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Chapter 1 

The utility of probability 

Demetris Koutsoyiannis 

Department of Water Resources and Environmental Engineering,  

Faculty of Civil Engineering, National Technical University of Athens, Greece 

 

Summary 

Commonly, probability is regarded to be a branch of applied mathematics that provides tools 

for data analysis. Nonetheless, probability is a more general concept that helps shape a 

consistent, realistic and powerful view of the world. Historically, the modern science was 

initiated from deterministic views of the world, in which probability had a marginal role for 

peculiar unpredictable phenomena. However, in the turn of the nineteenth century, radical 

developments in physics, and particularly thermodynamics, dynamical systems and quantum 

physics, as well as in mathematics has given the probability theory a central role in the 

scientific scene, in the understanding and the modelling of natural phenomena. Furthermore, 

probability has provided grounds for philosophical concepts such as indeterminism and 

causality, as well as for extending the typical mathematical logic, offering the mathematical 

foundation of induction. In typical scientific and technological applications, probability 

provides the tools to quantify uncertainty, rationalize decisions under uncertainty, and make 

predictions of future events under uncertainty, in lieu of unsuccessful deterministic 

predictions. Uncertainty seems to be an intrinsic property of nature, as it can emerge even 

from pure and simple deterministic dynamics, and cannot been eliminated. This is 

demonstrated here using a working example with simple deterministic equations and showing 

that deterministic methods may be good for short-term predictions but for long horizons their 

predictive capacity is cancelled, whereas the probabilistic methods can perform much better. 

1.1 Determinism and indeterminism 

The philosophical proposition of determinism is widely accepted in science. It is manifested 

in the idea of a clockwork universe, which comes from the French philosopher and scientist 

René Descartes (1596-1650) and was perfected by the French mathematician and astronomer 

Pierre-Simon Laplace (1749-1827). It is vividly expressed in the metaphor of Laplace's 

demon, a hypothetical all-knowing entity that knows the precise location and momentum of 

every atom in the universe at present, and therefore could use Newton's laws to reveal the 

entire course of cosmic events, past and future. (Isaac Newton – 1643-1727 – however, 

rejected cartesian thinking and especially the clockwork idea; he was aware of the fragility the 

world and believed that God had to keep making adjustments all the time to correct the 
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emerging chaos.) The demon who knows the present perfectly is of course a metaphor; what 

is more important in this idea is that knowing the present perfectly one can deduce the future 

and the past using Newton’s laws. The metaphor helps us understand that, according to 

deterministic thinking, the roots of uncertainty about future should be subjective, i.e. rely on 

the fact that we do not know exactly the present, or we do not have good enough methods and 

models. It is then a matter of time to eliminate uncertainty, acquiring better data 

(observations) and building better models. 

 However, according to indeterminism, a philosophical belief contradictory to determinism, 

uncertainty may be a structural element of nature and thus cannot be eliminated. 

Indeterminism has its origin in the Greek philosophers Heraclitus (ca. 535–475 BC) and 

Epicurus (341–270 BC). In science, indeterminism largely relies on the notion of probability, 

which according to the Austrian-British philosopher Karl Popper (1902-1994) is the extension 

(quantification) of the Aristotelian idea of potentia (Popper, 1982, p. 133). Practically, the 

idea is that several outcomes can be produced by a specified cause, while in deterministic 

thinking only one outcome is possible (but it may be difficult to predict which one). 

Probability is a quantification of the likelihood of each outcome or of any set of outcomes. In 

this chapter we use the term probability in a loose manner. In the next chapter we will provide 

a precise description of the term using the axiomatization introduced by the soviet 

mathematician Andrey Nikolaevich Kolmogorov (1903-1987). 

 In everyday problems deterministic thinking may lead to deadlocks, for instance in dealing 

with the outcome of a dice throw or a roulette spin. The movements of both obey Newton’s 

laws; however, application of these laws did not help anyone to become rich predicting the 

dice outcomes. In an attempt to rectify such deadlocks, some have been tempted to divide the 

natural phenomena into two categories, deterministic (e.g. the movement of planets) and 

random (e.g. the movement of dice). We maintain that this is a fallacy (both planets and dice 

obey to the same Newton’s laws). Another very common fallacy of the same type (in fact, an 

extension of the former) is the attempt to separate natural processes into deterministic and 

random components, one superimposed (usually added) to the other. Both fallacies can be 

avoided by abandoning the premise of determinism.   

