONUACIA TNG EVVOLAG TG
EVTPOTILNG. TUYKEKPLUEVA EENYELTAL OTL 1) EVTpOTIiA CUVIBWG oXeTI(ETAL — KATA TNV Aoy
Hov Aavlacopéva — e TNV «ataio» Kol To «avakatepar». H dmoym pe v omoia cup@wvw
elvat OtL M evrpomia amoteAel pétpo TG afefadmrag. H afefadtnTa o€ KATOLEG
TEPITTWOELS 00NYel oe poTifa, pop@ég kat «taén». H eikdva tov e€w@uAiov emAéxOnke
vy va Seiel aut akpBws v amoym. Agiyvel eEaywVIKEG HETAYWYIKEG KUPEAEG, YVWOTES
WG kKLPELeG Benard, ol 0ToleG, KATW Ao KATAAANAEG CLVONKES, el@avifovtal avBopuUTwS
OTaV £V AETITO OTPWUA VYPoU Beppaivetal amd Ta kAtw. Ot KUPEAEG ekdNAWVOVTAL AOYW
TOU §€VTEPOV VOUOV TNG OgpLoSUVAULKNG, OUWG EL@avilovv Soun Kot TEEN.

Etupoloyia, 6UVTOpHO LOTOPIKO KL oNpuacia TNG EVTpoTiaG.

H ewloaywyn ovveyiletal pe mapovasioon g etupoAoyiag g evrtpomiag. H AeEn evtpoTia
TpogpxeTal amd ta Apyaia EAAnvikda. ZuvtiBetal amd 1o mpdbBepa «evw», O oMuaivel
«UEOO», «EVTOG», KOL OmMO TO OUCLXOTIKO «TPOTI», TOU OTNUALVEL «OTPOPN»,
KUETAUOPPEWOT», «0AAxyn». ETOPEVWG 1) KUPLOAEKTIKY onuacia TG evtpoTiag elvat M
E0WTEPLKN 1) EVEOYEVIG LKAVOTNTA YLt XAAQYT| 1] LETAUOPPWOT).

AxoAovbel ovTopo LoToPLKO. O OPOG XPNOLUOTOUONKE ETOTNHOVIKA YLIO TIPWTY POPA& ATTO
to Rudolf Clausius to 1863 yiax va Swoel pabnuatikny pop@n oto SeUTEPO VOO TNG
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Oeppoduvapikng, o omolog eixe Statumwbel mepimov 15 xpovia vwpitepa amo tov Clausius
(1849) xoat tov Kelvin (1850) ot omoiot xpnowomoinoav &V0 SLHQOPETIKEG, GAAL
L00SVVAES, TIOLOTIKEG TTPOTAOELS. [Tepimov 30 xpoOvia HETA TNV ELCAYWYN TNG EVTPOTILAG, OL
Ludwig Boltzmann kat Josiah Gibbs avémntu§av tov kAdSo ¢ ZtatioTikig Mnxavikng, ota
TAaiola Tov omoiov §6BNKe otV evrpoTia €vag véog, TOAVOTIKOG, oplopds. 50 xpovia
apyotepa, To 1948, o nAektpoAdyos unxavikos Claude Shannon, Tpwtomopog g Oewplag
™m¢ [MAnpogoplag, avalntwvtag €va pETpo Yyl TNV offefadTnTa ™G TANpo@oplag,
avakdAvPe 0Tl auTd To PETPO Ba TPEMEL va £XEL TNV (Sl HOP@PN] LLE TNV EVTPOTIX KATA
Gibbs. O Shannon ovépace To péTpo TS affefaldTnTag EVTPOTiN AKoAOLOWVTAG TTPOTPOTH)
tou Von Neumman. To 1957 o Edwin Jaynes, Baciopévog otig epyacieg twv Gibbs kot
Shannon, elonyaye v apyn TG HEYLOTNG EVTPOTILAG, Lix HEBOSO OTATIOTIKNG EMAYWYNS M
omoia eloNyON oToVv KAAS0 NG ZTATIOTIKNG MNnXaviKNiG, dAA& €XEL EQAPOYT GE TTOAAOVG
KAaSoug ¢ emoTuns. H évvola g evipomiag oxetiletal pe v Y8poloyla kKupiwg péow
™G APXNS LEYLOTNG EVTPOTILAG.

ITN OUVEXELX AVA@PEPOVTAL ETILYPAUUATIKA SlA@Oopes epunveieg mov €youvv dobel otnv
EVVola TNG EVTPOTILNG. XTI TEPLOCOTEPEG TMNYEG T evTpoTia e€nyeital wg «atoaiar,
«OVOKATEUA», «XGA0G», KAT. H epunvela auty Bewpeital amd KATOLOUG €PEVVNTEG WG
AavOaOUEV KAL TTAPATIAXVT TIKY], ATTOYT) LLE TNV OTIOLA CUUP®WV®. AAAEG TINYEG EPUNVEVOLV
TNV eVvTpoTa w¢ «un Stabéoun evépyelar, «xapévn BeppdTTo», KATL. AUTEG OL epunveieg
elval AavBaopéveg, a@oU 1 EVEPYELA KL 1) EVTPOTILM, av Kol oxeTi{ovtal oTevd, sival
SLLOpPETIKA PUOIKA peyédn. H epunvela v omoila Bpilokw o TEGTIKN €lval OTL 1
evtpoTia elvat uétpo s afefatdras.

Oplopot

Yto 8eUtepo ke@dAalo opilovtal n evtpoTia kal GAAeG Baoikég €vvoleg. Ou oplopol de
SlvovTal o€ YpovoAOYLKY| OELPA. ZUYKEKPLUEVA, TIPWTH 0pileTaL M evipomia Shannon kat ot
ouvvéxela 1 Beppoduvapikn evtpotia. [MioTevw OTL e AUTY) TN CEPA E(VAL EVKOAOTEPT 1)
KA TAVON oM TNG EVTPOTILAG WG HETPO TNG afeBatdTnTa.

Ocwpla MOBavoTHTWV

H evtpomia, t600 ota mAaiowa g Oewplag g [MAnpo@opiag 660 kat ota TAaicl ™G
Beppoduvapikng, oxetiletal oAV otevd pe ™ Oswpia Twv MBavottwy. Emopévwe n
TPWTT EVOTNTA TOU KEPAAAIOU TWV OPLOUW®Y TAPOVCLALEL (LKt CUVTOUT EMAVAANIYM TwV
Baowwv egvvolwv G Bewplag MMBavoTNTWV. ZUYKEKPLUEVA QAVAPEPOVTAL Ol TIPWLUES
Bewpleg OXETIKA e TNV TLXAOTNTA KL TIG TOAVATNTES, Yia TTapddetypua ol Bewpleg Twv
Fermat kot Pascal. £tn ovvéxela mapovoialetal n Oepediwon tTwv mMOavoTHTWV Ao TOV
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Kolmogorov pe Baon tpia afiwpata. Opilovtal ol €vwoleg TOU SELYUATIKOU XWPOU, TOU
Tuxaiov yeyovoTtog Kol Touv pétpov mbavomtag. Emiong opilovrat évvoleg OTwG TO
advato yeyovog, ta apolBaiwg amoKAEOPEVH YEYOVOTA, TX QVECAPTNTA YEYOVOTQ, OL
deopevpéveg TOAVOTNTEG KATL XTn oLVEXElR opllovtal oL Tuxaleg HETABANTEG Kol oL
oLVAPTNOELS KaTtavopwV. TéAog opilletat 1 évvola TNG OTOXAOTIKY avEALENG KaBws Kat ot
BLOTNTEG TNG OTACIUOTNTAS KAl TNG €pYodikoTnTaC. XTo [Tapaptnua A yivetal mapovoioon
EMITMALOV OPLOUWV KL WOLOTHTWV amd T Bswpla mOavoT)TWY, Yl TApASElypa Twv
QVOUEVOLLEVWV TLLWOV KAL TWV POTIWV.

Oewpla [IAnpogopiag: Evrponia Shannon

H 8e0tepn evotnTa TOoU Ke@adaiov mapovolalel TnVv evipotia Shannon. [Tl cuykekpluéva
ava@épetal 0tLn Oewpla g [IAnpoopiag avamtiytnke To 1948 amd tov Claude Shannon
TIPOKELUEVOU VA AVOEL OELPA TIPAKTIKWVY KAl BewpnTIKOV TPOBANUATWY TOU KAASOU TwV
TnAemkowwviwv. 'Extote €xel Bpel e@apuoyn o€ mMOAAOUG GAAOUG TEXVOAOYLKOUG Kal
EVPUTEPA ETMLOTNHOVIKOUG KAGSOUG. XTo TAaiclo ¢ Oewpiag g [MAnpo@opiag n AEEN
«TANPO@OpPla» SEV AVAPEPETAL GTO EVVOLOAOYIKO TepLleXOpevo, SnAad Tn onpacia, evog
UNVORATOG. Ava@EpeTal oTnV aAAnAovyia Twv Ym@iwv IOV ATOTEAOVV TO UVULX 1] OTIolo
umopel va BewpnBel wg pia Tuxaia Siepyaacia.

Kevtpikd poro otn Oewpia g [TIAnpo@opiag mailel n évvola TG evtpoTiag. Ewonx0n amo
To Shannon w¢ pétpo ¢ afeBatdotntag. H afefatdmta piag tuxaiag petafAntis eivat éva
uéyebog mov pmopel va moocoTikomomnBel akoun KL av n TR TG MHETABANTAS  elvat
ayvwotn. Ta mapadetypa av pia pmidia elvar kpuppévn oe éva amd Tpla KoOuTid 1
afefatdTnTa yia To Tov ival KpUUUEVT Elval PLIKPOTEPT ATIO O,TL AV NTOV KPUUUEVT OE éva

amtd EKATO KOUTLA.

[Tapovoialovtal amoomdopata amd v gpyacio Tov Shannon tov 1948 6Tov vntEBeoe OTL
TO PETPO NG afefatdoTnTag Ba MPEMEL va lval CUVAPTNOT TNG KATAVOUNG TNG TUXALaG
petafAnmg, €otw H(p1, p2,--, Pn) KAL OTLT) CLVAPTNOT AUTH B TIPETEL VA LKAVOTIOLEL TPELG
810N TEG OV akoAovBovv TNV kowrn Aoyikr. O Shannon amédel€e OtL 1 povadikn
OUVAPTION TIOV LKAVOTIOLEL AV TEG TIG CLUVONKEG (VAL TNG LOPPNS

H=-KY pilogpi (ETL1)
i=1

Yyl ommolodnmote BeTIkO Tpaypatikd aplBuo K kat omoladnmote Bdon tov AoydpiOpov.

Itn ovvéxela Sivetal pla amAn gpunvela g evrpomiag Shannon. Zuykekplpéva, amo ™
ovvaptnon EI.1 kat yia K = 1, TpokUTITEL OTL 1] EVIPOTIA LOOVTAL PE TNV AVAUEVOLEVT] TIUT
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Tov avtifetov Tov AoyapiBuov Twv mBavotTwy pi. EMopévwe n evtpomia Shannon umopel
VO EPUNVEVOEL WG L GUVAPTTOT) TIOV KATAPEPVEL VA GLVOYIGEL it OAOKAT P KATAVOUN UE
gvav aplOpd. Zuykekplueva, o AoydpOuog logp pmopel va gpunvevtel wg HETPO NG
TOAVOPAVELXG TOV TUXXIOV YEYOVOTOG aov 0 AoydplBpog ivat adovoa cuvaptnon g
TOAVOTNTAS KAl amelkovilel To medio Tywv and to [0, 1] oto (- ,0]. To avtiBeTo TOL
AoyaplOuov pmopel va epunvevBel w¢ HETPO TNG AMOAVOPAVELXNG EVOG YEYOVOTOG KoL
ETMOUEVWG 1) EVTPOTILA WG HETPO TNG HEOTG ATLOAVOPAVELNG TNG KATAVOUNG. Ml KaTavoun
UE HEYAAN pHEOT) ATIOAVO@PAVELY, TIOU AVTLIOTOLYEL SNAAdN O€ yeyovaTa TA OTtola Elval KATA
uéoo 6po Alyo mBava, eivat Aoyiko va £xel peyain afepfatotnto.

H ouAAoylotikni Touv Shannon mov 081ynoe otnv avak&Avym tov pETpov TS affefatdoTnTag
elvat oAU evdla@épovoa amd emotnuoAoykny amoyn. O Shannon amAd vmébeoe TPELg
SLOTNTEG TIOV ETMPETE VA EXEL ) CLVAPTNON TIOV EPaxve PE BAOT TNV KOV AOYIKY KL T
Habnuatikd tTov €dwoav Tn HOVASIKY) GUVAPTNON TOU LKAVOTIOLEL UTEG TIG LOLOTNTES.
[Tepattépw HEAETN TNG GLVAPTNOTG ESEIEE OTL EXEL EMITIAEOV EVELAPEPOVOES LOLOTNTES TIOV
SkatoAoyolv T xpron ™S wsg HETPO NG afeBatdTnTag. XN CUVEXELA TNG EVOTNTAS TNG
evtpomiag Shannon mapovotdlovtal PePIKEG amd auTeG TG WO TEG. O TPOTOG e TOV
omoio avakaAv@Onke 1 evtpotia Shannon Seiyvel OTL TAPA TIG SLAPWVIEG OXETIKA PE TNV
epunveia ¢ (BA. TapakdTtw), 1 CLVAPTNOT AUVTH BEV £XEL KATL TO «UAYLKO» 1) LETAPUOLKO.
Eivat amlwg n ovvaptnon mov édwoav ta pabnuatika otav o Shannon {tnoe Tpelg
Lot TES.

Oeppoduvapkn: Evrporia Clausius, Boltzmann ko Gibbs

H tpitn evoTnTA TOL KEPOAAQAIOV TWV OPLOUWV TIPAYUATEVETAL TV EVTPOTIX 0TA TTAA(CLO
™¢ Ogppoduvautkns. H evotnta auvth akoAovBel v otopikn eEEAEN TwV EVVOLWOV TNG
OeppoSUVAUIKNG. ZeKlVAel emopévws amo v Klacown Ogpupoduvvauikny 1 omola
QVATITUXONKE TAPGAANAQ [E TNV TEXVOAOYIA TWV QATHOUNXOVOV Kol GAAwV Bepuikwv
unxavwv. MeydAn ntav n ovvelo@opd tov Carnot otov KAGSo g Ogppoduvapikng. Xto
mAaiclo ™G Klaocowng Oegpuoduvapikig Swatumwbnke o Se0TEPOG VOUOG NG
Oeppoduvapikng amo tov Clausius to 1849, cOp@wva pe tov omoio 1 BeppdTa S peel
amd éva Yuxpo o€ Eva Beppd cwpa xwpig va cuvodeveTal amd K&molo aAAayr KATouv aAAov
(dnAadn xwpis N Samavn €pyov), kat and tov Kelvin to 1850, cOp@wva pe tov omolo sivat
advatn Pl KUKALKY Slepyaoia Katd Ty omola OEpUOTNTA HETATPETETAL TAT|PWS OE €PYO.
AmodekvieTat 6TL oL V0 eKPPATELS ElvVaL LGOSVVAES.

H évvola g evtpoTiag elonyOn amd tov Clausius 1o 1863 yla va Swoel pabnuatikn popen
oto 8eutepo vopo. Eotw 0TI AQ elval pia pikpn ToodTnTa BEPUOTNTAG IOV APALPEITAL ATIO

1N 6l8etal o€ eva ocwua, 6oV To AQ Bewpeltal apvnTIKO 0TV TPWTN TEPITTWON KAl OETIKO
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otn 6e0tepn. Eotw emiong T n amoéAvtn Bepuokpacia tov cwpatos. Tote n evipotia
opileTal wg To TmAiko:

A
AS = —TQ (EIL.2)
XpNOOTIOLWVTAG TNV EVTPOTIX 0 SEVTEPOG VOUOG AEEL OTL 1) GUVOALKI] EVIPOTIA €VOG
OWHATOG KL TOV TEPLRAAAOVTOS TOV avEdveTal o€ kaBe avBopuntn Stepyaoia, SnAadn:

S AS20 (EIL.3)

ITN OULVEXElX TPOUCLAlOVTOL UEPIKEG PBAOIKEG OUVETELEG TOU O€VTEPOU VOUOU NG
OeppoSUVAULKNG. ZUYKEKPLUEVQ, EVA ATTOLOVWHEVO cUOTNHA BplokeTal o€ looppoTia OTaV
N evtpoTiia Tov eival péylom. H evépyela €xel tdon mpog ™ Staomopal, SnAadn oe kabe
Stepyaocio pia TOGOTNTA TNG CUVOALKNG EVEPYELXG UETATPETETAL 0 BepUdTNTA KoL Sev eival
Suvatov 1N MooOTNTA AUTH VA HETATPATIEL €6 OAOKANPOL o€ €pyo M 0€ GAAN pHopEY
EVEPYELAG, ETIOHEVWG AELYETAL OTL 1 TOLOTNTA TNG evépyelag vmofabuiletar. H tdom
SLoTIOPAG NG EVEPYELAG LTIOO TN PIlETL OTL B 081 Y|0EL 0TO Aeyopevo Bepuikd Bavato Tou
Toumavtog, SnAadn 0An 1 evépyela Tou ZUUTAVTOG Ba peTaTpatel oe BEPUOTNTA KAl TO
Toumav Oo pETATPATEL OE plA OUOLOHOP@N «OOUTI» OepUoOTNTAG oTnv omoia 6 Ba
ovpfaivel kapia Siepyacia. O §e0TEPOG VOUOG ELCAYEL LXK ACVUUETPIX 0T @UOM, APOV
UTIAPXOUV U1 OVTIOTPENMTES Slepyacieg, yia mapadetypo 1 aubopuntn UETAPOPE
BepuotnTag amod eva Beppo o€ eva YPuxpo ocwpa, Sedopévov OTL T avtioTpo@n Siepyacio be
umopel va ovpfel avBopunta. H acvppetpia avty dnpovpyel to Agyopevo BEAog tou
XpoOvov, apov N Tapatipnon pag Siepyaciag mov cvpfaivel oe avtiBeon touv evTEPOL
vopov odnyel xwpis ap@Boria oto cvpumépacua 0TL 0 XpOvoS KUAAEL avaToda, OTwE yla

TAPASELYpa OTAV KATOL0G BAETEL Pl Tavia avaToda.

TN ouvvéxelx TapovcotldldeTal | ouvelc@opd otn Beppoduvapky tov Maxwell kat tou
Boltzmann. Ot 800 autol peydiol emotpoves avemtuéav tnv Kivntikn Ocwpia twv Agpiwv
1 OTIolt EMKEVTPWVETAL OTIG KATAVOUEG TNG TAXVTNTAG KAL TNG KIVNTIKNG EVEPYELAG TWV
nopiwv evog agpiov (katavopes Maxwell-Boltzmann) avti va mpoomaBnoet va meptypdet
TIG EELOWOELS KIVIIOELG TOV KaBevag popiov. AT 1 OTITIKN YwVia 0611ynoe otnv kKablEpwon
TOU KAGSOU NG ZTATIOTIKNG MnYQVIKNG Kol QTMOTEAECE ONUEID KAUTIG OTN YEVIKOTEPN

eCEAEN TG oVyxpovng PUOIKNG.

10 6pog «SlacTopd» XpMoLHoToLeTAL Yio va aTtoSwaoel Tov ayyAtkd 6po “dissipation”. AAAot 6pot, Tou £xouv
xpnotporomBel yra tnyv 8o évvola etvat: «okédaon», «SLéyvon», «Slackdption».



O Boltzmann kata@epe va amoSelEel OTL Eva aéPLo G€ LOGOPPOTILA VTTAKOVEL TNV KATAVOUT)
Maxwell-Boltzmann avefapt)tw¢ TG aPXIKNG KATAVOUNG TAXLTHTwV. Emopévwg
OULVELONTOTONGCE OTL 1] KATAVOUT] TNG TAXVTNTAG TIPETEL VA CUVSEETAL [LE TNV EVTPOTILX KL
KatéAnée oe KawoLplo oplopd ™G evtpormiag. Kot apxds dOpioe v évvolax g
ULOKPOKATAGTAONG, N OTolX €lval 1 KATAOTHOT €VOG CUOTHHATOS OTWG Tapatnpeital
UOKPOOKOTIIKA KOl TEPLYPAPETAL MO WETAPANTEG OMWG O OYKOG, 1 TiEON, KoL T
Bepuokpaciag, KoL TNV €vvola TG LKPOKATAGTACNG, 1 omola gival 1 Stdtadn twv Béoewv
KOl TAYVTNTWV OAWV TwV cwpaTiSiwv evog cvotnuatog. Kabe pakpokataotaon umopel va
TIPOKUTITEL ATIO TEPAOGTIO TANO0G UIKPOKATAOTACEWV. ETTOHEVWGS éva cUOTNUX PUTTOPEL VA
BplokeTal 0€ HOAKPOOKOTIKY LOOPPOTIQA, CAAX 1| HIKPOKATAOTHOT OTNnV oTola Pploketal
ouvvexws aAAdadlel. O Boltzmann vméBeoe OTL 1| LAKPOKATAGTAOT) LOOPPOTIAG TTPOKVTITEL ATIO
W tw TAN006 1ooTBAVES HIKPOKATACTACELS KAl ATESELEE OTL 1) EVIPOTIIA GTNV KATAOTACN
LoOPPOTILaG OPLlETAL WG:
S=klnW=-klnp; (EIL.4)

4 1 4 ’ r r’ 14 ]
OTI0V pi = 1,7 N TMOAVOTNTA var BPioKETAL TO CUCTNHA OF KATIOLX HIKPOKATAOTAON § Kaw k 1)

otaBepa Boltzmann. H umdBeon OTL Ol HIKPOKATAOTACELS LOOPPOTILAG €lval LooTiBaveg
ovopualetal epyodikn vobeon.

TN CLVEXELX TTAPOVCLALOVTAL VEEG EPUNVELEG TOV SEVTEPOL VOO TNG Ogp LOSLVALIKNG KAL
™G €VVOoLlaG TNG EVTPOTING OTIG OTOIEG 061 YNOE 0 VEOG OPLOUOG TNG EVTPOTIAG ATIO TO
Boltzmann. Kat’ apydg 660nke otatiotikn gpunveia otnv evtpotia. EmimAgov, Sedopévou
OTL ] KATAOTNHOT] LOOPPOTILAG AVTIOTOLXEL OTN HEYLOTN EVIPOTIQ, 1) LoOPPOTIiX UTOPEl va
opOTEL WG T HOKPOKATAOTOON €KE(V] TOU TPOKUTITEL QMO TO HEYLOTO aplouo
HUIKPOKATAOTACEWV. ZXETIKA PUE AVTO TO CUUTIEPACUA 1] EPYACIX TIPOGPEPEL TO TAPASELY QL
™G SLAOTOANG ATOHOVWHIEVOL aEPlov KAl VTTooTNPilel OTL TETOOV €ldoug Tapadelypata
Exouv cuUPBdAeL 0TV dTTOYT OTL M EVTPOTILX EIVAL LETPO TNG «aTAEIAG.

AxodovBel mapovoiacn QAOCOEIK®Y {NTNUAT®Y TOU TPOEKLYPAV ATIO TIG GUVELGPOPES
Tov Boltzmann. Zuykekpipéva ol kuplapyeg OpnNOKEVTIKEG KAL PIAOCOQIKEG AVTIANPELS TNG
emoxng &e pmopovoav va cupfadicovyv e To SeVTePo VOO TNG OgppoSuvapikig, Wlaitepa
TO OTATIOTIKO OpPLOpO TNG evTpoTiag Tou Boltzmann. Ao mToAAoU§ amoppieOnke evTEA®S 0
devtepog vopog. AAAoL, 6Twg o Maxwell, mpoomddnoav va tov eppnvevcouvv wg avOpwTivn
Pevdaiobnom xpnoomolwvtag eva meipapa okEPmg, to Agyopevo Aaipova tov Maxwell,
TIOV TIAPOVCLALETAL 0TNV EpYyaaia. e amavinon o Boltzmann Statvnwoe to H-Oewpnua. Av
Kal To Bewpnua auto Bewpeltal ot peEpes pag AavBaouévo, ol Bacikég BEoel Tov
Boltzmann o€ oxéon pe v Atopikn Oswpia g YAng £xovv emifBefaiwbdel. O Boltzmann
SeV KATAPEPE OUWG VA ETNPEACEL TIG KUPLAPXEG AVTIANYPELG TNG ETTOXNG TOV Kol ElKATETOL
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OTL QUTO TO YEYOVOGS TV (0WG €vag Ao TOUG AGYOUS TIOU TOV whnoav oTnv auToKToVia
TOoV.

To epwnua ylati oxvel o Se0TEPOG VOUOG TNG OEPUOSUVAIIKNG TIAPAUEVEL AVATIAVTITO.
IV gpyaoia ava@epw OTL 1 Atoym e TNV omola CUHPEWV® givat OTL 1 LoxVG TOV VOUOU
o@elAeTal OTN OTATIOTIKN TOU @UOT. ZUYKEKPLUEVA O OEVTEPOG VOUOG LOXVEL YTl 1
TOaVOTNTA Vo auéEnBel 1 evTpoTiat EVOG CUCTHUATOS EIVAL CUVTPLTTIKWG LEYAAVTEPT) ATIO
™mv mBavoTa va petwbel. ‘Opws Sev VTIAPXEL KATIOX apyl] TNG QUOLKNG TOU VA UnV
EMTPETEL VA LELWOEL 1) EVTPOTILA, AV KL KATL TETOLO €lvat eEaLpeTIKA amiBavo.

Yt ovvéxela apovotdletal 1 evipotmia Gibbs 1 omola amotedel BeAtiwon TG evtpoTiiag
Boltzmann. Zvykekpipéva, 1 evtpoTia Gibbs opiletal kKol 68 CUOTHHATA EKTOG LOOPPOTILAG.
Y& TETOLA CUOTNHATA Ol LIKPOKATACGTACELS Oev elval looTiBaves. Emopévws o Gibbs avti va
oploel TV evipoTia w¢g ocuvaptnomn tov Aoyapibpov logp; v opilel wg ovvaptnom NG
QVOUEVOLLEVTG TLUNG AUTOV TOV AoydplOpov, SnAadn:

S=-k pilnp; (EIL5)

1

H evomta g OgpuoSuvapikig KAEIVEL HE TNV EMYPAUUATIKY TTApOLCiaon Tou pubpov
TAPAYWYNG €VIPOTAG, 0 oToiog amoteAdel Paocikd péyebog TG Ogppoduvapikng
OUOTNUATWV EKTOG LooppoTiiag. ETiong avagépovtal  apyn eAaxlotomoinong Tov pubuov
TAPAYwYynG evipotiag Tov Prigogine kat 1 apyn HEYLOTOTIONONG TOV PLOUOY TTAPAYWYTS
evipotiag tou Ziegler. EEnyeltat 0Tl oL V0 autég apxég Sev elval avTPATIKEG, a@ov N
TPWTN AVAPEPETAL OE PN HOVIUES SlEpYaOieG KOVTA 0TV LooppoTiia evw 1 SeVTepn o€
HOVIPEG SlEpYAOIEG HAKPLA ATO TNV LooppoTia. ZVH@wva PHE TNV apxn tou Ziegler éva
OLUOTNUX EKTOG LOOPPOTIAG TTPOooTIABEl VA TEIVEL TIPOG TNV LOOPPOTILX E TO YPNYOPOTEPO
Suvato puvBpo. Ol eEMMTWOES AUTNG NG apXNS €lval onpavtikes. Kamoleg amd oautég
TAPOVCLALOVTAL GTO TPLTO KEPAAXLO.

ApyM nEYLOTNG EVTPOTILAC

H tétaptn evomta Ttou KeE@AAAIOL TWV OPLOHWV TAPOVCLAJEL TNV apXn HEYLOTNG
evtpomiag, pio HEBOSO OTATLOTIKIG EMAYWYNG IOV XPNOLUOTOLEL TNV EVTpoTiar Shannon kat
ewonxOn amo tov Jaynes to 1957. H pébBodog eonxbn otov kAddo NG ZTATIOTIKNG
Mnxavikn g TPOKEHEVOU VA UTTOAOYLOTOUV KATAVOUEG KL ESLOWOELS XPNOLUOTIOLWVTAS HOVO
Baokos vopous TG PUOIKNG xwpPIS ETITAEOV UTTIOBETELS OTIWG 1) Epyodikn uTtOBeo. [TAgov
EQPAPUOTETAL WG YEVIKN HEDOSOG OTATIOTIKNG EMAYWYNG O€ TOAAOUG ETLOTIUOVIKOUG
KAdSouvg.
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H péBodog vmoAoyilel TV Katavour pi IOV PEYLOTOTIOLEL TNV evTpoTiia H(pi), SnAadn mov
UEYLOTOTIOLEL TNV aBeALOTNTA, XPNOLUOTIOLWVTAS SLABECILES TIANPOPOPIES, Vi TTHpASELy A
TIELPAPATIKEG HETPNOELS, WG TIEPLOPLOUOVG. Me auTov Tov TpdTo Aapfdavovtal vt oYLV OAx
T yvwota Oedopéva, aAAd 8t xpnowomolovvtal emmAéov dedopéva mov Sev elval
Stabéoua, yio Tapadetypo vtofEcELS yia TOV TUTIO TNG KATAVOUNG. ZVUPwVA [LE TOV Jaynes
(1957) «n apyn ueytotng evrpomiag Sev eival epapuoyn KAmToLov QUOLKoU VOUOU AAAX ATTAWS
ula ovAdoytotikny uéBodog mov eéaaPalilel O0TL Sev elodysTal aovveldnTa kamolta avOaipeTn
voOson».

It ovvéxela mapovolalovtal ToPaSelypata VTTOAOYLOHOU SLa@OpwV KATAVOUWV Yl
Staopoug meploplopov. Ma mapadetypa 6tav dev vmapxel kavéva Sedopévo, dnAadn
KAVEVOS TIEPLOPLOUAG, 1] HEBOSOG KATAATYEL GTNV OUOLOUOPPT) KATAVOUNZ, ATIOSEIKVYOVTAG
yatin mbavotnta kabe {aplag eivat 1/6.

Inuewwvetal O0tL N gpyacia tou Jaynes touv 1957 TeplExel MOAAEG eVSLAQEPOVOES
@UOCO@IKEG TIAPATIPTOELS TOU Jaynes KATOLEG €K TwWV OTMOlwV Topoucldlovtal 0To
[Mapaptnua .

OeppodSuvapk Kat TANPo@oPLoBE® PN TIKT) EVTpOTIQ

H méumtn evotnta TOu KePAAXiOL TAPOUOLALEL TTAEVPEG TNG CLTINTNONG OXETIKA UE TN
oxéon N un peTady g Beppoduvapikng evrpomiag (Clausius, Boltzmann, Gibbs) kat tng
TANpPo@opLoBewpnTiKNS evtpomiag (Shannon). H cu{tnon aut eivat akoun avoiyt Kat
EXEL PAOCOPIKEG TIPOEKTAOELS. Mia amoym elvat 0TL oL U0 EVTPOTILES, LOAOVOTL SivovTal
amd v (Sla e§lowon, de oxetiCovtal Mia GAAN dmoym, Le TNV oTIolX CUHPWVW, ElvaL OTL OL
U0 evtpoTiieg oxeTIlOVTUL OTEVA KAl PAALOTH OTL 1] Begpuoduvapikn evipotia amoTeAel
e8Ik meplmTwon ™G evipomiag Shannon.

v epyacia mapovoialovtal Vo AdyoL ol OmoloL @aiveTal va odnyovv oTnV TPWTN
armoym. O mpwtog eivar 6Tl N evipomia Shannon elvatr adidotato péyebog evw 1
Beppoduvapikn evrpomia £xel povades J/K. EEnyeital 6pwg 0TL autd o@eldeTal oTo OTL 1
Bepuokpaocia gxel povades K yla 1lotopikovg Adyoug, evw Ba pmopovoe va €xel povadeg 1/]
ot omoieg B kaBLotovoav TN Beppoduvapikn evtpotia adiaotatn. O §evTEPOg AdyoG eival
OTL N AEEN «mAnpo@opia» TAPePUNVEVETAL WG KATL TO UTIOKELUEVIKO, PE TNV €vvola OTL
€CAPTATAL ATIO TN YVWOT) KATIOLOG OVTOTNTAG.

2 H anodeln Bpioketal oto Mapaptnua B.
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E@appoyég

Yto Tpito kKe@dAAlo TAPOVCLATOVTOL EQAPUOYEG TNG EVTIPOTILAG OTOV KAASO TG
Y8poAoylag, evputepa otig Puoikég Emotnueg kat otnv Teyvoroyla.

H mapovoiaon Eexkwvael amd tov kAado g Y8poupetewporoyiag. O kAadog autdg
aoyoAeital pe ™ Begppoduvvapikny g atuooc@aipas. Emouévwg 1 évvola tng evrpomiag
ATAVTATAL CUYVA TNV YSpopewpoAoyia. Ava@EpETal TO TAPASELYUA TOU TEPLYPAUUATOG.
TN ouvEXElX TAPOVOLAOVTAL EQAPUOYEG a0 TOV KAASo TG LtoxaoTikng YdpoAoylag.
Tuvnng e@appoyn e evipoTmiag oe auTo TOV KAASO0 elvat 1) apyn HEYLOTNG EVIPOTILAG UE
™ Ponbeia ™G omoiag vmoAoyilovtal KATAVOUEG UVEPOAOYIKWVY HETABANTWV. AAAEG
EQPUAPLOYEG AAOYXOAOVUVTAL LLE TN YEWUOPPOAOYIQ KoL TN XPOVIKT Katavour ¢ Bpoxns. Tédog
N evrpomia xpnowomoteital ywx tnv g&nynon g Siepyaoiag Hurst-Kolmogorov kat g
SLOTNTAG TNG ELUOVTG, YVWOTNG KAL WG LAKPOTIPOOETUNG «UVIIUN G».

Ot e@appoyeg g evrpoTiag otig Puowkeg Emotueg elvat moAvmAnOeis. Ot e@appoyEG TTov
TAPOVCLAlOVTAL OTNV EPYNOia EMAEXONKAV TPWTOV YIA VA TIPOKAAEGOUV EVSLAPEPOV YL
™V evipoTia kat 6e0TEPOV Yl va Sel€ouv OTL N TAOTION TNG EVTPOTIAG LE TNV «aTala»
umopel va elval mapamAavntikny. OL €vvoleg auTng NG eVOTNTAS TAPOoUoLAlovTal HE
EUTIELPLKO TPOTIO KAL KATIOLEG Ao TI§ avaAvoels Baciovtal otn Staiobnor pov kat oxL o€
EMOTNUOVIKEG ATTOSEIEELS.

ZTO TIPWTO HEPOS ETIXELPEITAL VA cLVEEDEL 1 apy1| LEYLOTOTIOMONS TNG PLOUOV TTAPAYWYNS
EVIpoTiag Tou Ziegler pe @awopeva «auto-opydvwong». H Aeyopevn auto-opydvwon
ELPAVICETAL 0E CUOTUATA TIOV SLATNPOVVTAL EKTOG LOOPPOTILAG ATIO POT) EVEPYELAG 1) ATTO
™mv vmapén Babuibwv (Siagopa mieong, ocvykévipwong, Beppokpaaciag, kAT). Teivovtag
TPOG TNV LooppoTia Tapdyovv evtpomia. H avto-opydvwon mbavwg peyloTomolel To
pvbud mapaywyns evrtpomiag. IMapovoidlovtal mapadelypata OMWG Ol UETAYWYLIKESG
kuPéAes Benard, 1 tOpfn, n wopwon Sidpecov Amidikwv pepfpavov. Mapovoialetal n
amoym O6tL ot {wvtavol opyaviopol amoteAoUv auTto-opyavwpéva cvotnuata. Emiong
efnyeital 6TL To @aLVOUEVO TNG {w1|G, av Kal 0dNYel o€ OA0 KoL TTEPLOCATEPT OPYAVWOT) Kol
«Ta&n» 6ev avtifaivel To evTePO vopo g Oeppoduvapikng. To HEPOG auTO KAEIVEL PE TNV
EKTIUMON OTL av 1 {w1N OVIWG ATOTEAEL ATTOPPOLX TNG HUEYLOTOTIOMONG TNG TAPAYWYNG
EVTPOTILG, TOTE 1 ELPAVLOT] TNG €lval TOAV TBav dTav VTTAPYXOLVV KATAAANAEG GUVONKEG.
Yto 8eltepo pepog mapovotdletal 1 évvola touv FewovoTUATOG, TO OTOl0 ATOTEAEL
ouvvdvacopo NG PLOcEALPAG, TNG ATUOCPALPAS, TNG LEPOCEALPAS Kl TNG ALBOG@ALPAS OE
éva evialo ovotnua. E&nyeltar 4tL n évvola ™G evtpomiag émase kevtplkd poAo otnv

eR@avion kat eEEALEN ™G €vvolag Tov FewovoTuaTog.
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[Tapovolaletal eva TAPASELYUX TEXVOAOYLIKNG EPAPUOYNG TNG EVTIPOTIAG. ZUYKEKPLUEVA
TAPOVCLAJETAL WG 1 apyN] HEYLOTNG evTpoTiiag pmopel va Ponbnoel oto oxedlaocud
UETPNTIKWVY CUCTNUATWY KL 0TNV ETA0YN TWV BEATIOTWY BECEWVY TWV ALoON T PWV.

EmiAoyog

H epyacia kAeivel pe tov emidloyo o oTol0G avake@UAQLWVEL TA PACIKA OMUElX TNG.
Tuykekplpéva emavaAapfavetal  amoPn OTL 1] EPUNVELA TNG EVTPOTIAG WG METPO NG
«ataglog» elval TapaATAVNTIKY KAl OTL 1] EpuUnVela TG w¢ HETPO NS afefatdnTag sival
mo owot). Emiong emavadapfavetar n  amoymn OTL 1 Beppoduvaplkn Kot M
TIANPOPOPLOBEWPNTIKY EVTPOTILX ElVAL OTEVA OXETL(OUEVEG EVVOLEG, HE TNV TPWTN VA
amoTeAEl 01K TePIMTWOT TNG S€VTEPNG. TN CUVEXELX ATIAPLOUOVVTAL OL EQAPHUOYEG TIOU
TAPOVCLACTNKAY Kol Eekabapiletal OTL MOAAG (NTUATA OXETIKA HE TNV EVTPOTI
TAPAUEVOUV AVOLXTA.
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Preface

Entropy is one of the most important concepts of science, and, at the same time one of the
most confusing and misunderstood, for students and scientists alike. Originating in the field
of thermodynamics, it is used to explain why certain processes seem to be able to occur
only in one direction. The field of application of entropy however is much wider, almost
universal. It is not an exaggeration to say that entropy can be used to explain processes
taking place in the hearts of the farthest stars and in the nuclei of the smallest living cells.

My goal in writing this thesis is to give a comprehensive introduction to the concept of
entropy. A single thesis cannot cover the whole topic. Therefore this document aims at
showing the breadth of potential applications in hydrology and beyond, at discussing some
common misconceptions about entropy, and, hopefully at helping readers to grasp its
essence.

In writing this thesis I hope that [ will offer something back to the Department of Water
Resources and Environmental Engineering of the National Technical University of Athens for
offering me the opportunity to attend the interdisciplinary post-graduate program Water
Resources Science and Technology; and to the ITIA research group for supervising my
studies and research since 2003. I hope that this thesis will help future students to
appreciate and see beauty in entropy, and perhaps gain some better understanding in the
concepts surrounding it.

Entropy is a measure of uncertainty. Perhaps this is why it is so difficult to grasp, as our
human mind is afraid of losing control. Therefore it prefers to pretend that there is some
certainty. However it is uncertainty that gives rise to beauty both in our lives and in Nature,
as | show with some examples in this thesis.

[ feel very grateful towards Professor Demetris Koutsoyiannis for suggesting such a
beautiful topic for my thesis and for having been directly or indirectly a guide and
inspiration for my scientific and academic development. I would like to thank Professor
Constantinos Noutsopoulos and Professor Nikos Mamasis, members of my examination
committee for their critical comments which helped me improve this document.