1.2 Deduction and induction 

In mathematical logic, determinism can be paralleled to the premise that all truth can be 

revealed by deductive reasoning or deduction (the Aristotelian apodeixis). This type of 

reasoning consists of repeated application of strong syllogisms such as: 

 If A is true, then B is true   

 A is true 

 Therefore, B is true 

and  
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 If A is true, then B is true;   

 B is false 

 Therefore, A is false 

 Deduction uses a set of axioms to prove propositions known as theorems, which, given the 

axioms, are irrefutable, absolutely true statements. It is also irrefutable that deduction is the 

preferred route to truth; the question is, however, whether or not it has any limits. David 

Hilbert (1862-1943) expressed his belief that there are no limits in his slogan (from his talk in 

1930; also inscribed in his tombstone at Göttingen): “Wir müssen wissen, wir werden wissen - 

We must know, we will know”. His idea, more formally known as completeness, is that any 

mathematical statement could be proved or disproved by deduction from axioms.  

 In everyday life, however, we use weaker syllogisms of the type: 

 If A is true, then B is true;   

 B is true 

 Therefore, A becomes more plausible 

and  

 If A is true, then B is true;   

 A is false 

 Therefore, B becomes less plausible 

The latter type of syllogism is called induction (the Aristotelian epagoge). It does not offer a 

proof that a proposition is true or false and may lead to errors. However, it is very useful in 

decision making, when deduction is not possible.  

 An important achievement of probability is that it quantifies (expresses in the form of a 

number between 0 and 1) the degree of plausibility of a certain proposition or statement. The 

formal probability framework uses both deduction, for proving theorems, and induction, for 

inference with incomplete information or data. 

1.3 The illusion of certainty and its collapse 

Determinism in physics and completeness in mathematics reflect the idea that uncertainty 

could in principle be eliminated. However, in the turn of the nineteenth century and the first 

half of the twentieth century this idea proved to be an illusion as it received several blows in 

four major scientific areas, summarized below. 

1.3.1 Statistical physics and maximum entropy 

In its initial steps, thermodynamics was based on purely deterministic concepts and 

particularly on the notion of the caloric fluid, a hypothetical fluid (a weightless gas) that flows 

from hotter to colder bodies (passes in pores of solids and liquids). The caloric theory was 

proposed in 1783 by Antoine Lavoisier and persisted in scientific literature until the end of 

the 19th century. In 1902 the term statistical thermodynamics was coined by the American 
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mathematical-engineer, physicist, and chemist J. Willard Gibbs. The statistical theory of 

thermodynamics is essentially based on the probabilistic description of kinetic properties of 

atoms and molecules and was very successful in explaining all concepts and phenomena 

related to heat transfer.  

 The concept of entropy (from the Greek εντροπία), which was essential for the formulation 

of the second law of thermodynamics (by Rudolf Clausius in 1850), was given a statistical 

interpretation by Ludwig Boltzmann (in 1872). The second law says that the entropy of an 

isolated system which will tend to increase over time, approaching a maximum value at 

equilibrium. Boltzmann showed that entropy can be defined in terms of the number of 

possible microscopic configurations that result in the observed macroscopic description of a 

thermodynamic system. In 1878, Gibbs extended this notion of entropy introducing the idea 

of the statistical (or thermodynamic) ensemble, an idealization consisting of a large number 

(sometimes infinitely many) of mental copies of a system, each of which represents a possible 

state that the real system might be in. In 1948, Claude E. Shannon generalized the concept of 

entropy and gave it an abstract probabilistic definition applicable for any random variable, 

thus essentially showing that entropy is a measure of uncertainty of a system. Kolmogorov 

and his student Sinai went far beyond and suggested a definition of the metric entropy for 

dynamical systems (their results were published in 1959). In 1957, the American 

mathematician and physicist Edwin Thompson Jaynes extended Gibbs’ statistical mechanics 

ideas showing that they can be applied for statistical inference about any type of a system. 