[ would like to thank Kamila for offering me support, advice and some extremely
interesting examples of entropy during the preparation of the thesis. I would also like to
thank Theodora, Marcel and Diogo for discussions regarding entropy. Finally [ would like to
thank and dedicate this thesis to my friend Nikolas Sakellariou for inspiring me in the
spring of 2010 to leave my consulting job in San Francisco and return to Academia and his
uncle Nikolas Larentzakis for offering me support in the first few months upon my return
to Athens. 27/08/2012



1. Introduction

Very few scientific concepts are as universally important, and, at the same time, as elusive,
as entropy3. It was first introduced to give a mathematical form to the second law of
thermodynamics. However it has found applications in a wide range of sciences, including
Hydrology. This thesis is directed mainly to a hydrologic engineering audience. Its goal is to
introduce the concept of entropy, to present some of its implications and applications, and
to clarify some common misconceptions about its meaning.

Entropy is usually associated - in my view wrongly — with “disorder” and “mixed-upness”.
My point of view is that entropy is a measure of uncertainty, which sometimes leads to
patterns, forms and “order”. The cover image of the thesis was chosen to demonstrate
exactly this fact. It shows hexagonal convection cells, known as Benard cells, which appear
spontaneously, under the correct conditions, when a thin layer of liquid is heated from
below. They emerge due to the second law of thermodynamics, yet they exhibit structure
and order.

Etymology of entropy

The word entropy originates from Greek, where it is called evrpomia. It is synthesized by
the prefix “ev”, which means “in”, and the noun “rpomr”, which means a “turning”, a
“transformation”, a “change”. Therefore entropy literally means the internal capacity for
change or transformation. The term was firstly used in a scientific context by Rudolf
Clausius in 1863 (Ben-Naim, 2008).

He used an Ancient Greek term because he preferred “going to the ancient languages for the
names of important scientific quantities, so that they mean the same thing in all living
tongues” (Ibid.).

History of entropy#

Entropy was introduced in 1863 within the field of thermodynamics to give a mathematical
expression to the second law of thermodynamics. The law was first formulated around 15
years earlier, in 1849, by Clausius as a qualitative statement which, paraphrased, states

3 In this document I use italics to give emphasis to words or phrases. Short quotes from other works are
presented between quotation marks and in italics, while longer ones are formatted as block quotations, i.e.
indented and in italics.

4 A more detailed account of the history of thermodynamics, entropy and the second law is presented in
Chapter 2.



that heat does not flow spontaneously from a cold to a hot body. A year later Kelvin
formulated it as a different, but equivalent, qualitative statement, which, paraphrased,
states that no engine can turn 100% of the used energy to work. Using the concept of
entropy Clausius introduced a new formulation, which states that the entropy of a system
and its surroundings increases during a spontaneous change, from which it results that the
entropy of a system at equilibrium is maximum.

In coining the term “entropy”, Clausius chose to use the noun “tpom” to denote
transformation and the prefix “ev” to make it sound like the word energy because “these
two quantities are so analogous in their physical significance, that an analogy of
denominations seems to be helpful” (Ben-Naim, 2008).

Around 30 years later Ludwig Boltzmann and Josiah Gibbs developed the field of statistical
mechanics which explains the properties and laws of thermodynamics from a statistical
point of view, given that even a small quantity of matter is composed of an extremely large
number of particles. Within statistical mechanics entropy was given a new, probabilistic,
definition. It was this definition that has led to the widespread but misleading view that
entropy is a measure of disorder.

Another 50 years later, in 1948, Claude Shannon, an electrical engineer, pioneered the field
of information theory. In his search for a measure of informational uncertainty he
discovered that such a measure should have the same mathematical form as Gibbs’
entropy. So Shannon gave to his measure the name entropy. He chose this name following
the suggestion of John Von Neumann. According to Tribus and Mclrvine (1971) Shannon
was greatly concerned how to call his measure. Von Neumann told him

You should call it entropy, for two reasons. In the first place your uncertainty

function has been used in statistical mechanics under that name. In the second

place, and more important, no one knows what entropy really is, so in a debate you

will always have the advantage.

The fact that the thermodynamic and information-theoretic entropies have the same
formula and name has led to a debate about whether the two concepts are identical or not.
My view is that they are the same concept. Both entropies are a measure of uncertainty,
just applied to two different phenomena, namely to the random moves of particles on the
one hand, and to the transmission of information on the other.

Based on the works of Gibbs and Shannon, Edwin Jaynes introduced in 1957 the principle
of maximum entropy, which is a method of statistical inference. Jaynes introduced it within



the field of statistical mechanics. But as a method of inference, it has applications in many
fields. It is mostly through this principle that the concept of entropy is related to Hydrology.

Meaning of entropy

In most textbooks it is explained that entropy means “disorder”, “mixed-upness”, “chaos”,
etc. (e.g. Cengel and Boles, 2010). I find these explanations misleading. Disorder and mixed-
upness are subjective concepts. They do capture some features of entropy and the second
law of thermodynamics. But they are misleading because some of the manifestations of the

law, such as the Benard cells, lead to the opposite of what is usually meant as disorder.

Other sources explain that entropy is “unavailable energy”, “lost heat”, etc. (e.g. Dugdale,
1996). These explanations are wrong. Energy and entropy are different physical quantities
with completely different meanings. A form of energy (“unavailable” or “heat”) cannot be
used to explain entropy. As Ben-Naim (2008) explains

both the “heat loss” and “unavailable energy” may be applied under certain

conditions to TAS but not to entropy. The reason it is applied to S rather than to

TAS, is that S, as presently defined, contains the units of energy and temperature.

This is unfortunate. If entropy had been recognized from the outset as a measure

of information, or of uncertainty, then it would be dimensionless, and the burden

of carrying the units of energy would be transferred to the temperature T.

Another point of view, which I find convincing, is that entropy is a measure of uncertainty.
This point of view will become much clearer in the following chapters. The fact that
uncertainty can be measured may sound surprising. But even if the outcome of a
phenomenon is uncertain, the degree of uncertainty can be quantified. For example if a ball
is hidden in one out of three boxes the uncertainty is much less than if it were hidden in
one out of one hundred boxes. Or, for example, the uncertainty for the highest temperature
on a random spring day, say March 17th, in a tropical country is much less than the
uncertainty in a Mediterranean country such as Greece.

Ben-Naim (2008) suggests that entropy is a measure of “missing information”. The word
“information” is potentially misleading. As it is explained in Chapter 2 the meaning of the
word in the context of information theory does not refer to the content of a message but to
the message itself, more specifically to the letters that are used to construct a message.
Entropy measures the uncertainty of selecting one or another letter, if a message is
considered as a stochastic series of letters. With this clarification in mind, the terms
“uncertainty” and “missing information” are equivalent.



It should be clarified here that uncertainty should not be viewed as something subjective.
Uncertainty does not exist because we are not certain about the outcome of a phenomenon.
Similarly missing information does not refer to the fact that we do not know the outcome.
Uncertainty, or missing information, is a property of the phenomenon itself.

Outline of the thesis

The concept of entropy along with related concepts from probability theory, information
theory and thermodynamics, will be defined in detail in Chapter 2. Chapter 3 is dedicated to
applications of entropy and related concepts to the field of hydrology and beyond. The
thesis concludes with the epilogue in Chapter 4. The concept of entropy, both historically
when it was being introduced, and in the present as new implications and applications are
being discovered, pushes the limits of our fundamental understanding of nature. As such it
is a very “philosophical” concept and therefore the thesis discusses at various sections
philosophical questions that are related to entropy.



2. Definitions

This chapter provides definitions of the main concepts that are related to entropy from the
areas of probability theory, statistics, information theory, and thermodynamics. It also
describes briefly how the concepts developed historically and what technological, scientific
and philosophical questions they came to answer.

The concept of entropy, whether in the thermodynamic or information-theoretic sense, is
closely related to probability theory and statistics. Therefore the first section of the chapter
is dedicated to the introduction of the main concepts of probabilities. Some detailed
definitions are presented in Appendices A and B.

The next two sections present entropy first from an information-theory and then from a
thermodynamic perspective. They do not follow the order that the concepts were
historically developed. I hope that using a reverse order the concepts will be easier to
follow.

The fourth section presents the principle of maximum entropy, which is a method of
statistical inference.

Finally, the fifth section presents the debate about the relation between information-theory
and thermodynamic entropy.

2.1 Probability Theory

Early theories of probability

Probability theory is the branch of mathematics that studies probabilities. It was originally
developed in the 16t century by the Italian Renaissance mathematician, astrologer and
gambler Gerolamo Cardano and in the 17t century by the French mathematicians Pierre de
Fermat and Blaise Pascal to analyze gambling games (Ben-Naim, 2008).

For example (Ben-Naim, 2008), there was a popular die game where the players would
each choose a number from 1 to 6. The die would be thrown consecutively until the
number chosen by one player appeared 3 times. The game would end and this player
would be the winner. The problem to be solved was how to split the money in the pot if the
game had to be stopped before there was a winner. For example if a player’s number had



appeared once and the number of another had appeared twice, and then the police stopped
the game, how should they split the money?

Axiomatic probability theory

In his 1933 monograph Grundbegriffe der Wahrscheinlichkeitsrechnung (in English
Foundations of the Theory of Probability, 1956) Soviet mathematician Andrey Nikolaevich
Kolmogorov presented the axiomatic basis of modern probability theory. According to
Koutsoyiannis (1997) and Ben-Naim (2008) probability theory is constructed by three
basic concepts and three axioms.

The basic concepts are:

Sample space
The sample space Q is a set whose elements w are all the possible outcomes of an
experiment (or trial).

For example, for the throw of a die the sample space is:
0={1,2,3,4,5,6).

Likewise the sample space for the throw of two distinguishable dice is:

0 ={[11],[12],[13],[14],[15],[16],[21],[22], [23],[24],[25], [26], [31],[3 2], [3 3],
[3 4], [3 5], [3 6], [4 1], [4 2], [4 3], [4 4], [4 5], [4 6], [5 1], [5 2], [5 3], [5 4], [5 5], [5 6],
[61],[62],[63],[64],[65],[6 6]}

Note that the outcomes {[1 2]} and {[2 1]} are different due to the distinguishability of the
two dice.

Events

The subsets of Q are called events. An event A occurs when the outcome w of the
experiment is an element of A. The sample space is also called the certain event. The empty
set @ is also called the impossible event.

From the first example above, the event “less than or equal to 2” is
A=1{1,2}.

From the second example above, the event “the sum is equal to 7” is
A={[16],[25],[34],[43][52],[61]}

The event “the sum is equal to 1” is
A=0.



The field of events 7 is a set of all the subsets 4 of , including® Q itself and the empty set.

Measure of probability
The measure of probability P is a real function on 7. This function assigns to every event 4 a

real number P(A) called the probability of A.

The three elements {(), 7, P} together define a probability space.

The three axioms
The following three axioms define the properties that the measure of probability P must
fulfill.

1. P(Q) =1 (2.1)
2. 0<P)<1 (2.2)

These two axioms define the range of the function P(4), and the fact that the certain event
has the largest probability measure.

3a. P(AUB)=P(A)+P(B),ifANB=0 (2.3)
3b. Pl |JA4i|= X P(A),ifAiNA;j=0,fori#j. (2.4)
i=1 i=1

According to Koutsoyiannis (1997) axiom 3b is introduced as a separate axiom because it is
not a consequence but an extension of 3a to infinity. The events A and B of 3a (or A; of 3b)
are said to be disjoint or mutually exclusive.

Two immediate consequences of the three axioms are presented below.

Probability of the impossible event
Given that

QUG=Q and QNO=0
and given axioms 1 and 3a,

P(@)=0 (2.5)

5 According to set theory a set is always subset of itself; the empty set is a subset of all sets.



Non-disjoint events
For two non-disjoint events A and B it is shown that
P(AUB)=P(A)+P(B)-P(ANB) (2.6)

Two important concepts of probability theory are the independence of events and
conditional probabilities.

Independent events
According to Ben-Naim (2008), two events are said to be independent if the occurrence of
one event has no effect on the probability of occurrence of the other. In mathematical
terms, two events are called independent if and only if

P(AN B)=P(A) P(B) (2.7)

For n independent events we have
P(A1NA2N ...NAn)=P(A1) P(A2) ... P(An) (2.8)

Conditional probabilities
The conditional probability of an event is the probability of its occurrence given that
another event has occurred.

The conditional probability is denoted and defined as

P(A N B) (2.9)

P(A|B)=""p(p)

If the two events are independent then from 2.7 and 2.9:
P(AnB) P(A) P(B)
P(B) -~ P(B)

which means that the occurrence of B has no effect on the occurrence of 4, which is what

P(A|B) = = P(A) (2.10)

we would expect for independent events.

Definitions of probability

Even though 80 years have passed since Kolmogorov presented the three simple axioms on
which the whole mathematically theory of probability is based, the meaning of the concept
of probability remains an open problem for mathematicians and philosophers. Here I

present some clarifications regarding the definition of probability.

According to Ben-Naim (2008),
In the axiomatic structure of the theory of probability, the probabilities are said to
be assigned to each event. These probabilities must subscribe to the three



conditions a, b and c [axioms 1, 2, 3a and 3b of this thesis]. The theory does not
define probability, nor provide a method of calculating or measuring these
probabilities. In fact, there is no way of calculating probabilities for any general
event. It is still a quantity that measures our degree or extent of belief of the
occurrence of certain events. As such, it is a highly subjective quantity.

The two most common definitions of probability are presented by Ben-Naim (2008). These
definitions provide ways to calculate probabilities and are called the classical definition,
and the relative frequency definition.

The classical definition

The classical definition is also called a priori definition. A priori is Latin for “from the
earlier”, in the sense of “from before”, “in advance”. According to this definition
probabilities are calculated before any measurements of the experiment at hand are made.

Following Ben-Naim’s notation, if N(total) is the total number of outcomes of an
experiment (i.e. the number of elements of the field of events 7 ) and N(event) the number
of outcomes (i.e. the number of elementary events) composing the event of interest, then
the probability of the event is calculated by the formula

N(event)

P(event) = N(total)

(2.11)

This definition is based on deductive reasoning: starting from what is known about the
experiment (numbers of events) we reach a conclusion about the probabilities of possible
events. It is based on the principle of indifference of Laplace, according to which two events
are to be assigned equal probabilities if there is no reason to think otherwise (Jaynes,
1957). More specifically this definition is based on the assumption that all elementary
events have the same probability. This assumption makes the classical definition circular
(Ben-Naim, 2008) since it assumes that which it is supposed to calculate. For example, as
stated earlier, the probability of the outcome “4” when we throw a die is 1/6. But why do
we believe that each of the six outcomes of a fair die should have the same probability of

occurrence?

The classical definition, having the form of formula 2.11, is only one specific way to
calculate a priori probabilities. In subsection 2.6, a different much more powerful and
rigorous way to calculate a priori probabilities will be presented based on the principle of
maximum entropy. The classical definition will be shown to be just a special case of this
principle and we will be able to answer why each outcome of a die throw has probability
1/6.
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The relative frequency definition

This definition is also called the a posteriori or experimental definition. A posteriori is Latin
for “from the later”, in the sense of “in hindsight”, “in retrospect”. According to this
definition probabilities are calculated based on measurements, i.e. after the experiment.

Following Ben-Naim’s (2008) example, we consider the toss of a coin. We denote the two
possible events as H (head) and T (tail). We toss the coin N times and count how many time
H occurs, denoting the number of occurrences as n(H). The frequency of occurrence of H is
equal to n(H)/N. According to the relative frequency definition the probability of H is the
limit of the frequency of occurrence when the total number of tosses N tends to infinity, i.e.
P(H) = lim n_(NHl (2.12)

This definition is not problem-free either. First, it is not possible to repeat an experiment
an infinite number of times, and second, even if it were possible, there is no guarantee that
the limit of formula 2.12 will converge. Therefore this definition is used for a very large N,
without having the certainty however, of how large is large enough.

Random variables and probability distributions

A random variable is a function X defined on a sample space () that associates each
elementary event w with a number X(w) according to some predefined rule. The outcome w
may be a number and the predefined rule a mathematical function (Koutsoyiannis, 1997).
For example w may be the reflectivity measured by a rainfall radar and the predefined rule
may be the formula transforming the reflectivity into rainfall intensity. But the outcome
and the rule may be much more abstract. For example w may be the color of the t-shirt of
the first person that Aris sees every morning and the rule may be assigning the values “1”
for “red”, “2” for “blue”, “3” for “green” and “4” for “all other colors”.

Usually we omit the element w and simply write X, unless for clarity reasons we cannot
omit it. To denote the random variable itself we use capital letters while to denote a value of
the random variable we use small letters. For example we write {X < x} meaning the event
that is composed of all elementary events w such that the values X(w) are less than or equal
to the number x. The probability of such an event is denoted P({X(w) < x}) or more simply
P(X < x) (Koutsoyiannis, 1997).
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Distribution functions
According to Koutsoyiannis (1997), the distribution function Fx is a function of x defined by
the equation

Fx(x) =P(X<x),x€R, Fxe[0,1] (2.13)

Fx is not a function of the random variable X, it is a function of the real number x. Thus X is
used as an index of F, i.e. we write Fx, not F(X). We use the index to differentiate between
distributions of various random variables. If there is no danger of confusion we can omit
the index.

Furthermore, the domain of F is not identical to the range of X(w) but is always the whole
set of real numbers R. F is always an increasing function, following the inequality
0 = Fx(-00) < Fx(x) < Fx(+0) =1 (2.14)

Fx is also called cumulative distribution function (CDF) or non-exceedance probability.

If Fx(x) is continuous for all x, then the random variable X(w) is called continuous. In this
case the sample space () is an infinite and uncountable set. On the other hand if Fx(x) is a
step function, then the random variable X(w) is called discrete. In this case the sample space
(1 is a finite set or an infinite and countable set. It is important to note however that even
for discrete random variables, the CDF is always defined for all x € R.

For continuous random variables, the derivative of the CDF is called probability density
function (pdf) and is given by

S = 4 2.15)

The cumulative distribution function can be calculated by the inverse of equation 2.15,
which is

Fx(x) = [ fu(§)d¢ (2.16)

The variable £ is just a real number. We use it within the integral so that we can use x as the

integration limit.
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The main properties of the probability density function are
fx(x)=0 (2.17)
and

?fx(x)dx =1 (2.18)

Appendix A presents additional properties of random variables, namely distribution
functions (marginal, joint and conditional), expected values, and moments.

Stochastic processes®

The theory of stochastic processes is an application of probability theory. It can be used to
describe the temporal evolution or the spatial relations of random variables. The formal
definition of a stochastic process is that it is “a family of random variables” (Koutsoyiannis,
1997).

A stochastic process is denoted as X; where the index t takes values from an appropriate
index set T. T can refer to time, for example the stochastic process can be the temperature
of an area. But T can also refer to space or any other set. For example the stochastic process
can be the concentration of a pollutant along the length of a river.

Furthermore T's dimension can be greater than one. In this case the stochastic process is
usually called a random field. In this case if v = {v1, vz, ..., v} is a vector of the n-dimensional
index set V, then a random field is defined as the family of random variables X(v). The
random variable may be scalar (i.e. be of the form R” = R) or have more dimensions (i.e. be
of the form R" = R™). An example of a scalar 2-dimensional random field is a landscape,
where the vector v is the coordinates of a point and the random variable is the altitude. An
example of a scalar 3-dimensional random field is the air temperature and an example of a
vectorial 3-dimensional random field is the windspeed.

The greatest advantage of using stochastic processes for the study of random phenomena
instead of just using statistics is that we can take into account the temporal or spatial
dependence between random variables.

For example if we are interested in successive throws of a die we do not need the theory of
stochastic processes given that each throw is independent. But if we are interested in the

6 This subsection is based on Koutsoyiannis (1997) and Theodoratos (2004)
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average daily discharge of a large river we can use stochastic processes. We can reasonably
expect that the discharge of a day will statistically depend on the discharge of the previous
day. We can use certain stochastic processes to model this dependence.

Distribution functions
The distribution function of the random variable X; is defined as

F(x; t) = P(X(t) <x) (2.19)
and is also called 15t order distribution function of the stochastic process.

We can also define higher order distribution functions as joint distribution functions of n
random variables X: For example the function

F(X1, X2, ., Xn; 1, 2, ..., tn) = P(X(tl) <x1N X(tz) <x2N..N X(tn) < Xn) (2.20)
is called the nth order distribution function of the stochastic process.

The mean, or expected value, of a stochastic process is defined as

(D) =E[X(0) ] = [xflx; 1) dx (221)

The second order joint covariance is called autocovariance and is given by
Cov[ X(t1), X(t2) ] = E[ (X(t1) - p(t1)) (X(t2) - u(t2)) ] (2.22)

Stationarity
A stochastic process is stationary when the probability distributions of all orders of the
random variable X; are constant for all t. Mathematically this can be expressed as:

f(x1, X2, ooy Xy t1, E2, ooy t0) = f(X1, X2, o, X t1+C 2+ ¢, ., ta+ ), foralln, ¢ (2.23)

A stochastic process is called wide-sense stationary when the probability distributions of X;
are not necessarily constant, but the mean is constant and the autocovariance depends only
on the difference 7 = (t1 - t2). Mathematically this can be expressed as:
E [ X(t) | = 1 = constant (2.24)
and
Cov[ X(8), X(t + 7) 1 = E[ (X(¢) - ) (X(t + 1) - ) ] = C(7) (2.25)
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Ergodicity

A stochastic process is called ergodic when its statistical properties (e.g. its mean) can be
estimated from a single sample of the stochastic process of sufficient length.
Mathematically, for a discrete process this can be expressed as:

1 N
E[ X(t) ] =}]imNZX(t) (2.26)
t=0
and for a continuous process as:
T
o1
E[X(0)]=lim S X()de (2.27)
0

Ergodicity is a very important property. Only when a stochastic process is ergodic we can
perform measurements to infer its statistical properties. If it is not ergodic then no matter
how long a measurement record is we cannot calculate its statistics.

2.2 Information theory: Shannon’s Entropy

Information theory is a branch of applied mathematics. It was established by the American
mathematician and electrical engineer Claude Elwood Shannon while he was working at
Bell Laboratories, and presented in his 1948 paper titled A Mathematical Theory of
Communication. Information theory was developed to study the sending and receiving of
messages on telecommunication lines. After its introduction it found many applications in
the field of electrical and computer engineering, helping engineers solve problems
regarding the storage, compression and transmission of signals and data. However
concepts of information theory are now used in very diverse fields of science, from biology
to linguistics and from economics to ecology.

The Shannon entropy, a measure of information, is one of the most basic concepts of
information theory. Before giving the formal definition of Shannon entropy I discuss the

concept of information.

Information

The word information is used widely in our daily lives. It has various meanings for various
persons in various circumstances. It can be used colloquially or formally, subjectively or
objectively.
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In the context of information theory when we use the expression “the information carried
by a message” we are not interested in the content of the message but on the message itself,
specifically on the size of the message and the probability of the message being what it is.
The content of the message may be important or trivial; it may be true or false; it may be
useful or useless; it may even be completely meaningless, just a random series of letters.
This is irrelevant for information theory. Only the message itself is relevant to information
theory.

According to Shannon
The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point. Frequently
the messages have meaning; that is they refer to or are correlated according to
some system with certain physical or conceptual entities. These semantic aspects
of communication are irrelevant to the engineering problem. The significant
aspect is that the actual message is one selected from a set of possible messages.

Telecommunications and stochastic processes

Information theory could be seen as a branch of stochastic processes. It uses concepts such
as probabilities, random variables, Markov processes’, etc. This may be surprising at first.
After all, telecommunications are based on devices and systems designed, controlled and
used by humans in very specific ways to transmit signals. Stochastic processes on the other
hand are dealing with processes that occur randomly. It is very useful however to view a
communication signal as a random process. The reason is that even though the sender of a
signal knows what was sent, the receiver does not. Therefore from the point of view of the
receiver, the signal is a random signal. In addition no system is perfect, therefore the signal
is transmitted with noise, i.e. with random, small or large, perturbations. Therefore when
designing telecommunication systems we treat signals as random. Telecommunications
and stochastic processes nowadays are so closely linked that many times even natural time
series, such as rainfall time series, are called signals.

7 A Markov process is a stochastic process with the property that each successive random variable depends
only on its previous random variable and not on random variables further back. An important consequence of
this property is that if we know the present value of a Markov process we can predict its future with the same
uncertainty as if we knew its entire past. Mathematically this can be described by the equation

X() = aX(i-1) + V() (2.42)
where X(i) the random variable at time i, a a constant that gives rise to the dependence of X(7) to X(i-1), and
V(i) white noise, i.e. an independent random variable. (Koutsoyiannis, 2007)
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Shannon’s work on information theory was based on earlier contributions of Harry Nyquist
and Ralph Hartley. But Shannon formalized the existing theory, expanded it to include noisy
transmissions, introduced stochastic approaches, and, most importantly, discovered the
information measure of entropy.

In the beginning of his paper, Shannon introduces the basic definitions of information
theory, such as what is a signal, an information source, a channel, noise, etc.

Then he presents the applicability of stochastic processes within information theory. Using
an example he explains various ways that a transmitted written message can be treated by
a probabilistic approach. He assumes that the “alphabet” used for the messages has five
letters. First he assumes that each successive selection of a letter is independent and all five
letters are equiprobable. Then he assumes that letters have different probabilities. Making
the example more complicated he assumes that successive symbols are not independent,
but have some correlation to one or more previous selections. Finally he expands the
example to include the random creation and selection of “words”. A second example
expands the previous to the 27 symbols of the English alphabet (26 letters and the space).
The processes that he described in these examples are discrete Markov processes.

Thus the ground had been laid for the introduction of the concept of entropy. But before
presenting the concept of entropy I would like to make two interesting side-notes
regarding the first sections of Shannon’s paper.

First, the first time the term “bit” was used in engineering was by Shannon in this paper. He
gives credit to ]. W. Tukey for suggesting it. The term bit comes from the combination of the
words “binary digit”. A binary digit is a unit of information and results from using a
logarithm with base 2 as a measure of information. The bit has become the typical unit of
information due to the fact that digital computers are based on the so-called “flip-flop
circuits”, which are devices that can be in two states. Therefore, as Shannon explains, N
such devices can store N bits, since the total number of possible states is 2V and log22N = N.

Second, 100 years before Shannon’s paper was published, Edgar Allan Poe presented a
methodology that can be used to decipher an English text written with numbers and
symbols instead of letters. His methodology was based on a zero-order Markov process, i.e.
he used only the relative frequencies of English letters, and some intuitive reasoning to
determine the dependence structure of characters and words. It appeared in 1843 in the
short-story “The Gold-Bug”. Perhaps Poe should be given some credit for the development
of information theory. In fact, according to some sources, for example an interview he gave
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in 1982 to Robert Price®, Shannon’s interest in the field was influenced by reading the Gold-

Bug as a boy.

Shannon’s Entropy

The fourth section of Shannon’s paper was titled “Choice, uncertainty and entropy”. He
wanted to quantify the uncertainty involved in the transmission of a message. Shannon first
defined what he wanted to quantify. He asked:
Can we define a quantity which will measure, in some sense, how much
information is “produced” by such a Markoff process, or better, at what rate
information is produced?
Suppose we have a set of possible events whose probabilities of occurrence are p1,
p2,.-, pn- These probabilities are known but that is all we know concerning which
event will occur. Can we find a measure of how much “choice” is involved in the
selection of the event or of how uncertain we are of the outcome?

Basic properties of the uncertainty measure
Then Shannon defined three properties that we can reasonably demand this measure to
have. He wrote:
If there is such a measure, say H(p1, pz,..., pn), it is reasonable to require of it the
following properties:
1.  Hshould be continuous in the pi.
We can reasonably expect that for small changes of the probabilities p; the change of the
measure H should also be small.

1
2. If all the pi are equal, pi= . then H should be a monotonic increasing

function of n. With equally likely events there is more choice, or uncertainty,
when there are more possible events.
It is intuitively clear, as Shannon explains, that as n increases there is more uncertainty as
to which event occur. Therefore the measure of uncertainty is expected to increase.
3. Ifa choice be broken down into two successive choices, the original H should
be the weighted sum of the individual values of H. The meaning of this is
illustrated in Fig. 6 [Figure 2.1 of this thesis]. At the left we have three

1 1 1
possibilities p1 = 2/ P2=3,P35. On the right we first choose between two

8 The interview can be read in http://www.ieeeghn.org/wiki/index.php/Oral-History:Claude_E._Shannon
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1
possibilities each with probabilityE, and if the second occurs make another

21
choice with probabilities 33" The final results have the same probabilities
as before. We require, in this special case that
(lllj_ (ll) 1 Zl)
236 )12 2)*2M 353
1
The coefficient 2 is because this second choice only occurs half the time.

This requirement is equivalent to demanding that the measure of uncertainty depends only
on the distribution of p; and not on our way of finding out which event occurs. In other
words it is a requirement for objectivity. It clarifies that H measures the uncertainty that is
inherent in the experiment itself and not our uncertainty.

1/2 o 1/2
EE?/a
2/3
1/6 1/2 2anye
1/31/6

Figure 2.1: Decomposition of a choice from three possibilities. Source: Shannon (1948)

Formula of the measure of uncertainty
Shannon then proved? that the only function that satisfies these properties is of the form:

n
H=-KY plogpi (2.28)
=1

K is any positive constant. The base of the logarithm can be any number. In many cases the
choice of some specific logarithmic base can greatly simplify calculations. In information
theory frequently the base is chosen to be equal to 2 and the unit of the resulting measure
of uncertainty is a bit. In statistical physics the base is usually the number e, i.e. the
logarithm is the natural logarithm (In).

9 Shannon’s original proof can be found in Appendix 2 of Shannon (1948). An additional proof can be found in
Appendix F of Ben-Naim (2008).
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We can easily see by equation 2.28 that the measure of uncertainty is the expected value of
the function

g(pi) =-Klogpi (2.29)
therefore

H=E[-Klogpi] (2.30)

Even after proving equation 2.28 Shannon did not realize that his measure of uncertainty
had the same form as the thermodynamic entropy of Gibbs. Before publishing his paper
however he had the discussion with Von Neumann that was mentioned in the Introduction.
Thus he wrote:

The form of H will be recognized as that of entropy as defined in certain

formulations of statistical mechanics where p; is the probability of a system being

in cell i of its phase space. H is then, for example, the H in Boltzmann's famous H

theorem. We shall call H=- )" pilogp; the entropy of the set of probabilities pi,..., pn.
i=1
Finally, regarding notation Shannon clarifies that:
If x is a chance [i.e. random] variable we will write H(x) for its entropy; thus x is
not an argument of a function but a label for a number, to differentiate it from
H(y) say, the entropy of the chance variable y.

Shannon used the letter H as the symbol of entropy to honor Boltzmann and his famous H-
theorem19,

Shannon’s entropy can be seen as a function that manages to summarize an entire
probability distribution with a single number. More specifically, the quantity logp; can be
seen as a quantity that measures how likely is the occurrence of the event i, the only
difference with p; is that instead of mapping the likelihood of i in the range [0,1], it maps it

in the range (-0,0]. Based on this, the quantity ) pilogpi can be seen simply as the average
likelihood of all the events i. Therefore its opposite, i.e. Shannon’s entropy, is nothing more
than the average unlikelihood of all events i. Therefore, when comparing two different
distributions, it is natural that the uncertainty will be higher for the distribution with a high
average unlikelihood.

10 Boltzmann'’s H-theorem is presented in the next section.
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The discovery of Shannon’s entropy
The way that Shannon discovered the measure of uncertainty is very interesting from an
epistemological point of view. Shannon was searching for a measure of the size of
information as technological developments in telecommunications were pushing for a
formalization of the theory of information. He used common sense to come up with three
very simple properties that the measure must satisfy. Then he discovered that there is only
one function that satisfies these properties, so he adopted it. Furthermore he found that
this function has a few more properties, which according to him

further substantiate it as a reasonable measure of choice or information.
These and other important properties are presented in the following section.

Notwithstanding the debate regarding the relation - or non-relation - between the
information-theory and thermodynamic entropy, it should be clear that there is nothing
“magic” or metaphysical in the form of equation 2.28. It is nothing more than what the
mathematics gave to Shannon when he asked for three simple properties, based on
common-sense.

Properties of Shannon entropy??

The certain event
It can be easily proved that for any distribution p;, H = 0 if and only if one p; is equal to one
(certain event) and all other p; are equal to zero.

For any distribution p;, i =1, 2, ..., n, we know that,
0< pi < 1
and

-0 <logpi<0

It follows that if p; # 1, or in other words if 0 < p; < 1 for all p;, then

logpi<0 = -logpi>0 = -plogpi=z0 = H=- Zp,-logp,- > 0"

i=1

11 The formulation of the properties is after Shannon (1948), Ben-Naim (2008). The notation may be
different.

* The inequality - pilogp; = 0 becomes H > 0 because not all p; can be equal to zero, so their sum cannot be
equal to zero.
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While if pj = 1 for a certain j and p; = 0 for all other i, then
logp;=0
therefore
pilogpi = 0 for all i, including j
and

H=-% plogp: =0

i=1

This property is a consequence of the fact that logl = 0. It is absolutely reasonable to expect
that a reasonable measure of uncertainty should be zero when the outcome is certain!

Equiprobable events (uniform distribution)
For a given distribution p;, i = 1, 2, ..., n, uncertainty H is maximum when all the events i are
equiprobable, and have probabilities

pi=, (2.31)

This is proved using the method of Lagrange multipliers2.

This is also an intuitively expected property. It is reasonable to expect that the most
uncertain experiment is one where all outcomes are equally probable. If some of the events
are more probable, the uncertainty for the outcome is less.

The uncertainty corresponding to the uniform distribution is given by

n

1 1 1 1
Hmax = - 2 pilogpi = - Zglog;: -log =logn (2.32)

i=1 i=1

Joint entropy
Let X and Y be two random variables with distributions

Di= Py (I) = P(Xi) = P{X= Xi}, i= 1, 2, oy N
and

g =Pr(D=P0) =P{Y=y},j=12,...m

Also let the joint probability distribution be
Pij = Pxy(i N j) = Pxv(xi N yj) = P{(X = x)) 0 (Y =y;)}

12 The proof is presented in Appendix B
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The joint entropy, i.e. the entropy of the compound event is13

H(XNY)=-)PjlogP; (2.33)

i,j

The marginal distributions of X and Y are

pi= Y. Pj (2.34)
j=1
and
qi=> Py (2.35)
=1
Their entropies are
H(X) =- > pilogpi =- 2 Pjlog > Pj (2.36)
i=1 ij j=1
and
H(Y) =- 2 qjlogg; =- X Pjlog 2. Py (2.37)
j=1 ij i=1
It can be easily shown that
HXNY)<HX)+H(Y) (2.38)
The equality holds when the two random variables are independent, i.e. when
Pij = piqj (2.39)

The meaning of this property is that the joint uncertainty for the combined outcome of two
experiments cannot be larger than the sum of uncertainties for each experiment alone,

which also follows common sense.
Conditional entropy

For dependent random variables a conditional measure can be defined.

13 Sometimes the joint entropy is written as H(X, Y)
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Let Xand Y be two dependent random variables. The conditional probability of the event y;
given that the event x; has occurred is given by

PWj| x) = %)ﬁl (2.40)

The conditional entropy of Y given X is defined as the average entropy of Y for each value of
X, weighted according to the probability P(x;) of each x;, or, in other words, it is defined as
the expected value of H(Y | X):

H(Y|X)] =2 P(x)H(Y | x:) = 2 P(x) ( 2 P(yi| xi) logP(yi | Xi)} =
i i Jj

=- > P(x) P(yi | xi) logP(yi | xi) = - > P(x) P(;'(Qljyl) IOgP(;i(QI_)yi) _
Lj

ij

P(xi N y)
=- 2 Pxiny)lo ;(;.) =- 2 (P(xiny)) logP(xiNy)) - P(xi N y)) logP(x;) ) =
ij

Lj

=- > P(xinyj) logP(xi N y;) + > P(xiNy;) logP(x)) =H(XNY) + Z [Z P(xi nyj)} logP(x))) =

Lj Lj i \J
=HXNY)+) Px)logP(x) =HXNY)-HX)

We have shown that
H(Y|X)=H(XNY)-HX) (2.41)

Combining this equation with inequality 2.38 we get

H(XNY)<H(X)+H(Y) © H(Y | X) + HX) < HX) + H(Y) © H(Y | X) < H(Y) (2.42)

Infinite outcomes

When n tends to infinity the uncertainty function may or may not be defined.

For example for equiprobable events,

lim H = lim logn = oo (2.43)
even though
1
lim p; = lim P 0 (2.44)
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For non-equiprobable events the definability of the uncertainty function depends on
whether the limit

lim [ > pilogp,] (2.45)

i=1

converges or diverges.

Continuous variables
For a variable with continuous distribution f{X) the uncertainty can be defined as

H(X) = } fiX)log flx)dx (2.46)

i.e.

H(X) =E[log f{x) ] (2.47)

According to Ben-Naim (2008) the uncertainty function of continuous variables may have
problems of non-convergence and different properties than the discrete case. Examples are
discussed in Appendix I of his book.

Havrda - Charvat - Tsallis entropy

According to Papalexiou and Koutsoyiannis (2012), Shannon’s entropy was generalized by
Havrda and Charvat in 1967 and reintroduced by Tsallis in 1988.

Havrda - Charvat - Tsallis entropy is defined as:

HgHaChTs(py, . pp) = (2.48)

q-1
It is easy to show that

(}l_gl HgHaChTs = Fsh (2.49)

where Hsh is Shannon’s entropy.

For a non-negative continuous random variable X, Havrda - Charvat - Tsallis entropy is
defined as:

1- J(f0)1

HgHaChTs(X) = (2.50)

q-1



25

2.3 Thermodynamics: Clausius’, Boltzmann’'s and Gibbs’ Entropy

Thermodynamics is the branch of physics that studies heat, its relation to other forms of
energy and the relation of both to the properties of matter (Moran and Shapiro, 2000; Borel
and Favrat, 2010). A word of Greek origin, thermodynamics means dynamics of heat. It
originates in the early 19t century and was developed to study the conversion of heat into
work by steam engines. But steam engines were only the trigger. As the laws of
thermodynamics, especially the first and second, were formulated and their ramifications
explored, it became clear that the field of application of thermodynamics is much wider and
covers all natural sciences. It studies the most diverse processes, from the heart of the stars
to the nuclei of living cells. Entropy and the second law of thermodynamics, in the
formulation of which the concept of entropy first appeared, attempt to explain how and
why changes in the Universe take place.

Clausius’ Entropy

The term entropy was coined by German physicist and mathematician Rudolf Clausius in
1863 (Ben-Naim, 2008) in the context of classical thermodynamics. He introduced the
concept of entropy to answer some very pressing engineering problems of his time.

Conservation of energy
The first law of thermodynamics guarantees the conservation energy. Energy cannot be
destroyed or created, it can only be transformed. For example if an engine is using some
amount of energy, Eused, to produce work, W, while some energy, Elos, is lost due to friction,
heat leaks, etc., then the following equality must hold

Eused = Elost + W (2.51)

The efficiency of such an engine is defined as the ratio of the work produced over the
energy used by the engine

W
a=p — (2.52)
It follows that
W Eused - Elost Elost
a= Eused - Eused - Eused (253)

Entropy and the second law of thermodynamics were developed as scientists and
engineers were trying to find ways to increase the efficiency a of steam engines, or
equivalently to reduce the amount of lost energy Elost.
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Carnot’s efficiency formula

French engineer Sadi Carnot, who is considered to have laid the foundations of
thermodynamics, studied the problem of engines’ efficiency. He tried to imagine an ideal
heat engine that can operate without any friction or heat leaks. A heat engine is an
abstraction of steam engines. It consists of a hot source of heat, such as a boiler, a device
that transforms heat into work, such as a piston, and a cold sink where excess heat is
dumped, such as a cold water tank.

At the time other engineers were experimenting with various steam engine designs, using
various substances instead of steam or water (Atkins, 2010). Carnot managed to prove that
the efficiency of an ideal heat engine, or in other words the maximum possible efficiency of
any real engine, depends only on the temperatures of the hot source and the cold sink,
according to the formula

Tsink

a=1 (2.54)

TSOUI‘CE

where T is the absolute temperature.

Carnot’s formula has a very important implication. Even the most perfect engine cannot
have 100% efficiency, as this would require either Tsink to be zero or Tsource to be infinite,
both of which are impossible. But his work had very little impact during his time as it was
contrasting the prevailing engineering views of the time (Atkins, 2010).