Specifically, he showed that the principle of maximum entropy can be used as a general 

method to infer the unknown probability distribution of any random variable. For instance, 

the principle of maximum entropy can easily produce that the probability of the landing of a 

die in each of its six faces will be 1/6 (any departure from equality of all six probabilities 

would decrease the uncertainty of the event). It is thus impressive that the principle that 

predicts that heat spontaneously flows from a hot to a cold body, is the same principle that can 

give the probability distribution of dice. 

 Thus, statistical thermodynamics has formed a nice paradigm entirely based on probability 

as a tool for both explanation and mathematical description of natural behaviours. 

Furthermore, the second law of thermodynamics essentially shows that nature works in a way 

that maximizes uncertainty in complex systems. Following nature’s behaviour and applying 

the principle of maximum entropy (maximum uncertainty) to any type of system we can infer 

useful knowledge about the system’s behaviour. This knowledge, however, is no longer 

expressed in terms of certainty about the sharp states of the system, but rather in terms of 

probabilities of these states. In large systems however, it turns out that this knowledge can 

lead to nearly precise descriptions of macroscopical properties, despite the maximum 

uncertainty at the microscopical level. For instance, we can easily infer that the average of the 

outcomes of 45 000 dice throws will be between 3.49 and 3.51 with probability 99.99%. From 
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a practical point of view such a statement is almost equivalent to certainty; however, it does 

not preclude the case that all 45 000 will be sixes (and the average will be also six).  

1.3.2 Dynamical systems and chaos 

Chaos (from the Greek χάος) is most often referred to as a deterministic notion (deterministic 

chaos). Yet it offers an excellent insight of uncertainty, even in the case of purely 

deterministic dynamics. The basic concepts of chaos are due to the French mathematician 

Jules Henri Poincaré (1854–1912). In 1890, Poincaré’s memoir on the three body problem 

was published in the journal Acta Mathematica as the winning entry in the international prize 

competition sponsored by Oscar II, King of Sweden and Norway, to mark his 60th birthday. 

Today this paper is renowned for containing the first mathematical description of chaotic 

behavior in a dynamical system (Barrow-Green, 1994). It was the first time that the 

complexity of Newtonian dynamics was demonstrated, even in a system as apparently simple 

as three gravitational bodies. Poincaré gave the first example of the sensitive dependence on 

initial conditions, a characteristic of chaotic behaviour that is met in unstable dynamical 

systems.  

 Ironically, however, the prize winning work of Poincaré was not exactly the published one. 

In contrast, in his original work Poincaré, had found certain stability results for the three-body 

problem. After the prize award (1889) and after the prize winning essay had been printed (but 

not distributed), Poincaré discovered a fatal flaw in his proof that was supposed to show that 

the universe worked like clockwork. Poincaré then had to spend his monetary prize plus 1000 

Crowns to withdraw the printed volumes with the erroneous version of the memoir, as well as 

several months of work to correct the error. In the final paper he had reinstated the chaos in 

the movement of the astral bodies and brought down for ever the idea of a clockwork 

universe. 

 We can understand the emergence of chaos and chance from purely deterministic dynamics 

reading his own words (from Henri Poincaré, Science et méthode, 1908; reproduced in 

Poincaré, 1956, p. 1382):  

A very small cause, which escapes us, determines a considerable effect which we cannot 

help seeing, and then we say that the effect is due to chance. If we could know exactly 

the laws of nature and the situation of the universe at the initial instant, we should be 

able to predict the situation of this same universe at a subsequent instant. But even 

when the natural laws should have no further secret for us, we could know the initial 

situation only approximately. If that permits us to foresee the succeeding situation with 

the same degree of approximation, that is all we require, we say the phenomenon had 

been predicted, that it is ruled by laws. But it is not always the case; it may happen that 

slight differences in the initial conditions produce very great differences in the final 

phenomena; a slight error in the former would make an enormous error in the latter. 

Prediction becomes impossible, and we have the fortuitous phenomenon.  



6  1. The utility of probability 

 
… Why have the meteorologists such difficulty in predicting the weather with any 

certainty? Why do the rains, the tempests themselves seem to us to come by chance, so 

that many persons find it quite natural to pray for rain or shine, when they would think 

it ridiculous to pray for an eclipse? We see that great perturbations generally happen in 

regions where the atmosphere is in unstable equilibrium... Here again we find the same 

contrast between a very slight cause, inappreciable to the observer, and important 

effects, which are sometimes tremendous disasters.  

 Non-linear chaotic dynamics remained in the backwoods of mathematics and physics until 

the 1960s, even though some of the leading mathematicians, mostly in Russia/USSR 

(Lyapunov, Kolmogorov, Andronov), worked on it. Then the use of computers made it 

possible to experiment with chaos in numerical applications. The American meteorologist 

Edward Norton Lorenz was an early pioneer of experimenting chaos with computers; also he 

coined the term butterfly effect to encapsulate the notion of sensitive dependence on initial 

conditions in chaotic systems: a butterfly’s wings (a small change in the initial condition of 

the atmospheric system) might create tiny changes in the atmosphere that ultimately cause a 

tornado to appear.  

 Now the mathematical theory of nonlinear complex chaotic dynamic systems is centre 

stage and mainstream. A prominent characteristic of the notion of chaos is that it is easily 

understandable, as it may involve simple deterministic dynamics, and allows the 

experimentation with very simple examples that exhibit chaotic behaviour. Such a simple 

example we will study in the next section. It is fascinating that a simple nonlinear 

deterministic system (such as the gravitational movement of three bodies or the hydrological 

system studied below) can have a complex, erratic evolution. Sadly, however, most of 

hydrological studies understood this in the opposite direction: they attempted to show, making 

naïve and mistaken use of tools from dynamical systems, that complexity in hydrological 

phenomena implies that their dynamics are simple (Koutsoyiannis, 2006). 

1.3.3 Quantum physics 

While chaotic systems demonstrated that uncertainty can be produced even in a purely 

deterministic framework, quantum physics has shown that uncertainty is an intrinsic 

characteristic of nature. In this respect, probability is not only a necessary epistemic addition 

or luxury for modelling natural phenomena. Rather it is a structural element of nature, an 

ontological rather than epistemic concept.   

 Quantum physics has put limits to the knowledge we can obtain from observation of a 

microscopic system and has shown that exact measurements are impossible. The outcome of 

even an ideal measurement of a system is not sharp (exact), but instead is characterized by a 

probability distribution. The Heisenberg uncertainty principle gives a lower bound on the 

product of the uncertainty measures of position and momentum for a system, implying that it 

is impossible to have a particle that has an arbitrarily well-defined position and momentum 
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simultaneously. Thus, our familiar deterministic description proves to be impossible for the 

microscopic world.  

 A famous example that shows how fundamental the notion of probability is in nature is the 

double-slit experiment. Light is shined at a thin, solid barrier that has two slits cut into it. A 

photographic plate is set up behind the barrier to record what passes through slits. When only 

one slit is open, there is only one possibility for a photon, to pass through the open slit. Indeed 

the plate shows a single dark line where all the photons are accumulated. However, when both 

slits are open and only one photon at a time is fired at the barrier, there are two possibilities 

for the photon, which however are not mutually exclusive because, according to the 

uncertainty principle, the position of the photon is not sharp. Thus, it seems that the photon 

passes from both slits simultaneously. This will be recorded in the photographic plate, which 

shows regions of brightness and darkness (interference fringes). It seems that a single photon 

materializes the theoretical probability distribution in each case. According to our 

macroscopic experience the phonon would follow one of the two available options, and at the 

time it passes though the barrier it would be in one of the two slits with equal probabilities. 

However, in a quantum physics description the photon is simultaneously in both slits and the 

two probabilities interfere. 

 Such phenomena are difficult to describe or explain based on our experience (and 

language) of the macroscopic world. However, the phenomena of the quantum physics are 

reflected in the macroscopic world too (e.g. in the double-slit experiment), and thus cannot be 

irrelevant to our description of macrocosmos. For instance, statistical physics is strongly 

influenced by quantum physics. 