The second law of thermodynamics

The second law of thermodynamics was first formulated by Clausius in 1849, while a
second formulation was presented in 1850 by British physicist and engineer William
Thomson - later known as Lord Kelvin (Ben-Naim, 2008). Even though their formulations
were different, they can be shown to be equivalent.

Clausius was studying the flow of heat from hot to cold bodies (Atkins, 2010). This is an
everyday phenomenon, but Clausius realized that it signifies an asymmetry in nature.
While the flow of heat from a hot to a cold body is spontaneous, the reverse process is not
spontaneous. His statement of the second law was
heat does not pass from a body at low temperature to one at high temperature
without an accompanying change elsewhere.
In other words heat can flow from a cold to a hot body but only if it is facilitated by the
expenditure of work. This is the “accompanying change elsewhere” that Clausius refers to.

Kelvin was studying heat engines (Atkins, 2010). He realized that the cold sink is essential
for a heat engine to operate. Before him the cold sink was largely ignored, as engineers
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were mostly focused on the hot source or the piston. In fact some engineers did not even
realize that their designs had a cold sink, in cases for example that steam was released in
the air and the environment played the role of the sink. Kelvin's statement of the second
law however explained that
no cyclic process is possible in which heat is taken from a hot source and converted
completely into work.
In other words part of the heat that is taken from the source must be deposited to a sink.
This statement has the same implication as Carnot’s formula; no heat engine can have
100% efficiency.

Atkins (2010) shows that the two statements are equivalent. He proves that if we assume
that heat can flow spontaneously from cold to warm - that is, if Clausius’ statement is false
- then a cyclic process that converts all heat to work is possible - that is, Kelvin’s statement
is also false. Then he proves the reverse, if Kelvin's statement is false, then Clausius’
statement must also be false.

Entropy

Entropy was introduced by Clausius to give a mathematical form to the second law of
thermodynamics. Most probably when he introduced it he could not imagine how
scientists’ understanding of entropy would expand and evolve. His idea was simply that he
could define a new state variable that would allow the law to be defined by a simple
inequality instead of the two statements formulated by him and Kelvin. He used various
formulations and names between 1854 and 1865 for entropy. The formulas presented
today by most textbooks are not necessarily identical to his original ones.

For the purposes of this thesis a simple formulation of Clausius’ entropy can be the
following.

If there is flow of a small amount of heat AQ in a system at absolute temperature T74 then
the change of entropy of the system, AS, is given by the equation

AQ

AS=T

(2.55)
We adopt the convention that if heat is absorbed then AQ is positive, while if heat is released
then AQ is negative. Given that absolute temperature is always positive, the sign of AS is the
same as the sign of AQ.

14 The amount of heat is assumed small so that the temperature can be considered constant
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The law can be reformulated using the change of entropy. For example:
The total entropy of a system and its surroundings increases during any spontaneous process.

Or in mathematical form

S AS20 (2.56)

The equality holds for ideal reversible processes. Real processes are irreversible, for which
the inequality holds.

To show that this formulation is equivalent to Clausius’ original statement we assume an
isolated system composed of two sub-systems, a hot source with absolute temperature T1
and a cold sink with absolute temperature T>. Let AQ be an amount of heat that flows
spontaneously from the source to the sink, in accordance with the second law of
thermodynamics. The changes of entropy corresponding to the source and sink are

-A A
ASy =TF and A52=% (2.57)

In accordance with the sign convention, the flow of heat out of the source has a negative
sign. Therefore the entropy of the source is reduced. The opposite is true for the sink.
We have the following inequalities

1 1 A A
To<T) © 7 >7 © £>%

" T T & AS;>-AS1 © AS;+AS1>0 & Y AS>0

What I find interesting with Clausius’ definition of entropy is that due to the properties of

1 1
numbers, namely due to the fact that if T2 < T1 then T,> T, avery simple formula manages

to capture such an important law of nature. The amount of heat flowing out of the hot
source causes a decrease of its entropy. But when the same amount flows to the cold sink it
causes an increase of its entropy that is larger. Thus there is a net increase in entropy for
the total process.

Atkins (2010) compares this very illustratively with a whisper in a busy street versus a
whisper in a library. The busy street is like the source, the whisper does not make much of
a difference; the library is like the sink, the same whisper makes a big difference.

To show that the formulation using entropy is equivalent to Kelvin’s statement we imagine
a cyclic process that violates the second law and converts all heat into work. The entropy of

-A
the hot source will be reduced by AS; =#, as described above. But there will be no
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increase of entropy elsewhere in the system or its surroundings, since changes of entropy
are associated with heat, not with work.

This example shows why the cold sink is so essential. Without the sink it would not be
possible for the system to compensate for the decrease of the source’s entropy. Using
inequality 2.56 we can calculate the minimum heat that must be absorbed by the sink.

Let Q1 be the heat extracted from the source (which has temperature T1) and Q; the heat
absorbed by the sink (which has temperature T2). The respective changes of entropy are

AS; :‘—T% and AS; :% (2.58)

We have the following inequalities
T
DAS20 © AS;+AS120 & AS:;=2-AS) & 9—22% S Q22Q1Fi

Or equivalently

T
Q2 min = Q1Fi (2.59)

Based on the above we can calculate the maximum work that can be performed by an ideal
heat engine and its maximum possible efficiency.
Let W be the work, given by

W=0Q1-0Q:2 (2.60)
We have the following inequalities

T T T T
QZZQ1F1 S -QzS-QlF1 S Q1-Q25Q1-Q1F1 S W< 1-71

Or equivalently

T:
Winax = Ql (1 - Fij (261)
Dividing both sides by Q1 we get
T2
Qmax = 1 - Fl (262)

which can be recognized as Carnot’s efficiency formula.
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Implications of the second law of thermodynamics

The second law of thermodynamics has some important implications.

Maximum entropy at equilibrium

The first implication is that,

the entropy of an isolated system that is in equilibrium is constant and has reached its
maximum value.

This statement is sometimes used as a formulation of the law. It is easy to see why it holds
using inequality 2.56.

To prove the statement we first assume that the system is at a state out of equilibrium. As it
moves towards equilibrium its entropy will increase, therefore at the original state its
entropy was not at a maximum.

On the other hand if we assume that the system has maximum entropy then its entropy
cannot increase further, which means that no spontaneous process can take place. If no
spontaneous process can take place it means that the system is at equilibrium.

Dissipation of energy

Every process results in the dissipation of heat to the environment. In the ideal case, for
example in the case of Carnot’s ideal heat engine, the amount of heat released to the
environment (the cold sink) is equal to the minimum heat given by equation 2.59. In a real
case the heat released would be even more due to friction, and other losses. This heat
cannot be used for work. Therefore, somehow misleadingly, it is usually referred to as
“low-quality energy”. Thus, while the quantity of energy remains constant, its quality is
always reduced.

Heat death of the Universe

If we consider the entire Universe as a thermodynamic system, the dissipation of energy,
taken to its extreme, will lead to the transformation of all energy to “low-quality” heat
which will be unable to perform any work. The Universe will become a uniform reservoir of

heat. German physicist Hermann von Helmholtz named this the “heat death” of the Universe
(Ball, 2004).

The arrow of time
The second law gives rise to the arrow of time, a term coined by British astrophysicist
Arthur Stanley Eddington to describe the fact that time has a direction.
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In classical mechanics all processes are reversible. We can think for example an elastic ball
with mass m held at a height h above the floor. It has zero kinetic energy and potential
energy equal to mgh. If it is released it will fall and when it reaches the floor it will have
kinetic energy equal to mgh, i.e. velocity equal to W , and zero potential energy. Then it
will bounce on the floor and will return to height h with zero velocity, zero kinetic energy,
and potential energy equal to the initial mgh. The process is reversed. If we watch a movie
of this process there is no way of telling if the movie is played in reverse or not.

In thermodynamics however, even for an ideal Carnot heat engine, a certain amount of
energy, given by equation 2.59, is always lost. In thermodynamics, heat always flows from a
hot to a cold body. This direction of processes creates the arrow of time. If we see a movie
of a glass of water in room temperature that starts to “spontaneously” warm up we will
know that we are watching the movie in reverse.

We cannot use a refrigerator to cool a room

Finally, if there is a local decrease of entropy it must be compensated with an increase of
entropy somewhere else. For real - i.e. not ideal - processes the increase will
overcompensate the decrease, i.e. the total entropy (‘local’ plus ‘somewhere else’) will
increase. This shows why we cannot cool a room by leaving the door of a refrigerator open!

The atomic theory of matter and Boltzmann’s Entropy

When Carnot developed his thermodynamic theories, the atomic theory of matter was not
yet the prevailing view. He considered that “heat was a kind of imponderable fluid that, as it
flowed from hot to cold, was able to do work, just as water flowing down a gradient can turn
a water mill” (Atkins, 2010). Thermodynamic quantities and functions, such as heat,
temperature, pressure, and entropy, referred to solid bodies and bulk quantities of liquids
and gasses. This kind of thermodynamics is called classical. For classical thermodynamics it
is irrelevant whether matter is made up of atoms. But as the atomic theory and, later on,
quantum mechanics were developed, classical thermodynamics gave way to statistical
mechanics. This subsection presents entropy from the point of view of statistical
mechanics. The discussion however is mostly qualitative as any exact derivation would
exceed both my knowledge and the scope of this thesis.

The atomic theory of matter

The atomic theory of matter has a very long history. In the 4th and 5t centuries BCE, Ancient
Greek philosophers Leucippus, most famously, Democritus and Epicurus, believed that all
matter was composed of atoms. Much later, in 1738 Daniel Bernoulli published
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Hydrodynamica where he argued that gases consist of molecules, whose motion and impact
on surfaces cause what we perceive as heat and pressure. The theory was proved, and
became finally accepted, by the combined efforts of Albert Einstein and Jean Perrin. Einstein
provided a theoretical explanation of Brownian motion!>in 1905 and Perrin confirmed
experimentally Einstein’s theory in 1908 (Ball, 2004).

The Kinetic theory of gases

Even before the atomic theory was widely accepted, great minds of their time developed
the kinetic theory of gases. The groundwork for the theory was laid to a large degree by
Clausius and was further developed by Scottish physicist James Clerk Maxwell. Maxwell’s
key contribution was the idea that instead of a detailed description of the trajectory and
momentum of each and every particle of a gas we could just use equations of the average
behavior of particles, more specifically of the average and the variance of the particles’
velocity. He assumed that for a gas in equilibrium the velocities depend only on the
temperature of the gas and their probability distribution follows a bell-shaped curve. This
distribution is called Maxwell-Boltzmann distribution and can be seen in figure 2.2. From
the figure we can see that as the temperature increases so do both the average and the
variance of the velocity. (Ball, 2004)

15 Brownian motion is the random motion of tiny particles, visible with strong microscopes. It was first
discovered Robert Brown in 1828 (Ball, 2004).
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NUMBER OF MOLECULES PER UNIT
VELOCITY RANGE

VELOCITY

Figure 2.2: Maxwell-Boltzmann distribution of molecule velocities of a gas at temperatures a, b, c,
with ¢> b > a. Source: Dugdale (1996)

Boltzmann’s equations

Maxwell’s derivations were intuitive. The distribution was confirmed in a rigorous
mathematic manner by another great mind, the Austrian physicist Ludwig Eduard
Boltzmann. Boltzmann derived the distribution of energy of the particles. The distribution
of energy amongst particles is not continuous because each particle can have only certain
energies as specified by quantum mechanics. There are discrete levels of energy and each
level has a number of particles that occupy it. If N is the total number of particles, N; is the
number of particles with energy level E;, and T is the absolute temperature in Kelvin
degrees, then the Boltzmann energy distribution is

N R
= T (2.63)

Where k is the Boltzmann constant, equal to 1.38x10-23 | /K.

From the distribution of energies Boltzmann showed that the distribution of velocities is
the same that Maxwell predicted.

Furthermore, Boltzmann added a very important element to the theory. Maxwell’s
derivation was defined for a gas in equilibrium. Boltzmann on the other hand showed that
for any initial distribution of velocities, when the gas reaches equilibrium the velocities will
follow the Maxwell-Boltzmann distribution. This introduced the concept of change in the
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kinetic theory. Boltzmann realized that the distribution of velocities was related to entropy,
the variable that describes change in thermodynamic systems.

Thus Boltzmann derived a new formula for entropy at equilibrium. First he made the
distinction between the macrostate and the microstate of the system. The macrostate is the
state that can be described macroscopically by variables such as heat, temperature,
pressure, etc. The microstate is the configuration of the locations and velocities of all the
particles of the system. A macrostate can arise from a very large number of microstates.
This means that even though the microstates are constantly changing, as vast numbers of
particles collide with each other, change position, and exchange momentum, at a
macroscopic level the system seems to be in equilibrium. Boltzmann denoted the number
of possible microstates by W. Furthermore he assumed that at equilibrium all microstates
are equiprobable. Based on these assumptions he derived the equation (Dugdale, 1996):
S=klnW (2.64)

where k is the Boltzmann constant.

The assumption that microstates are equiprobable follows from the so-called ergodic
hypothesis of Boltzmann. In simple words the ergodic hypothesis states that a particle may
be at all available locations with equal probability and may have all possible velocities with
equal probability.

Given that microstates are equiprobable, it is easy to see that the probability of the system
to be in a microstate i is
1

pi=yy (2.65)
From this it follows that the Boltzmann entropy equation can be rewritten as
1
S=kln;=-klnp,' (2.66)

New perspectives on entropy
Boltzmann’s equation resulted in new perspectives on and interpretations of the second
law of thermodynamics and the concept of entropy.

First of all it gave a statistical notion to entropy. Macroscopic properties of a system, such
as heat, temperature, and pressure, were already shown to be statistical properties that
arise by the behavior and interactions of a huge number of particles. Now entropy was
shown to also be such a property.

Equation 2.64 shows that the entropy of a system is an increasing function of W. This
means that entropy’s increase during spontaneous processes leads the system to
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macrostates that can be achieved in more ways, or in other words that arise from more
microstates. Consequently equilibrium can be defined as the macrostate that arises from
the maximum number of microstates, given that the entropy is maximum at equilibrium.

For example figure 2.3 shows the expansion of an isolated gas. In the left, the gas is at
equilibrium and confined by a partition to the left half of a container. When the partition is
removed the gas will eventually reach a new equilibrium state where it will occupy the
whole container. We can intuitively understand that since there is more volume available
for each particle, there are more microstates that give rise to the new equilibrium
macrostate, therefore the entropy of the gas will increase. As a consequence of the Sackur-
Tetrode equation, this entropy increase is given by:

4
AS=NIngey=NIn2>0 (2.67)

where V is the total volume of the box and N is the number of particles of the gas (Ben-
Naim, 2008).

Figure 2.3: Expansion of a gas from an initial volume 0.5 V'to a final volume V.

Since during spontaneous processes the entropy cannot decrease, a gas that occupies a
container will not spontaneously confine itself to one part of the container. If the process is
not spontaneous the entropy of the system can be reduced by the expenditure of work, i.e.
by increasing entropy somewhere else. For example we can use a piston to compress the
gas back to the left half of the container.

Examples like this have contributed to the view that entropy is a measure of “disorder”. The
reasoning behind this view is that when all particles of a gas are gathered in one side of
their container then they are more ordered, while when they fill the whole container, they
are spread-out, they are less ordered

On the other hand, looking at equation 2.66, we can easily see how entropy can be
associated with uncertainty. When there is more uncertainty about the actual microstate
that the system is in, i.e. when the probability P;is less, then entropy is increased.
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Maxwell’s demon

Boltzmann's breakthroughs presented very serious philosophical challenges to scientists of
the late 19th century. According to the prevailing philosophical and religious beliefs, the
universe was harmonious, symmetrical and beautiful. The laws of nature were given by
God, while humans were purposeful and had free will. These views were seriously
challenged by the second law of thermodynamics and especially by Boltzmann’s statistical
definition of entropy.

For example Maxwell, a deeply religious man (Ball, 2004), tried to prove through a thought
experiment that the second law was a human illusion, and that an intelligent being with
free-will could be free from this law. This being was named Maxwell’'s Demon by Kelvin,
perhaps as an irony towards Maxwell’s religiousness. Ben-Naim (2008) provides the
following quote of Maxwell, according to which,

Starting with a uniform temperature, let us suppose that such a vessel is divided

into two portions or by a division in which there is a small hole, and that a being,

who can see the individual molecules, opens and closes this hole so as to allow only

the swifter molecules to pass from A to B, and only the slower ones pass from B to

A. He will thus, without expenditure of work raise the temperature of B and lower

that of A in contradiction to the second law of thermodynamics.

It has been proven however, both from a quantum-mechanics and an information-theoretic
point of view, that such a being would need to spend energy or create entropy to be able to
measure the particles’ velocities. Therefore the total entropy of the gas plus the demon

would still be increased.

Irreversibility arising from reversibility: Boltzmann’s H-theorem

Another very troubling question was how is it possible to have irreversible macroscopic
processes arising from reversible microscopic dynamics. Let us think for example the case
of the expanding gas of figure 2.3. When the partition is removed, it is the collisions of
particles to each other and the walls that make them expand to fill the whole container. But
the dynamics of these collisions are reversible. Why is then the expansion of the gas

irreversible?

This line of thought is what philosophers call mechanistic. It tries to reduce a more complex
phenomenon to simple mechanics. Reductions are abstractions, designed to simplify a
complexity. They are simplified imaginary examples of a real phenomenon. While
reductions are many times helpful in illuminating something complex, when we make them
we cannot expect the original phenomenon to behave like the reduced phenomenon. We
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must not forget that our abstractions are not real and expect reality to follow our simplified
example.

The mechanistic view was prevalent at Boltzmann’s time. So his theory was met with
widespread skepticism. In response to this skepticism Boltzmann introduced the H-
theorem to show how reversible dynamics of gas particles can lead to irreversible
macroscopic processes. The H-theorem is described below in very simplified terms based
on Brown et al. (2009).

Let f(r, v, t) be a density function, where r is the position vector, v is the velocity vector and
tis time. The product f{r, v, t)d3rd3v gives the number of particles that are contained within
an infinitesimal volume element d3r centered around r and have velocities contained
within the element d3v and centered around v. Due to the very large number of particles fis
assumed to be a continuous function.

Boltzmann first defined a transport equation that describes how f{r, v, t) varies with time
under the influence of external forces, of diffusion and of forces between particles due to
collisions. In the derivation of the H-theorem Boltzmann focused only on forces due to
collisions.

Furthermore - and very importantly - he assumed that particles that are about to collide
are uncorrelated. Based on this assumption the joint density function of a pair of particles
that are about to collide is given by

F(v1, vz, 1) = flvy, t) flva, t) (2.68)

Then he defined the H function, given by
H[f]= fﬂr, v, t) In f{r, v, t) d3rd3v (2.69)

Boltzmann showed, first that H can only decrease, i.e.

H
i—t <0 (2.70)

and second that for N particles, entropy S can be defined in terms of the H function by the
equation

S=-NkH (2.71)
where k is the Boltzmann constant.

Therefore entropy can only increase. This way Boltzmann proved mathematically how
irreversibility arises out of reversibility.
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Despite the H-theorem the mechanistic and religious views of his contemporaries were
very difficult to shatter. Boltzmann hanged himself on September 5t 1906. It is believed
that amongst the reasons that led to his suicide was his disillusionment by the prevalence
of positivism amongst scientists. The formula

S=k-logW
is inscribed on his tombstone.

Even though Boltzmann views on the composition of matter have been confirmed, his H-
theorem has been criticized on various grounds. For example it has been criticized for
ignoring external forces and diffusion, i.e. for assuming that the gas is already uniformly
distributed. Also he has been criticized for assuming that the particles are uncorrelated.

Why is there a Second Law of Thermodynamics?

The second law of thermodynamics is considered as one of the most fundamental laws of
nature. However the question “why is there such a law” is still an open question as there is
a number of possible explanations. One of these explanations, which I find convincing and
easy to grasp, lies in its statistical nature. According to this explanation, it is
overwhelmingly more probable for entropy to increase. But there is nothing in the laws of
nature that forbids it to be reduced. If we are willing to wait long enough we would see all
particles of the gas of figure 2.3 return to the left half of the container. But we would need
to wait so long that the age of the Universe would probably not be long enough.

Ben-Naim (2008) explains that
the system will spend more time at events (or states) of higher probability. This, in
itself, provides an explanation of the “driving force” for the evolution of the system;
from a state of low to a state of high probability. [...] In this view, we have not only
an interpretation for the quantity S as MI [missing information; equivalent to
uncertainty as explained in Chapter 1], but also an answer to the question of
“why” the system evolves in the specific direction of increasing the entropy (or the
MI). In this view, the statement of the Second Law is reduced to a statement of
common sense, nothing more.

He further explains that,
one should realize that the Second Law is crucially dependent on the atomic
constituency of matter. If matter were not made up of a huge number of atoms, the
Second Law would not have existed, and the entropy would not have been defined.
The same is true for the concepts of temperature and heat. Hence, also the Zeroth
and the First Law of Thermodynamics would not have been formulated.
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Gibbs’ Entropy

American physicist Josiah Willard Gibbs refined Boltzmann’s definition of entropy. He
extended the definition to include non-equilibrium macrostates. The microstates that
correspond to non-equilibrium macrostates are not necessarily equiprobable. Therefore
instead of using the logarithm Inp; as Boltzmann did (equation 2.66), Gibbs uses the
expected value of Inp;. Therefore his definition of entropy is

S=-k. pilnp; (2.72)

Statistical ensembles

In addition to their different formulations, Gibbs’ and Boltzmann’s entropies have a deeper
conceptual difference. Boltzmann’s definition refers to microstates that the system can
actually be in. Gibbs’ definition on the other hand refers to statistical ensembles. A statistical
ensemble is a fictitious collection of copies of the system. It is not a state that the system is
really in; it is all the states that theoretically the system could be in.

The two points of view are identical if the ergodic hypothesis holds. But if it does not hold
they may be different. The consequences of this difference play an important role on the
discussion of irreversibility and other theoretical questions of statistical mechanics, such as
the fluctuation theorem (Callender, 1999), which expresses analytically the probability of a
system violating the second law (Evans and Searles, 2002).

The macroscopic constraints on the system determine the properties and probability
distributions of the microscopic ensembles. The most important ensembles are the
microcanonical ensemble, which refers to isolated systems (i.e. systems that cannot
exchange energy nor matter with their environment) at constant temperature; the
canonical ensemble, which refers to closed systems (i.e. systems that can exchange energy
but cannot exchange matter with their environment) at constant temperature; and the
grand-canonical ensemble, which refers to open systems at constant temperature.
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Other entropies

There are many other entropy expressions defined by various scientists to capture various
phenomena.

One example is the Von Neumann entropy. It was defined by Hungarian mathematician
John Von Neumann to extend the concept of entropy to the field of quantum mechanics.

Entropy production

So far I have been mostly considering equilibrium thermodynamics. A thermodynamic
system is said to be in equilibrium when, from a macroscopic point of view, its properties,
such as pressure, temperature, concentrations, etc., are uniform across space and remain
constant in time. In such a system there are no gradients.

However most systems in nature are not in equilibrium. These systems try to reach
equilibrium by dissipating the gradients that cause them to be out of equilibrium. As they do
so they produce entropy in accordance with the second law.

There are cases however that the production of entropy takes place in the surroundings of
the system and the local entropy in the system is reduced, such as living systems, creating
the illusion that the law is violated. Such cases are presented in Chapter 3.

Non-equilibrium thermodynamics studies systems out of equilibrium. One of the pioneers of
the field was Norwegian chemist and physicist Lars Onsager. He was particularly interested
in steady-state systems (Ball, 2004). These systems, while they are not in equilibrium, still
maintain some properties constant in time.

Non-equilibrium thermodynamics also studies phenomena that give rise to forms and
patterns, such as phase transitions (e.g. the formation of snowflakes), or dissipative
structures (e.g. turbulence, or Benard cells)

A central concept of non-equilibrium thermodynamics is the entropy production rate,
sometimes called just entropy production.
It is defined simply as

ds
a4 (2.73)

Physicists have been searching for general laws that can describe non-equilibrium systems
and the paths that they take as they move towards equilibrium. These laws would be able
for example to explain and predict steady states, forms and patterns. Onsager won the
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Nobel Prize of Chemistry in 1968 for his work on systems that are very close to
equilibrium. But not much progress has been made towards finding an all-encompassing
principle for non-equilibrium systems, which, as many believe, would be related to the
entropy production rate. According to Ball (2004) “there is a good reason for this: it is
almost certain that no such principle exists.”

Russian-Belgian chemist Ilya Romanovich Prigogine believed that he found such a principle.
He showed that processes in some systems near equilibrium occur in such a way that the
entropy production is minimum, or in other words, these systems approach equilibrium at
the slowest possible rate. According to Ball (2004) this criterion “is not universally true”.

Maximum entropy production (rate)

Another principle is the maximum entropy production (rate) principle proposed by Ziegler.
This principle at first appears to be in contradiction with Prigogine’s principle. But as
Kleidon et al. (2010) explain, Prigogine’s principle refers to transient (i.e. not steady), near-
equilibrium processes, while Ziegler’s principle refers to steady-state, far-from-equilibrium
processes. Other sources, such as Martyushev and Seleznev (2006), agree that the two
principles are not in contradiction.

Ziegler’'s principle states that a system will choose the path that maximizes entropy
production as it moves towards equilibrium, or in other words it will approach equilibrium
at the fastest possible rate.

The implications of the extremization of entropy production are very important and far
reaching. Some of them will be presented in Chapter 3. But the use and recognition of the
maximum entropy production principle has been delayed due to the fact that scientists
researching this topic were largely unaware of each other’s work as Martyushev and
Seleznev (2006) wrote in a literature-review paper which, according to them, was the first
review paper on the topic ever to be published.

The maximum entropy production principle has not been proven. In fact according to
Martyushev (2010) “a principle like MEPP cannot be proved.” But this does not necessarily
mean that this principle is less important. Martyushev (2010) writes:

Examples of its successful applications for description of observed phenomena just

support this principle, while experimental results (if they appear) contradicting

the principle will just point to the region of its actual applicability. The balance of

the positive and negative experience will eventually lead to the consensus of



42

opinion on the true versatility or a limited nature of MEPP. Other principles, such
as laws of thermodynamics and Newton’s law, developed along similar lines.
Sometimes this is how science progresses.

2.4 The Principle of Maximum (Statistical) Entropy

The Principle of Maximum Entropy was introduced by American physicist Edwin Thompson
Jaynes (1957). It is a method of statistical inference based on Shannon’s entropy. The
motivation for the introduction of the principle was to derive statistical mechanics
distributions and equations based solely on rules of statistical inference and the basic laws
of physics (e.g. conservation of energy) without the need to introduce additional
assumptions, such as ergodicity. More specifically the method was introduced so that
“information theory can be applied to the problem of justification of statistical mechanics”
(Jaynes, 1957).

The introduction of information entropy by Shannon and the fact that he showed it having
a deeper meaning |[...] independent of thermodynamics [...] makes possible a
reversal of the usual line of reasoning in statistical mechanics. Previously, one
constructed a theory based on the equations of motion, supplemented by
additional hypotheses of ergodicity, metric transitivity, or equal a priori
probabilities, and the identification of entropy was made only at the end, by
comparison of the resulting equations with the laws of phenomenological
thermodynamics. Now, however, we can take entropy as our starting concept, and
the fact that a probability distribution maximizes the entropy subject to certain
constraints becomes the essential fact which justifies use of that distribution for
inference. (Ibid.)

Since its introduction, the maximum entropy principle has found application in many fields,
including hydrology. Based on this principle we can explain for example why the
probability to get a certain outcome when throwing a fair die is 1/6. More examples of
applications are presented in Chapter 3.

According to Jaynes (Ibid.) the maximum-entropy estimate is “the least biased estimate
possible on the given information; i.e., it is maximally noncommittal with regard to missing
information”. This means that it uses all of the available information (e.g. measurements)
but without using any information that is not available (e.g. by making assumptions
regarding the distribution that a random variable should follow).
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Or in other words (Ibid.),
In the problem of prediction, the maximization of entropy is not an application of
a law of physics, but merely a method of reasoning which ensures that no
unconscious arbitrary assumptions have been introduced.

Description of the methodology
A general description of the inference problem and the methodology to solve it is presented
below based on Jaynes (Ibid.). The notation used here differs at times.

Let X be a random variable taking discrete values x; i= 1, 2, .., n. The distribution of
probabilities p; is not given. All that is known is the expected value of a function g(X)

E[g(0)] = 3 pig(x) 274)

=1
Based on this information, what is the expected value of another function y(X)?

Jaynes writes (Ibid.):
At first glance, the problem seems insoluble because the given information is
insufficient to determine the probabilities pi. Equation [2.74] and the normalizing

condition

[
2pi=1 [(2.75)]

[i=1]
would have to be supplemented by (n-2) more conditions before [ E[ y(X) ] ] could
be found.

However information theory provides a solution to this problem. Shannon’s entropy of X
can be used. As we saw earlier it is given by

H(p1, p2, ., pn) = - 2 pilnp; (2.76)

i=1
Jaynes considered the development of information theory 9 years earlier by electrical
engineer Claude Shannon a very important opportunity for physics. He noted that this
importance was felt by others, but it was not clear how to apply the new theory of

information to the field of statistical physics.
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Jaynes explained that,
The great advance provided by information theory lies in the discovery that there
is a unique, unambiguous criterion for the “amount of uncertainty” represented by
a discrete probability distribution.

And he continues:
It is now evident how to solve our problem; in making inferences on the basis of
partial information we must use that probability distribution which has maximum
entropy subject to whatever is known. This is the only unbiased assignment we can
make; to use any other would amount to arbitrary assumption of information
which by hypothesis we do not have.

Therefore the problem becomes a maximization problem and can be solved easily by
employing the method of Lagrange multipliers (Efstratiadis and Makropoulos, 2011).

We are looking for that distribution of p; that maximizes H of equation 2.76, subject to the
constraints of equations 2.74 and 2.75.

We define the auxiliary function

@(pi, Ao, A1) = H(p1, p2, ., pn) - Ao 2. pi- M 2 pig(xi) (2.77)

i=1

We search for p; such that

0@(pi, Ao, A1)
=0 (2.78)
Di
which yields
Inp; =-1- Ao - A1g(xi) (2.79)

Given that A is a constant we can replace 1+Ao with a new Ao to simplify the formulas.

Thus H is maximum for
pi=e Mo gkx) (2.80)
ie.
n n _ A _ A : n n n
Huax=- 3, pilnpi=- Y. pilne™ ™ 190D =57 5, (20 - X1 g(x)) = 20 X pi+ 1 X pigl)
i=1 =1 i=1 i=1 i=1

which, according to equations 2.74 and 2.75, becomes
Hmax = Ao +A1E[g(xi) ] (281)
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Knowing the distribution of p; we can now calculate the expected value of y(X) by the
equation

E[y(X)] =3 piy(x) (2.82)

=1
If we have more information, we can refine the distribution given by equation 2.80.

For example for the general case of knowing the expected values of m functions gm the
distribution of p; becomes

pize Ao - A1g1(x) - o - Amgm(X) (2.83)

And the H maximum is
Hmax = Ao + AlE[gl(Xi) ] +..+ AmE[gm(Xi) ] (284)

Example: Uniform distribution

As already discussed in the section of the properties of Shannon’s entropy, when our only
information is the number of possible outcomes, i.e., when the only constraint is equation
2.75, then entropy is maximized for a uniform distribution.

An outcome of fair die throw has probability 1/6 because the uniform distribution

maximizes the entropy.

Example: Gaussian distribution
Koutsoyiannis (2005a) gives the following example.
We assume that we know the mean, y, and standard deviation, o, of a continuous random
variable X, or using the notation used above,

E[g1(X) ] =E[X]=pu (2.85)
and

E[g2(X) ] =E[X?] = 2 (2.86)

The quantity u2 is the order 2 raw moment'® and is related with the mean and standard
deviation according to the relation
Uz = U2 + o2 (2.87)

16 See Appendix A for the definition of moments.
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The entropy of X is
H(X) = ? f0In fx)dx (2.88)
Also, we have the constraint
? Aix)dx =1 (2.89)

Application of the principle of maximum entropy with the three constraints given by 2.85,
2.86, and 2.89, yields:

Himax = Ao + A1u + Aotz (2.90)
and
flx) = e Mo Ax-Aax? (2.91)
Algebraic manipulations show that the Lagrange multipliers and the maximum entropy are
given by
2
Ao=In(o\2m ) + 5~ (2.92)
N=-L (2.93)
o
1
A2 = 202 (2.94)

Hmax = ln(a\/Zne ) (2.95)

and that equation 2.91 is the Gaussian (or normal) distribution.

Koutsoyiannis (2005a) notes that it is interesting that the entropy of a random variable
following the normal distribution depends only on its standard deviation and not on its

mean.

Philosophical views of Jaynes
Jaynes’ 1957 paper has many interesting implications about statistical inference and logic;
nature; and probability theory. A number of extensive quotes of this paper are presented in

Appendix C of this thesis.
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2.5 Thermodynamic vs. Information Entropy

The discovery of the uncertainty function by Shannon and the naming of it as entropy, has
led to a debate as to whether his entropy is the same concept as thermodynamic entropy or
not. This is still an open debate. A quick search of the literature yields many publications on
the topic.

One view is that the two entropies are not to be confused with each other as they are
unrelated concepts. I believe that it is caused, amongst other reasons, by the following two.

The first reason is historic. It has to do with the fact that thermodynamic entropy has units
of ] /K, while Shannon’s entropy is dimensionless (Koutsoyiannis, 2011b). It is very difficult
therefore for many scientists to comprehend how a dimensionless quantity can be identical
to a quantity with units.

But thermodynamic entropy does not need to have units. As Atkins explains
(Koutsoyiannis, 2011b),
although Boltzmann'’s constant k is commonly listed as a fundamental constant, it
is actually only a recovery from a historical mistake. If Ludwig Boltzmann had
done his work before Fahrenheit and Celsius had done theirs, then ... we might
have become used to expressing temperatures in the units of inverse joules... Thus,
Boltzmann’s constant is nothing but a conversion factor between a well-
established conventional scale and the one that, with hindsight, society might have
adopted.
If we were using 1/] as the unit of temperature then Boltzmann’s constant would be
dimensionless, and so would be thermodynamic entropy.

It is interesting to note however that Atkins is amongst those who do not believe that the
two entropies are the same concept. This brings us to the second reason for this view. Ben-
Naim (2008) quotes the following paragraph from Atkins.
I have deliberately omitted reference to the relation between information theory
and entropy. There is the danger, it seems to me, of giving the impression that
entropy requires the existence of some cognizant entity capable of possessing
‘information’ or of being to some degree ‘ignorant.’ It is then only a small step to
the presumption that entropy is all in the mind, and hence is an aspect of the
observer. I have no time for this kind of muddleheadedness and intend to keep such
metaphysical accretions at bay. For this reason I omit any discussion of the
analogies between information theory and thermodynamics.
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Similarly, Wicken (1987) compares the use of entropy in thermodynamics and information

theory. He writes at one point,
when noise is introduced, increases in message uncertainty correlate with
increases in both its entropy and its information content, since greater "freedom of
choice” among messages is made available [...] While the maximally noisy channel
delivers maximum possible information, it is also useless information - that is,
information that conveys no information.

At another point he writes
The paradox here, noted by many over the years, is that if entropy is a state
property of a system it cannot depend on what we happen to know about that
system.

It seems that Atkins and Wicken view information as something subjective, in the sense
that it depends on someone’s knowledge. According to this view, different observers with
different knowledge would calculate different amounts of information. However the word
“information” in the context of information theory does not refer to the content of a
message but to the series of characters that compose the message itself, as it was explained
in Chapter 2 of this thesis. Therefore “information” has nothing to do with our knowledge -
or anyone else’s knowledge - or with the content of messages or systems.

In physics there is another kind of subjectivity which is not related to observers but to
reference frames. For example Koutsoyiannis (2011a) explains that the location
coordinates of points are subjective, as they depend on the coordinate frame. But the
distance between points is objective, as it does not depend on the coordinate frame.
Koutsoyiannis (Ibid.) proves that there can be a probability-based definition of
thermodynamic entropy that does not depend on the frame of reference. Therefore this
definition of entropy is objective in the reference-frame sense.

Interestingly Jaynes, who used Shannon’s entropy to derive thermodynamic entropy, was
amongst those who believed that thermodynamic and information-theory entropy were
different concepts and should not be confused. Koutsoyiannis (2011b) quotes him saying
that,
We must warn at the outset that the major occupational disease of this field is a
persistent failure to distinguish between the information entropy, which is a
property of any probability distribution, and the experimental entropy of
thermodynamics, which is instead a property of a thermodynamic state as defined,
for example by such observed quantities as pressure, volume, temperature,
magnetization, of some physical system. They should never have been called by the
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same name; the experimental entropy makes no reference to any probability
distribution, and the information entropy makes no reference to thermodynamics.
Many textbooks and research papers are flawed fatally by the author's failure to
distinguish between these entirely different things, and in consequence proving
nonsense theorems

There is also the opposite view in this debate, namely that the two concepts are related.
Both are a measure of uncertainty; in the one case uncertainty of a telecommunications
transmission, or some other information technology application, while in the other case
uncertainty of the microstates of a thermodynamic system.

Ben-Naim (2008), who supports this view, compares entropy with the cosine function. He
explains that
the fact that cosO appears in two different fields, say in the propagation of an
electromagnetic wave, and in the swinging of a pendulum, does not imply a deep
and profound connection between the two fields. However, in both fields, the
appearance of cos0 indicates that the phenomena are periodic.

Similarly, he explains, the fact that the function - X plogp; appears in two different fields
does not mean that there is a deep connection between the fields. But it does mean that in

both fields this function measures uncertainty.

Koutsoyiannis (2011a) shows how the laws of thermodynamics can be derived by using
only the concept of statistical entropy and the principle of the maximization thereof, with
the addition of conservation laws and Newton’s second law to derive constraints. In effect
what Koutsoyiannis shows is that not only are the two entropies closely related, but
thermodynamic entropy is in fact a special case of the more general concept of statistical
entropy.

[ find more convincing the view that the two concepts are closely related. Furthermore I
believe that using Shannon'’s entropy it is much easier to see that entropy is a measure of
uncertainty. This can then offer a much clearer insight on what thermodynamic entropy is,
making it more difficult to misunderstand it as a measure of “disorder”.
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3. Applications of Entropy

In this chapter I present several applications where the concept of entropy, in its various
definitions presented in the previous chapter, is used. I choose applications where the
concept of entropy plays a major role. I also present some consequences of the properties
of entropy that will help create a better understanding of the concept and its huge
importance for nature and for the way we understand it.

As already discussed, entropy is a concept that is used in a very wide range of applications.
The focus of this thesis is the use of entropy in Hydrology. Therefore the first section of the
chapter is dedicated to hydrology. The second section presents applications from the
natural sciences with a focus on Earth and life sciences. The third section provides one
example of the use of entropy to solve an Engineering problem.

The examples of this chapter are not presented in their full detail. The goal is to show how
widely entropy is used in hydrology and beyond. Interested readers are encouraged to read
the original articles or books where these examples were taken from.

3.1 Entropy and Hydrology

We can subdivide the hydrologic applications of entropy in two categories. In the first
category we find applications in the field of hydrometeorology that use entropy within the
context of thermodynamics. In the second we find applications in the field of stochastic
hydrology that use entropy within the context of maximum entropy statistical inference.

Hydrometeorology

Hydrometeorology is a field of science that integrates elements of hydrology and
meteorology to solve problems for which neither hydrology nor meteorology are sufficient
(Fry and Showalter, 1945). To a large degree it owes its development to the concept of
Probable Maximum Precipitation (PMP), which is the alleged upper limit of precipitation of
an area. Much of hydrometeorology was developed as scientists tried to find a combination
of statistical, hydrologic and meteorological methods to estimate the PMP17.

171 believe that the Probable Maximum Precipitation is a fallacy. When the concept was first developed in the
US it was called the Maximum Possible Precipitation. For example, according to the American Meteorological
Society (1959) the Maximum Possible Precipitation is “the theoretically greatest depth of precipitation for a
given duration that is physically possible [my emphasis] over a particular drainage area at a certain time of
year.” Soon it was realized that this limit cannot be calculated, only estimated statistically using a very high
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In very simplified terms, meteorology is a combination of fluid mechanics with the
thermodynamics of the atmosphere.