1.3.4 Incompleteness  

While the three previous developments eventually deal with physics, this fourth one concerns 

pure mathematical logic. In 1931 the Austrian mathematician Kurt Gödel proved two 

important theorems, so-called incompleteness theorems, stating inherent limitations of 

mathematical logic. The theorems are also important in the philosophy of mathematics and in 

wider areas of philosophy. The first incompleteness theorem practically says that any system 

with some axioms, containing the natural numbers and basic arithmetic (addition, 

multiplication) is necessarily incomplete: it contains undecidable statements, i.e. statements 

that are neither provably true nor provably false. Furthermore, if an undecidable statement is 

added to the system as an axiom, there will always be other statements that still cannot be 

proved as true, even with the new axiom. The second theorem says that if the system can 

prove that it is consistent, then it is inconsistent. That is to say, we can never know that a 

system is consistent, meaning that it does not contain a contradiction. Note that if the system 

contains a contradiction, i.e. a case where a proposition and its negation are both provably 

true, then every proposition becomes true.  
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 Ironically, Gödel had presented his incompleteness results the day before Hilbert 

pronounced his slogan discussed above (Wir müssen wissen, wir werden wissen). Obviously, 

the slogan received a strong blow by Gödel’s results. The conjectured almightiness of 

deduction was vitiated. In other words, Gödel’s results show that uncertainty is not 

eliminable.  Simultaneously, they enhance the role of probability theory, as extended logic, 

and the necessity of induction (see also Jaynes, 2003, p. 47).  

1.3.5 The positive side of uncertainty 

 Surprisingly, the new role of probability is not well assimilated in the scientific 

community. The quest of determinism and uncertainty elimination still dominates in science. 

Another symptom of this type is the exorcism of probability and its replacement with any type 

of substitutes. One good example for this is provided by the fuzzy methods which are regarded 

much more fashioned than probability. However, no solutions using fuzzy approaches could 

not have been achieved at least as effectively using probability and statistics (Laviolette, et 

al., 1995). The Education still promotes deterministic thinking as if all above fundamental 

changes in science had not happened. Hopes are expressed that these results are flawed and 

determinism will be reinstated. These results are considered negative and pessimistic by 

many. We maintain that they are absolutely positive and optimistic. Life would not have any 

meaning without uncertainty. This is well known by people working in the media, who spend 

much money to show live (i.e. with uncertain outcome) reportages and sports games; had 

determinism been more fascinating, they would show recorded versions in the next day, with 

eliminated uncertainty (e.g. the score of the game would be known). Without uncertainty 

concepts such as hope, will (particularly free will), freedom, expectation, optimism, pessimism 

etc. would hardly make sense.  

1.4 A working example   

With this example we will see that, contrary to intuition, pure determinism does not help very 

much to predict the future, even in very simple systems. The example studies a hydrological 

system that is fully deterministic and is deliberately made extremely simple. This system is a 

natural plain with water stored in the soil, which sustains some vegetation. We assume that 

each year a constant amount of water I = 250 mm enters the soil and that the potential 

evapotranspiration is also constant, PET = 1000 mm. (Obviously in reality the inflow and 

potential evapotranspiration – especially the former – vary in an irregular manner but we 

deliberately assumed constant rates to simplify the example and make it fully deterministic). 

The actual evapotranspiration is E ≤ PET. We assume that a fraction f of the total plain area is 

covered by vegetation, and that the evapotranspiration rate in this area equals PET and in all 

other area is zero (assuming no route of soil water to the surface), so that in the entire plain, 

the average actual evapotranspiration will be 

 E = PET f (1.1) 



1.4 A working example  9 

 
It is easy to see that if f = I / PET = 0.25 then E = I = 250 mm, i.e. the input equals the output 

and the system stays at an equilibrium; the water stored in the soil stays at a constant value. 

The situation becomes more interesting if at some time f ≠ 0.25. In this case f may vary in 

time. It is natural to assume that f will increase if there is plenty of water stored in the soil (the 

vegetation will tend to expand) and to decrease otherwise. We denote s the water stored in the 

soil and we assume a certain reference level for which we set s = 0, so that s > 0 stands for 

soil water excess and s < 0 for soil water deficit.  

 Our system is described by the two state variables, the soil water s and the vegetation cover 

f, which can vary in time. If i = 1, 2, … denotes time in years, then the water balance equation 

for our system is 

 si = si – 1 + I – PET fi – 1 (1.2) 

Since our system is described by two state variables, we need one more equation to fully 

describe its dynamics (i.e. its evolution in time). Naturally, the second equation should be 

sought in the dynamics of grow and decay of plants, which however may be too complicated. 