The thermodynamics of the atmosphere study how the pressure, temperature, energy, etc.,
of a packet of air change as it moves within the atmosphere. For example when a packet of
air is forced by the wind to climb a mountain slope, it moves to an area with lower
atmospheric pressure, therefore it expands and cools. Therefore it is able to hold less
humidity and rain may be caused. This is how the orographic effect is caused.

It is through these thermodynamics that entropy comes into the picture within the field of
hydrometeorology.

For example tephigrams are based on the concept of entropy. They are thermodynamic
diagrams of temperature versus entropy with rotated axes. They are usually used to plot
air temperature and dew point data from radiosondes!8 and to analyze the stability of the
atmosphere using the convective available potential energy (CAPE) method. Figure 3.1
shows an example of a tephigram with data from a real radiosonde.

return period so the term was renamed. Sometimes this is how science progresses. A new field starts based
on an error but along the way correct discoveries are made. The challenge however is to discard the fallacious
origins once the field has matured. Hydrometeorology has not yet fully completed this challenge. For more on
the critique of the PMP see Koutsoyiannis (2000).

18 Radiosondes are meteorological probes, usually attached to balloons, that radio transmit their data to a

ground station.
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Figure 3.1: Tephigram displaying the temperature (solid black line) and dew point (dashed black
line) of a radiosonde conducted by the National Meteorological Agency (EMY) of Greece, in Athens
on 5/6/1972 at 00:00 GMT. Source: Koutsoyiannis (2001)
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Stochastic Hydrology

Stochastic hydrology is the branch of hydrology that uses the theory of stochastic processes
to study hydrologic variables and properties taking into account their probabilistic nature.

Finding the probability distribution function that random hydrologic variables follow is a
very important and frequent problem that stochastic hydrology tries to solve. The Principle
of Maximum Entropy can be applied on this problem.

Claps et al. (1996) studied river geomorphology using entropy. More specifically they
compared river networks with mathematical fractals. Considering the placement of stream
segments and junctions as a random process, and using the probability of each segment
being placed to a certain position in the network, they define the informational entropy of
river networks and of fractals. Then they compare the entropy with other relevant
measures, such as the Horton order and the topological diameter. They discovered that
these measures are related and concluded that this offers the opportunity to develop new
methods to estimate fractal measures of river networks.

Singh (1997, 2000) offers an extensive review of how the principle of maximum entropy and
other applications of the concept of entropy are used in hydrology by various researchers.
He presents applications on the topics of risk and safety from hydrologic system, reliability
of water resources systems, hydrologic parameter estimation, water quality, optimization,
model selection, hypothesis testing, basin geomorphology etc. He also offers a short but
interesting discussion about the significance of the principle of maximum entropy for
developing countries, where hydrologic records are limited and therefore it is important to
find how to maximize the use of available data.

Kawachi et al. (2001) study the pattern of rainfall in Japan. First they define the entropy of
rainfall, which is a measure of the spread of rainfall throughout the year. As we have
already seen, Shannon’s entropy is maximum when events are equiprobable, and zero
when one event is certain and the rest are impossible. In analogy, if annual rainfall is
equally distributed to all days of a year then entropy is maximum, while if all rainfall of a
year falls in one day then entropy is zero. The motivation for the introduction is the fact
that “besides the aggregate rainfall, its temporal apportionment can be a significant aspect of
rainfall” (Kawachi et al., 2001). They used 1107 raingauges to prepare a rainfall isoentropy
map of Japan. Coupling this map with an isohyetal map they categorized water resources
availability using 4 categories that combined the total quantity of rainfall and its annual
spread.
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Koutsoyiannis (2005a) uses the principle of maximum entropy to show how various
marginal distributions (such as Gaussian, exponential, Pareto) emerge given various
constraints. The example of the Gaussian distribution was already presented in Chapter 2
where the principle of maximum entropy was defined.

Koutsoyiannis (2005b) uses the principle of maximum entropy applied for joint entropies
to explore the time dependence of random variables. He shows that if the dependence is
assumed to be dominated by a single time scale, then the Markov process emerges. On the
other hand if the dependence is assumed to not be dominated by any time scale, then the
Hurst-Kolmogorov process!? emerges.

Koutsoyiannis (2011b) uses the concept of entropy production and the law of maximum
entropy production to give a theoretical basis to the use of the Hurst-Kolmogorov process
in natural sciences. The entropy production rate of a stochastic process is defined simply
as?0 @’'=d®(X;)/dt. To avoid emergence of infinities he defines entropy production in
logarithmic time, which is defined as ¢’=d®/d(Int). The logarithm is a monotonically
increasing function therefore @(X)<®(Y) & @(X)<¢(Y), therefore maximum entropy
production corresponds to maximum entropy production in logarithmic time. He finds that
the Hurst-Kolmogorov process results in extremization of entropy production in
asymptotic times, specifically it results in minimum entropy production when time tends to
zero and in maximum entropy production when time tends to infinity. These results show
that,

no other notions (e.g. self-organized criticality, scale invariance, etc.) in addition

to entropy extremization are necessary to explain the emergence of the Hurst-

Kolmogorov behavior.
Koutsoyiannis (/bid.) concludes that,

extremal entropy production may provide a theoretical background in such

stochastic representations [i.e. the Hurst-Kolmogorov process]|, which otherwise

are solely data-driven. A theoretical background in stochastic representations is

important also for the reason that [...] merely statistical arguments do not suffice

to verify or falsify the presence of long-term persistence in natural processes.

From the point of view of hydrologic modeling, the most important conclusion of the last
two examples is that when uncertainty is the focus of modeling, for example during the

19 For a definition of the Hurst-Kolmogorov process see Koutsoyiannis (2002), Koutsoyiannis et al. (2011),
and Theodoratos (2004)

20 Koutsoyiannis (2011b) uses the letter @ to denote entropy.
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design of hydropower reservoirs, then the Hurst-Kolmogorov process should be
considered, as it is the one that maximizes uncertainty. According to Koutsoyiannis
(2011b)
The emergence of maximum entropy (i.e, maximum uncertainty) for large time
horizons, as demonstrated here, should be considered seriously in planning and
design studies, because otherwise the uncertainty would be underestimated and
the constructions undersized. The relevance of the last point may be even wider,
given the current scientific and public interest on long-term predictions.

Papalexiou and Koutsoyiannis (2012) use the principle of maximum entropy to search for a
theoretically based distribution for daily rainfall. First they explain that despite the
availability of long records and significance of daily rainfall, there is still no consensus for
the probability distribution of daily rainfall. Then they critique the common method for the
selection of distributions, according to which measurements are used to test a number of
distributions and select the one with the best fit. As they explain this method is naive as
first, infinite more distributions could theoretically be tested, and second, the final
selection is not justified theoretically. Furthermore they explain that using the principle of
maximum entropy results in distributions that are uniquely defined by the constraints
used. Therefore the selection of constraints becomes the most important part of estimation.
They propose three specific constraints. These three constraints yield two distributions
that can be used for daily rainfall, the Generalized Gamma (GG, a 3-parameter exponential
type) and the Generalized Beta of the 2nd kind (GB2, a 4-parameter power type). They use
records from 11 519 rainfall records across the globe and find that the performance of the
two distributions is very good. Finally they explain that the great diversity of observed
rainfall from very diverse climates can be reproduced by the very flexible GB2 distribution.

3.2 Entropy and Natural Sciences

There are numerous applications of the concept entropy in the natural sciences. In this
section I present only a few applications. They are selected, first, to provoke interest in
entropy and its implications, and second, to show that the view that entropy is a measure of
“disorder” can be misleading.

The concepts of this section are presented in an empirical and qualitative fashion.
Furthermore, some analyses and conclusions are based on my understanding of the
literature or even on my own intuition, not on scientific proofs. However I feel that they
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may point towards possible insights regarding the topic at hand which is why I decided to
include them in the thesis.

Entropy, Self-Organization and Life

In this section I discuss the application of entropy to the study of self-organized systems,
including living organisms and ecosystems. The concept of self-organization has been
criticized for lacking an objective definition. For example Koutsoyiannis (2011b) presents
as an accomplishment the fact that he manages to explain the emergence of the Hurst-
Kolmogorov behavior without using the concept?! of self-organization. From this it can be
inferred that he stands critical towards the use of this concept.

Self-organized systems

A system is self-organized when it exhibits some form of global organization that is not
imposed externally, but arises out of the system itself. Here non-equilibrium self-organized
systems are considered. Many of these systems appear to be violating the second law of
thermodynamics if we naively view entropy to be related to disorder and if we naively
forget that the law states that entropy increases in isolated systems as they move towards
equilibrium. However non-equilibrium self-organized systems are not isolated. In fact self-
organization in such systems can arise only if they are kept out of equilibrium by the flux of
energy through the system from some external source.

Example: Benard cells

Benard cells were studied by French physicist Henri Benard in 190022, In addition to the
cover figure, they can be seen in figure 3.2. They are hexagonal convection cells that appear
when a thin layer of liquid, for example olive oil, is heated from below, given some
favorable conditions. They form as warmer, less dense liquid from the bottom rises, while
colder, denser liquid from the top sinks, creating convection currents. Benard observed
that sometimes the currents organize themselves in almost hexagonal cells, with liquid
rising in the center and sinking around the edges (Ball, 2004).

When the heating is mild there is no convection, heat is transferred to the top slowly by
conduction. When the heating is intense, convection currents appear. Currents do not

21 Koutsoyiannis (2011b) uses the word “notion” not the word “concept” which could show that he considers
it more as a subjective idea than an objective concept.

22 Even though they were named after Benard, the convection cells were first observed by German physicist
Georg Hermann Quincke (Ball, 2004)
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always organize themselves in cells. Other patterns can emerge, such as the ones shown in
figure 3.3.

Figure 3.2: An example of Benard cells. Source: Georgia Institute of Technology (www.catea.

gatech.edu/grade/mecheng/mod8/mod8.html)

Figure 3.3: Rolling convection curtents. Source: Magdeburg University (www.uni-magdeburg.de/
abp/pics/benard-spirale.jpg)

Energy dissipators

Benard cells are an example of dissipative structures. According to Ball (2004) dissipative
structures are “organized arrangements in non-equilibrium systems which are dissipating
energy and thereby generating entropy”. Dissipative structures are not confined to the
dissipation of energy. They are in general dissipating available gradients, such as
temperature, pressure, concentration, electric potential, etc. Dissipative structures are
omnipresent around us. Vortices and lasers are common examples of such structures.
According to Prigogine (Ball, 2004) dissipative structures do not emerge close to
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equilibrium. But when a system is forced far from equilibrium, i.e. when gradients become
steep, systems reach critical points called bifurcations which give rise to self-organization.

Example: Turbulence

Turbulence is a flow regime characterized by stochastic variations in the velocity and
pressure of a flowing fluid. The variations take the form of vortices, appearing from very
small to large scales. Despite the chaotic nature of the vortices, turbulence is a self-
organized phenomenon in a stochastic sense and follows some very simple mathematical
laws discovered by Kolmogorov which are described briefly below.

The presence of vortices results in much quicker mixing of properties compared to laminar
flow, which is the opposite flow regime, where flow is streamlined and lateral mixing
occurs only due to molecular diffusion. Figure 3.4 shows these two flow regimes. Flow is
laminar when the Reynolds number is small (practically, when the flow is slow). When the
Reynolds number is high (practically, when the flow is fast) the flow becomes turbulent.

From the point of view of dissipative structures, turbulence can be viewed as an
arrangement that accelerates the diffusion of kinetic energy. Kinetic energy can be diffused
by viscous forces23. But viscous forces become dominant only at small scales. Turbulence
establishes a cascade of kinetic energy which results to a transfer of energy from large to
small scales where it can be diffused to heat. When the flow is slow, in other words when
the kinetic energy gradient is mild, laminar flow is sufficient to dissipate energy. But when
the flow is fast, in other words when the kinetic energy gradient is steep, the fluid arranges
itself in a turbulent flow to increase the dissipation of energy.

23 Viscous forces of fluids can be viewed as analogous to friction of solids.



59

Kolmogorov (1941) showed that the smallest scales of turbulence, where the dissipation of
kinetic energy to heat becomes dominant, are the same for all flows and depend only on the
average rate of dissipation € and the kinematic viscosity of the fluid v (Hunt and Vassilicos,
1991). These scales are called Kolmogorov scales and follow the equations:

n=(8/e)l/ (3.1)
T = (v/€)/? (3.2)
uy = (ve)l/4 (33)

where 7 is the smallest length scale, 7, the smallest time scale, and u, the smallest velocity
scale. He also showed that the energy spectrum is a power law of the length scale according
to the equation:

E(k) = Ce2/3k-5/3 (3.4)
where E is the kinetic energy, C some constant, and k the length scale (/bid.). The power-
law distribution could be related to the fact that kinetic energy is maximized at all scales
simultaneously. This maximization leads to faster dissipation. Turbulence is said to be a
statistical fractal because it follows this power-type scaling law.

The example of turbulence could lead to two important conclusions. First, it could support
the idea that self-organization emerges as gradients become steeper. Second, it could show
that self-organization can either take a deterministic form, such as hexagonal Benard cells,
or a stochastic form, such as chaotic turbulent vortices.

Furthermore it supports the view that the concept of “disorder” is subjective and
misleading. Turbulence is not disordered. It may appear so to our human eyes because it is
ordered in an uncertain way. But uncertainty does not mean disorder. We may think so
because our human minds like certainty and control, and are afraid of uncertainty. But
uncertainty makes life beautiful, without it life would be boring. Uncertainty, in the form of
turbulence, creates beauty in nature. For example turbulence is what allows water droplets
to be suspended in the atmosphere, as the vortices cause stochastic upward movement that
lifts the droplets. This allows the formation of clouds. Without turbulence, nature would
not be able to give rise to sunsets as the one seen in figure 3.5.
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Figure 3.4: Laminar (below) and turbulent (above) flow of cigarette smoke. The turbulent flow leads
to significant increase of mixing of smoke with the ambient air. Source: www.cfd-online.com

(http:/ /i.minus.com/ielnQ8.jpg)

Figure 3.5: Turbulent air flow allows water droplets to be suspended in the atmosphere. Without

turbulence clouds would not be able to form. July 2012, Langkawi, Malaysia. Personal photo.
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Organization maximizes production

Dissipative structures and self-organization can be explained as a manifestation of the
second law of thermodynamics and the law of maximum entropy production. In qualitative
terms the explanation can be the following. When a system becomes self-organized it
“consumes” entropy, in the sense that its local entropy is reduced. This means that it must
produce more entropy than a non-organized system to compensate this local decrease of
entropy, if it is to follow the law of maximum entropy production. In other words self-
organized systems are more efficient dissipators than non-organized systems. It is
important to repeat that self-organization emerges only in non-equilibrium conditions and
only in non-isolated systems.

An additional explanation of self-organization is offered by Ozawa et al. (2003). They study
turbulent fluid systems in nature such as the atmosphere or the mantle. They show that
these systems produce maximum entropy due to thermal and viscous dissipation. They
explain that the production of entropy is maximized due to a combination of positive and
negative feedback mechanisms. If the system is initially in a non-organized state, any small
random perturbation can initiate a positive feedback loop that leads to the emergence of a
self-organized state. On the other hand if the system is in a self-organized state, small
perturbations initiate negative feedback loops that lead back to the self-organized state.
Thus the self-organized state is a steady state.

The findings of Ozawa et al. (2003) illuminate an additional property of self-organized
systems, the property of homeostasis. Homeostasis refers to the ability of a system to self-
regulate in order to negate changes to its conditions in order to maintain a steady state.

Example: Osmotic pressure dissipation through lipid membranes?24

Lipids are organic molecules which, along with proteins, constitute the membranes of living
cells. Lipids have a hydrophilic head and a hydrophobic tail. In the presence of water, lipids
spontaneously self-assemble into bilayers, positioning their hydrophobic tails towards the
center of the bilayer and the hydrophilic heads facing the aqueous surroundings. This
specific arrangement of lipids allows both sides of the membrane to be in contact with
water. Furthermore, it makes lipid membranes semipermeable. Large hydrophilic
molecules cannot be in the interior of the membrane, therefore they cannot travel through
the membrane. Water on the other hand can easily travel through membranes due to its

24 This example is based on personal correspondence with Kamila Oglecka. At the time of writing the findings
presented here were being submitted at a high-impact scientific journal for review.
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small molecular size. Therefore at the presence of an osmotic pressure gradient, water can
flow through a lipid membrane.

Vesicles are small spheres composed of a lipid bilayer containing aqueous solutions.
Compartmentalization of fluids by membranes is a fundamental architecture of living cells,
which can be mimicked by artificially creating lipid vesicles that serve as simplified models
of cell membranes. Oglecka is studying the physical properties of synthetic lipid bilayers.
She hydrates dried lipid films with sugar-water solutions. This creates vesicles that contain
sugar-water solution surrounded by an ambient sugar-water solution of the same
concentration. Thus the osmotic gradient across the vesicles’ membrane is zero. Dilution of
the solution water establishes a concentration gradient across the membranes, creating
osmotic pressure. As water flows into the vesicles inflating them, the membrane tension
increases until local rupture occurs and sugar solution is released into the ambient bulk.
After the release of excess pressure, the membrane rupture heals and a new cycle of
inflation-burst starts. The combination of osmosis and release of sugar-water from the
vesicles eventually leads to a new equilibrium where the concentration of sugar is
approximately equal on both sides of the membrane. This is an example of gradient
dissipation phenomena.

Oglecka has observed the emergence of a self-organized state of vesicle membranes. She
uses more than one kind of lipids for the formation of vesicles. Under normal membrane
tension lipids of different kinds are mixed. However, under high membrane tension, and
given the correct conditions, a phase separation in the membrane can take place. Namely
different kinds of lipids can become segregated. The separation is visualized by adding a
fluorescent dye which prefers to attach itself to one kind of lipids and observing the
vesicles using fluorescence microscopy. Images like the one shown in figure 3.6 are
observed.

At, or near, equilibrium conditions, that is under the influence of zero, or small, osmotic
gradients, lipids of different kinds tend to be fairly uniformly distributed across the
membrane. Under the influence of a steeper osmotic gradient, however, a self-organized
state emerges. This example follows the same pattern that is being postulated in this

section, namely conditions far from equilibrium can lead to self-organization.
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Figure 3.6: Phase separation in lipid membranes of vesicles; an example of self-organization
emerging under the influence of an osmotic pressure gradient. Different colors represent different

kinds of lipids. The bar in the lower left corner is 10 pm long. Source: Oglecka (2012).

Living systems

For a long time it was thought that life was defying the second law of thermodynamics. This
was due to the naive view that entropy equals disorder and systems are expected to
become disordered as time passes. Living organisms however present remarkable order,
while life as a phenomenon leads to ever more order due to evolution. This was viewed as a
violation of the second law. Therefore biology was seen as a science that cannot be
reconciled with physics.

This view is obviously mistaken. Living systems are not isolated; they are open, as they
exchange both energy and matter with their environment. Organisms stay alive and grow
by metabolizing energy and matter that they consume and by depositing high-entropy
waste energy and matter to their environment. Furthermore, on a planetary scale, the
global ecosystem maintains and evolves itself due to the massive production of entropy by
the Sun (Sagan, 2010).
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From a different point of view it can be said that life actually increases entropy as it
increases uncertainty. For example one can compare the images of Martian landscapes sent
to Earth by NASA’s Curiosity rover which landed on Mars on August 6, 2012, with images of
landscapes from Earth. The uncertainty of how a landscape will look, what forms and
shapes or chemical composition it will have is much higher for a landscape on Earth than
on barren Mars. More insights along these lines are presented in the next section which
deals with entropy and the Earth system.

Living organisms can be viewed as dissipative structures. Their function is to dissipate
gradients. For example, trees dissipate the gradient between soil and atmospheric water
through the process of transpiration. Or, for example, food is a chemical gradient and it is
dissipated through the metabolic processes, by breaking down complex molecules to
simpler ones. An organism itself is a gradient, to be dissipated (i.e. eaten) by other
organisms.

The sensors of organisms can be seen as mechanisms that detect gradients and direct the
organism towards the gradient. For example some amoebas can sense changes in the pH of
the water and move accordingly. Plants can sense light gradients and can grow towards it
to maximize photosynthesis. The eyes of a lion, an example of a much more sophisticated
sensor, can detect a zebra, which is a chemical and energy gradient, and direct the lion to
try to eatit.