Here we will approach it in an extremely simplified, conceptual manner. We set a basic 

desideratum that f should increase when s > 0 and decrease otherwise. A second desideratum 

is the consistency with the fact that 0 ≤ f ≤ 1.  

 Such desiderata are fulfilled by the curves shown in Fig. 1.1. The curves are described by 

the following equation, which takes an input x and produces an output y, depending on a 

parameter a that can take any real value, positive or negative:  

 y = g(x, a) := 
axa

xa

+−
+

)1,1max(

)1,1max(
 (1.3) 

By inspection it can be verified that if 0 ≤ x ≤ 1, then 0 ≤ y ≤ 1, whatever the value of a is. 

Furthermore, it can be seen that if a = 0 then y = x, when a > 0 then y > x, and when a < 0 

then y < x.  

 Thus, if in equation (1.3) we replace x with fi – 1, y with fi, and a with some increasing 

function of si – 1 such that it takes the value 0 when si – 1 = 0, then we obtain an equation that is 

conceptually consistent with our desiderata. For the latter let us set a ≡ (si – 1/s*)
3
, where s* is 

a standardizing constant assumed to be s* = 100 mm. Hence, the equation that completes the 

system dynamics becomes  

 fi = g(fi – 1, (si – 1/s*)
3
)  (1.4) 

or  
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Fig. 1.1 Graphical depiction of equation (1.3) for several values of the parameter a, which is 

an increasing function of the soil water s. 

 From the system dynamics (1.2) and (1.5), it can be easily verified that if the initial 

conditions at time i = 0 are f0 = 0.25, s0 = 0, then the system will stay for ever at state fi = 0.25, 

si = 0 for any time i. Now let us assume that the initial conditions depart from these conditions 

of stability. For instance we consider f0 = 0.30, s0 = 100 mm. From the system dynamics (1.2) 

and (1.5) we can easily find that, at time i = 1, f1 = 0.462 (the vegetation cover was increased 

because of surplus water) and s1 = –111.5 mm (the increased vegetation consumed more 

water, so that the surplus was exhausted and now there is deficit). Continuing in this manner 

we can calculate (f2, s2), (f3, s3) etc. It is a matter of a few minutes to set up a spreadsheet with 

two columns that evaluate equations (1.2) and (1.5), and calculate the system state (fi, si) at 

time i = 1 to, say, 10 000, given the initial state (f0, s0) (homework). Fig. 1.2 depicts the first 

100 values of the evolution of system state. It is observed that the system does not tend to the 

stable state discussed above. Rather, the vegetation cover fluctuates around 0.25 (roughly 

between 0 and 0.8) and the soil water fluctuates around 0 (roughly between -400 and 400 

mm). These fluctuations seem to have a period of roughly 4-5 years but are not perfectly 

periodic. 
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Fig. 1.2 Graphical depiction of the system evolution for time up to 100. 

 Despite fluctuating behaviour, it appears that we can predict exactly any future state given 

the initial conditions f0, s0. The question we wish to examine here is this: Will predictions 

represent reality? We can split this question to two: (1) Is our model a perfect representation 

of reality? (2) Is our knowledge of the initial conditions perfectly accurate? The reply to both 

questions should be negative. No model can represent nature perfectly; all models are just 

approximations. Furthermore, our knowledge of initial conditions at the best case comes from 

measurements and all measurements include some error or uncertainty.  

 Let us circumvent the first problem, and assume that our model is perfect. Put it in a 

different way, let us temporarily forget that the mathematical system with dynamics (1.2) and 

(1.5) aims to represent a natural system, so that we do not care about model errors. What is 

then the effect of imperfect knowledge of the initial conditions? To demonstrate this, we 

assume that the initial conditions set above are obtained by rounding off some true values, 

which introduces some small error. (We suppose that rounding off mimics the measurement 

error in a natural system). Our true conditions are assumed to be f0 = 0.2999, s0 = 100.01 mm 

and our approximations are f΄0 = 0.30, s΄0 = 100 mm, as above; the errors in f0 and s0 are -

0.0001 and 0.01 mm, respectively. Repeating our calculations (with our spreadsheet) with the 

true conditions, we obtain a set of true values that are depicted in Fig. 1.3, along with the 

approximate values. By approximate we mean the values that were obtained by the rounded 

off initial conditions f΄0 and s΄0; these values are precisely those shown in Fig. 1.2. 
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Fig. 1.3 Graphical depiction of the true system evolution and its approximation for time up to 

100. 