From this perspective evolution can be seen as a process that, amongst other things,
optimizes the sensors of organisms so that they can more efficiently detect and dissipate
gradients. This perspective can also explain intentionality, an additional characteristic of
living organisms that seems irreconcilable with physics. Intentionality, in the biologic
sense, is the ability of organisms to perform intentional actions, which is in contrast to the
unintentional “actions” performed by particles, engines, clouds and rivers.

One of the first to explore life’s relation to the concept of entropy was Austrian physicist
Erwin Schroedinger (2010). The ability of living organisms to maintain themselves, grow
and evolve had led many scientists, even in modern times, to claim that there was some
unique, meta-physical force in living organisms called entelechy. He showed how an
organism manages to stay alive only because it is depositing high entropy to its
environment.

A very important conclusion is that if dissipative structures emerge due to the law of
maximum entropy production and if living organisms are such structures, then the
emergence of life is very probable when conditions are favorable.
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Entropy and the Earth System

The Earth System is the integration of the biosphere, atmosphere, hydrosphere and
lithosphere in a single system based on the view that processes occurring within and
between these subsystems should be studied in a holistic, integrated and interdisciplinary
manner, in order to understand and account for their interconnections and feedback
mechanisms. The concept of entropy played an important role in the establishment of this
point of view.

The concept of the Earth System was developed to a large extent due to the Gaia hypothesis.
According to this hypothesis the whole biosphere can be seen as a single living being, called
Gaia (Lovelock, 1979). Each individual organism can be seen as a part of Gaia, having with
it the same relation that cells have with an organism. Supporters of the Gaia hypothesis
range from those who accept it in a wide sense, as a metaphor that helps in holistic
understanding of planetary biogeochemical processes, to those that interpret it strictly and
literally. The later have views that reach the limit of science fiction. For example they
believe that Gaia can even replicate itself on other planets. Humans can play the role of
spores by terraforming and colonizing other planets (Stephen Miller, 1998). Views like this
have led to widespread criticism of the hypothesis. However, if used metaphorically, it can
lead to a more complete understanding of the Earth System.

The Gaia hypothesis was developed by English chemist James Lovelock. During the early
1960’s NASA started planning to search whether life existed on Mars. Lovelock believed
that first scientists should define what exactly life is, as life on other planets may be very
different than life on Earth. He believed that a universal definition should relate life to a
local decrease of entropy. For example, Earth’s atmosphere contains high concentration of
oxygen and methane, which would be impossible under chemical equilibrium conditions. It
is made possible by biological processes. Therefore a chemical disequilibrium in a planet’s
atmosphere, observable remotely by radio telescopes, can be a very strong indication for
the presence of life. This idea, along with other observations, led eventually Lovelock to the
hypothesis that the biosphere has shaped the atmosphere for its collective benefit, as if the
whole biosphere was a single being.
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Schwartzman (1999), supporting a metaphorical view of the Gaia hypothesis, showed that
the biosphere shapes the lithosphere, in addition to the atmosphere, by the enhancement of
weathering of silicate minerals by the biosphere. Weathering of silicate minerals is the
process of replacement of silicate (Si032-) by carbonate (C0O32-) in rock minerals according
to the reaction

CO2 + CaSi03 — CaCO0s3 + SiO2

Schwartzman uses the concept of entropy and the example of weathering to support the
idea that the biosphere as a whole is a self-organizing system, dissipating the energy of the
incoming solar radiation.

Kleidon (2009), through a review of the literature, shows that first, the Earth System is a
thermodynamic system therefore simulations of global mass and energy transport
processes and global biogeochemistry, such as radiative exchange, the carbon and
hydrologic cycles, should be based on thermodynamic principles, including the maximum
entropy principle. Furthermore he shows that the principle of maximum entropy
production proves that the Gaia hypothesis “may be closer to the truth than what some of its
skeptics would expect”. The Gaia hypothesis is interpreted to be explaining that the Earth
System has been maintained at a far-from-equilibrium, yet relatively stable, state by and for
the benefit of the biosphere.

3.3 Entropy and Engineering

In this section I present an engineering application of the concept of entropy.

Entropy and Measurement Systems

Robert-Nicoud et al. (2005) present an application of the principle of maximum entropy in
the problem of measurement system configuration using two examples, one from

structural and one from water resources engineering.

A measurement system consists of a number of sensors that measure various properties of
a physical system at various locations. Given that the number of sensors is often limited, it
is important to optimize the spatial configuration of the sensors so that the data collected
can offer a maximum benefit.

Robert-Nicoud et al. (2005) are assuming that the optimal configuration of sensors is the
one that allows them to best distinguish between candidate models. They are measuring
the separation between models using Shannon’s entropy. The entropy is calculated by
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creating distributions of the values that candidate models predict at the location of each
sensor. The locations that lead to higher entropy are the ones that lead to larger separation
between models, making it thus easier to select which models are best. They explain that
“the best system is the one in which the total entropy is the maximum. This can be formulated
as a discrete optimisation problem.”

Robert-Nicoud et al. (2005) are offering two examples. The first example is from structural
engineering. They present a horizontal timber beam in the laboratory, on which vertical
loads are applied. Under the beam are sensors of vertical displacement at various locations.
They are searching for the optimal position for a sensor across the beam’s length. The
second example is from water resources engineering. They study leakage from a water
distribution system. Leakage can be detected by sound sensors. They try to identify the
optimal installation locations of the sensors.
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4. Epilogue

This thesis presented an extended, but far from exhaustive, review of the literature
regarding entropy. The main goal was to present the concept of entropy to a hydrological
engineering audience and show how it can be applied by hydrologists.

Entropy is one of the most important and at the same most elusive concepts of science. It is
usually interpreted as a measure of “disorder”. The point of view that [ agree with is that
this interpretation can be misleading. Therefore a side goal of the thesis was to show that
entropy’s interpretation as a measure of uncertainty is easier to grasp. Furthermore it is
applicable to other areas, such as information theory, where the notion of “disorder” does
not seem to make sense.

Entropy was first introduced to give a mathematical form to the second law of
thermodynamics but has since found application in a wide range of sciences. The thesis
defined entropy first from an information-theory and then from a thermodynamic point of
view. Historically however the concept of entropy was developed in the opposite order.
Gibbs’ definition of thermodynamic entropy had existed for around 50 years when
Shannon discovered in 1948 the measure of uncertainty of information theory and realized
that it is given by the same equation as Gibbs’ entropy. Therefore he called the new
measure entropy. More than 60 years later, the debate is still open as to whether this was a
wise naming choice and as to whether the two entropies are related or not. The point of
view that this thesis defended is that they two entropies are related, as thermodynamic
entropy is a special case of Shannon’s entropy.

A number of applications of the concept of entropy in hydrology were presented. More
specifically the thesis presented applications from hydrometeorology, such as the
tephigram. From the area of stochastic hydrology it presented examples of Jaynes’
maximum entropy principle, which is a method of statistical inference that can be applied
to calculate distributions of hydrological variables. Also, it presented studies of
geomorphology and of temporal distribution of rainfall that use the concept of entropy.
Finally it presented how entropy can be used to explain the Hurst-Kolmogorov process and
the property of persistence, also known as long-term “memory”.

Furthermore, special attention was given to applications from other areas of natural
sciences to show the breadth and depth of entropy’s applicability and provoke the readers’
interest. Some of these applications were presented empirically and without rigorous
scientific proofs. The first theme of natural sciences that was presented was the possible
emergence of self-organized systems due to Ziegler’s principle of maximum entropy



69

production rate. Examples of such systems were Benard convective cells, turbulence,
osmosis through lipid membranes, and living systems. An important empirical conclusion
was that if self-organization is a result of Ziegler’s principle and if living systems are an
example of self-organized systems, then the emergence of life is very probable when
conditions are favorable. The second theme of natural sciences that was presented was the
Earth system, which is the integration of the biosphere, atmosphere, hydrosphere and
lithosphere in a single system. This view can help promote holistic and interdisciplinary
research. It was shown through examples that entropy plays an important role both in the
original development of the concept of the Earth system and in current research.

Finally an engineering application of entropy was presented. This application shows how
the maximum entropy principle can be used for the design of measurement systems by
calculating optimal locations of sensors.

[ hope that this document can serve as an easy-to-follow introduction to entropy. However
it cannot cover the whole topic. Therefore interested readers are encouraged to study on
their own books and publications from the reference list and beyond.

Finally, the concept of entropy can be an interesting and important topic for future
hydrologic research. An area of study could be the derivation of distributions of various
hydrologic variables using Jaynes’ principle of maximum entropy. Another area of study
could be turbulence, testing in a rigorous and concrete manner whether turbulence is
indeed related to the maximization of entropy production as was speculated in this thesis.
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Appendix A

This Appendix presents additional definitions and properties from probability theory?5.

Joint, marginal, and conditional distributions
For two random variables, X and Y, we can define the joint cumulative distribution function
Fxy(x,y)=P(X<x,Y<y) (A1)

If Fxy is doubly derivable, we can define the joint probability density function

02 Fxy(x,Y)
ol )) = 5yay (A2)

By inversion we get

Xy
Fo(x,y) = [ [ fol€, p)dipdg (A3)
The marginal cumulative distribution functions of X and Y are
Fx(x) = P(X<x) = lim Fxy(x,y) (A.4)
y—00
Fr(y) = P(Y <y) = lim F(x, ) (A5)

and the marginal probability density functions of X and Y are

fi@) = [ frr(x, y)dy (A.6)
) = [ firlx, y)dx (A7)

The conditional cumulative distribution function of X given the value of Y is

 fir(€, y)d€
Fy(x|Y=y) = W (A8)

25 Equations and definitions of this subsection are according to Koutsoyiannis (1997) and Theodoratos
(2004), unless otherwise specified
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and the conditional probability density function of X given the value of Y'is

L kv(xy)
fxx|Y=y)= () (A.9)
For independent random variables we have
Fxy(x,y) = Fx(x)Fy(y) (A.10)
and
Jar(x,y) = K(fr(y) (A11)

Expected values, moments

Expected values and moments are values that give important information about the
average magnitude of a random variable and the shape of its distribution. The expected
value of a function is simply a probability-weighted average of this function. The moments
are expected values of a certain class of functions. The most well-known moments are the
mean (often refered to as average) and the variance.

If X is a random variable and g(X) a function of the random variable then we define the
expected value E[g(X)], for continuous random variables by the equation

Elg0] = J g(x)fe(x)dx (A12)
and for discrete random variables by the equation

E[g(X)] = X g(0Ps(x) (A.13)

i=1

There is a number of special functions g(X) whose expected functions are frequently used.
These functions and the respective expected values are presented below.

1. Forg(X)=Xrwithr=1,2, .., we define the moment of order r about zero of X or raw
moment of order r of X:
mx() = E[X"] (A.14)

2. For g(X) = X we define the expected value of X or mean of X or raw moment of order 1:
myx = E[X] (A.15)

3. Forg(X)=(X-mx)rwithr=1, 2, .., we define the central moment of order r of X:
pux) = E[(X - mx)'] (A.16)
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4.  For g(X) = (X - myx), the expected value of g(X) - i.e. the central moment of order 1 - is
always equal to zero:
E[(X-mx)] =uxV =0 (A.17)

5.  Forg(X) = (X- mx)? we define the variance of X or central moment of order 2:
ox? = Var[X] = ux1?) = E[g(X)] = E[(X - mx)?] (A.18)

Based on the variance of X we define two coefficients that are used often. These
coefficients are the standard deviation:

ox =+ Var[X] (A.19)
and the coefficient of variation:

9x
Cyx = My (A.20)
The definition of expected values can be extended to joint and conditional distributions of
two random variables. Thus for a function g(X, Y) of two continuous random variables X

and Y we have

Elg(x, V] = [ [g(x,y)fr(x,y)dydx (A.21)

-00 -C0

and for a function of two discrete random variables X and Y we have

E[g(X, V)] = 3 3. gx, 1) Pur(xi, ) (A.22)

i=1j=1
Some special expected values of X and Y are:
6. E[XrYd] called joint raw moment of order p + q of Xand Y.

7.  E[(X- mx)P(Y - my)4], called joint central moment of order p + q of X and Y (mx and my
are the marginal expected values of X and Y).

8.  The most frequently used joint central moment is of order 1+1, is called covariance of
X and Y, and is given by the equation
Ooxy = COV[X, Y] = E[(X- mx)(Y- my)] = E[Xﬂ - mxmy (A.ZB)

Based on the covariance we define the coefficient of correlation of X and Y, according
to the equation:
Oxy Cov[X, Y]

PXC= 6oy = Var[X]Var[Y] (A-24)
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The coefficient of correlation is dimensionless and takes values -1 < pxy < 1. It is a very
useful parameter when we study the correlation of two random variables.

It is easily proven that if two random variables are independent then they are uncorrelated,
i.e. their covariance is equal to zero. The opposite is not always true, i.e. two random
variables may be uncorrelated but dependent.

For the proof we start from the definition of covariance (equation A.23)

oxr = E[(X-my)(Y-mp)] = [ [(x- m0)(y - mn)fir(x, y)dydx

-00 -00

According to the property of equation A.11 for independent variables this becomes
oxr=J Jx-m)(y - m)f() fr)dydx = f(x- mafe(x)dx [y - my)fi(y)dy =0 (A.25)

since these are the central moments of order 1 which according to equation A.17 are zero.
For independent random variables we get from equation A.23

0 = oxy = E[XY] - mxmy
i.e. for independent variables

E[XY]= E[X]E[Y] (A.26)
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Appendix B

We are trying to prove that for a given distribution p;, i = 1, 2, .., n, uncertainty H is
maximum when all the events i are equiprobable, and have probabilities

pi=, (B.1)

using the method of Lagrange multipliers (Efstratiadis and Makropoulos, 2011).

We are searching for the maximum of the function

H(p1, p2,.. pn) = - 2. pilnp; (B.2)
i=1
Subject to the constraint
2pi=1 (B.3)
i=1
We define the auxiliary function
@(pi, A) = H(p1, p2..., pn) - A 2pi (B-4)

=1
We calculate the partial derivatives of ¢ with respect to each p;,
(%1(5,) =-Inpi-1+2 (B.5)
and demand that they are equal to zero
-lnpi-1+A=0<%
pi= el (B.6)
Substituting this in constraint equation (B.3) yields

1=2pi =2erl =er1}'1 =nertl =np; (B.7)

i=1 i=1 i=1

Therefore

[ =

pi= (B.8)

=
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Appendix C

This appendix presents extensive quotes from Jaynes (1957), where he introduced the
principle of maximum entropy. These quotes offer a number of observations and ideas that
can lead to very interesting philosophical implications about maximum entropy inference;
the laws of nature and our knowledge of them; and the meaning of probabilities. The
quotes are presented without comments. Some of them are not referring directly to
entropy, but they show how entropy is related to various other concepts and themes of
physics and philosophy.

From the abstract, page 620, regarding experimental verification of results of the principle
of maximum entropy:
In the resulting “subjective statistical mechanics” the usual rules are thus justified
independently of any physical argument, and in particular independently of
experimental verification; whether or not the results agree with experiment, they
still represent the best estimates that could have been made on the basis of the
information available.

From page 622, regarding the meaning of probabilities:

Probability theory has developed in two very different directions as regards
fundamental notions. The “objective” school of thought regards the probability of
an event as an objective property of that event, always capable in principle of
empirical measurement by observation of frequency ratios in a random
experiment. In calculating a probability distribution the objectivist believes that
he is making predictions which are in principle verifiable in every detail, just as
are those of classical mechanics. |...]

On the other hand, the “subjective” school of thought regards probabilities as
expressions of human ignorance; the probability of an event is merely a formal
expression of our expectation that the event will or did occur, based on whatever
information is available. To the subjectivist, the purpose of probability theory is to
help us in forming plausible conclusions in cases where there is not enough
information available to lead to certain conclusions; thus detailed verification is
not expected. | ...]

Although the theories of subjective and objective probability are mathematically
identical, the concepts themselves refuse to be united. In the various statistical
problems presented to us by physics, both viewpoints are required. Needless
controversy has resulted from attempts to uphold one or the other in all cases. The



subjective view is evidently the broader one, since it is always possible to interpret
frequency ratios in this way; furthermore, the subjectivist will admit as legitimate
objects of inquiry many questions which the objectivist considers meaningless. The
problem posed at the beginning of this section [finding the distribution of pi of
equation 2.74] is of this type, and therefore in considering it we are necessarily
adopting the subjective point of view.

From page 624, regarding the laws of physics and equilibrium states:
There is nothing in the general laws of motion that can provide us with any
additional information about the state of a system beyond what we have obtained
from measurement.

The whole paragraph containing this quote is the following:

It is interesting to note the ease with which these rules of calculation [of
thermodynamic quantities derived using the principle of maximum entropy] are
set up when we make entropy the primitive concept. Conventional arguments,
which exploit all that is known about the laws of physics, in particular the
constants of the motion, lead to exactly the same predictions that one obtains
directly from maximizing the entropy. In the light of information theory, this can
be recognized as telling us a simple but important fact: there is nothing in the
general laws of motion that can provide us with any additional information
about the state of a system beyond what we have obtained from measurement
[Jaynes’ emphasis]. This refers to interpretation of the state of a system at time t
on the basis of measurements carried out at time t. For predicting the course of
time-dependent phenomena, knowledge of the equations of motion is of course
needed. By restricting our attention to the prediction of equilibrium properties as
in the present paper, we are in effect deciding at the outset that the only type of
initial information allowed will be values of quantities which are observed to be
constant in time. Any prior knowledge that these quantities would be constant
(within macroscopic experimental error) in consequence of the laws of physics, is
then redundant and cannot help us in assigning probabilities.

From page 626, regarding the meaning of entropy:
Entropy as a concept may be regarded as a measure of our degree of ignorance as
to the state of a system; on the other hand, for equilibrium conditions it is an
experimentally measurable quantity, whose most important properties were first
found empirically. It is this last circumstance that is most often advanced as an
argument against the subjective interpretation of entropy.
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From page 626, regarding the justification of maximum entropy inference:

One might then ask how such probabilities could be in any way relevant to the
behavior of actual physical systems. A good answer to this is Laplace’s famous
remark that probability theory is nothing but “common sense reduced to
calculation.” If we have little or no information relevant to a certain question,
common sense tells us that no strong conclusions either way are justified. The
same thing must happen in statistical inference, the appearance of a broad
probability distribution signifying the verdict, “no definite conclusion.” On the
other hand, whenever the available information is sufficient to justify fairly strong
opinions, maximum- entropy inference gives sharp probability distributions
indicating the favored alternative. Thus, the theory makes definite predictions as
to experimental behavior only when, and to the extent that, it leads to sharp
distributions.

When our distributions broaden, the predictions become indefinite and it becomes
less and less meaningful to speak of experimental verification. As the available
information decreases to zero, maximum-entropy inference (as well as common
sense) shades continuously into nonsense and eventually becomes useless.
Nevertheless, at each stage it still represents the best that could have been done
with the given information.

From page 627, regarding the existence of macroscopic properties of matter and the

existence of physics that describe them:
Evidently, such sharp distributions for macroscopic quantities can emerge only if it
is true that for each of the overwhelming majority of those states to which
appreciable weight is assigned, we would have the same macroscopic behavior.
We regard this, not merely as an interesting side remark, but as the essential fact
without which statistical mechanics could have no experimental validity, and
indeed without which matter would have no definite macroscopic properties, and
experimental physics would be impossible. It is this principle of “macroscopic
uniformity” which provides the objective content of the calculations, not the
probabilities per se.

From page 627, regarding the discovery of new laws of physics:
Consider now the case where the theory makes definite predictions and they are
not borne out by experiment. [...] The most reasonable conclusion in this case is



that the enumeration of the different possible states (i.e, the part of the theory
which involves our knowledge of the laws of physics) was not correctly given. Thus,
experimental proof that a definite prediction is incorrect gives evidence of the
existence of new laws of physics. The failures of classical statistical mechanics, and
their resolution by quantum theory, provide several examples of this phenomenon.

From page 629, regarding the meaning of entropy:
We accept the von Neumann-Shannon expression for entropy, very literally, as a
measure of the amount of uncertainty represented by a probability distribution;
thus entropy becomes the primitive concept with which we work, more
fundamental even than energy.

From page 630, regarding the avoidance of bias by the maximum entropy principle:
In the problem of prediction, the maximization of entropy is not an application of
a law of physics, but merely a method of reasoning which ensures that no
unconscious arbitrary assumptions have been introduced.
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