 We can observe in Fig. 1.3 that the approximation is almost perfect for times up to 40 but 

becomes imperfect for larger times. For instance, the true value at time i = 60 is s60 = 245.9 

mm whereas the approximate value is s΄60 =  –105.4 mm. Thus a small error of 0.01 mm in 

the initial conditions is magnified to 245.9 – (–105.4) = 491.8 mm in 60 time steps. Here we 

have used this definition of error: 

 ei := si – s΄i (1.6) 

This large error clearly suggests that deterministic dynamics, even perfectly known and 

simple, may be unable to give deterministic future predictions for long lead times. 

 Nevertheless, in engineering applications it is often necessary to cast predictions for long 

time horizons. For instance, when we design a major project, we may have a planning horizon 

of say 100 years and we wish to know the behaviour of the natural system for the next 100 

years. However, in most situations we are interested about the events that may occur and 

particularly about their magnitude while we are not interested about the exact time of 

occurrence. Such predictions can be obtained in a different manner, which may not need to 

know the deterministic dynamics of the system. Rather, it is based on the statistical properties 

of the system trajectory as reflected in a time series of the system evolution.  

 In the simplest case, a statistical prediction is obtained by taking the average of the time 

series. In our system this average of s is around 0, so that the prediction for any future time is 

simply s΄i = 0. As strange as it may seem, for large lead times this prediction is better (i.e. 
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gives a smaller error) than obtained by running the deterministic model. For instance, at time i 

= 60, ei = 245.9 – 0  = 245.9 < 491.8 mm. A graphical depiction of prediction errors of both 

the deterministic and statistical method (where in the second method ei = si – 0 = si) is shown 

in Fig. 1.4 
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Fig. 1.4 Comparison of prediction errors of the deterministic and statistical methods for time 

up to 100. 

 We can observe that the deterministic method yields zero error for time up to 25 and 

negligible error for time up to 40. Then the error becomes high, fluctuating between about –

800 and 800. The error of the statistical prediction fluctuates in a narrower range, between –

500 and 500 mm. Statistics gives us a way to give a quantitative global measure of the error 

and compare the errors quantitatively rather than graphically. Thus for the n-year period [l, l + 

n –1] we define the root mean square (RMS) error as 

 eRMS := ∑
−+

=

1
21 nl

li

ie
n

 (1.7) 

The logic in taking the squares of errors and then summing up is to avoid an artificial 

cancelling up of negative and positive errors. Thus, for the last 50 years (l = 51, n = 50) the 

RMS error (calculated in the spreadsheet) is 342.0 and 277.9 mm, respectively. This verifies 

that the statistical prediction is better than the deterministic one for times > 50. On the other 

hand, Fig. 1.4 clearly shows that the deterministic prediction is better than the statistical for 

times < 50.  
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 This happens in most real world systems, but the time horizon, up to which a deterministic 

prediction is reliable, varies and depends on the system dynamics. For instance, we know that 

a weather prediction, obtained by solving the differential equations describing the global 

atmospheric system dynamics, is very good for the first couple of days but is totally unreliable 

for more than a week or ten days lead time. After that time, statistical predictions of weather 

conditions, based on records of previous years for the same time of the year, are more reliable.  
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Fig. 1.5 Relative frequency ν of the intervals of s, each with length 100 mm, as determined 

from the time series shown in Fig. 1.2.  

 A statistical prediction is generally more powerful than indicated in the example above. 

Instead of providing a single value (the value 0 in the example) that is a likely future state of 

the system, it can give ranges of likely values and a likelihood measure for each range. This 

measure is an empirical estimate of probability obtained by analyzing the available time series 

and using the theory of probability and statistics. That is to say, it is obtained by induction and 

not by deduction. In our example, analyzing the time series of Fig. 1.2, we can construct the 

histogram shown in Fig. 1.5, which represents empirically estimated probabilities for ranges 

of values of the soil water s. The histogram shows for instance that with probability 16%, s 

will be between –100 mm and 0, or that with probability 3%, s will be between –400 and 

–300 mm. We must be careful, however, about the validity of empirical inferences of this 

type. For instance, extending this logic we may conclude from Fig. 1.5 that with probability 

100% the soil water will be between –400 and 400 mm. This is a mistaken conclusion: we 

cannot exclude values of soil water smaller than –400 mm or higher than 400 mm. The 
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probabilities of such extreme (very low or very high) events are nonzero. To find them the 

empirical observations do not suffice and we need some theoretical tools, i.e. deductive 

reasoning. The tools are provided by the probability theory and the related areas of statistics 

and stochastics. Particularly, the latter area deals with processes that possess some 

dependence in time and perhaps cyclical behaviour (as happens in our example), and 

endeavour to incorporate any known deterministic laws within a unified, probability based, 

mathematical description.  

1.5 Concluding remarks 

If we try to make the above example more realistic, we should do several changes. 

Particularly: (a) the input (soil infiltration) should vary in time (and in space) in a rather 

irregular (random) manner; and (b) the relationship between soil water and vegetation cover 

should be revisited in light of some observational data in the specific area. For step (a) we 

need to build an additional model to simulate the input. This model should utilize infiltration 

data in the area, if available, or other hydrological data (rainfall, runoff) of the area; in the 

latter case an additional model that transforms rainfall to infiltration and runoff will be 

required. In all cases, the building of the model will require tools from probability, statistics, 

and stochastics.  For step (b), which aims at establishing a deterministic relationship, it is wise 

to admit from the beginning the great difficulty or impossibility to establish the relationship 

by pure theoretical (deductive) reasoning. Usually a mixed approach is followed: (b1) a 

plausible (conceptual) mathematical expression is assumed that contains some parameters 

strongly affecting its shape; and (b2) an available time series of measurements is used to 

estimate its parameters. Step b2 is clearly based on a statistical/inductive approach and will 

always give some error; in fact the parameter estimation is done with the target to minimize 

(but not to eliminate) the error. This error should be modelled itself, again using tools from 

probability, statistics, and stochastics. 

 It may seem contradictory, at first glance, that in the establishment of a deterministic 

relationship we use statistical tools. As strange as it may seem, this happens all the time. The 

detection of deterministic controls, based on observed field or laboratory data, and the 

establishment of deterministic relationships, again based on data, is always done using tools 

from probability, statistics, and stochastics. A variety of such tools, all probability-based, are 

available: least squares estimation, Bayesian estimation, spectral analysis, time delay 

embedding (based on the entropy concept) and others. Here it should be added that even 

purely deterministic problems such as the numerical optimization of a purely deterministic 

non-convex function and the numerical integration of a multivariate purely deterministic 

function can be handled more efficiently and effectively by probability-based methods 

(evolutionary algorithms and Monte Carlo integration, respectively) rather than by 

deterministic methods.  
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 Obviously, in a realistic setting of our example problem, the system trajectory should look 

more irregular than demonstrated above and the horizon for a reliable deterministic prediction 

should decrease significantly, perhaps to zero. In this case, a probabilistic-statistical treatment 

of the problem should be attempted from the outset, not for long horizons only. In this case 

we need not disregard the deterministic dynamics, if identified. On the contrary, stochastic 

methods are able to make explicit use of any identified deterministic control, so as to improve 

predictions as much as possible. That is to say, a stochastic approach from the outset does not 

deny causality and deterministic controls; rather it poses them in a more consistent framework 

admitting that uncertainty is inherent in natural systems. Here we should clarify that causality 

is conceptually different in a deterministic and a probabilistic approach. In the former case 

causality (or causation) is a directional relationship between one event (called cause) and 

another event (called effect), which is the consequence (result) of the first. In a stochastic 

view of the world, the definition of causality can be generalized in the following way (Suppes, 

1970): An  event  A is the prima facie cause of an event B if and only if (i) A occurs  earlier  

than B, (ii) A has a nonzero probability of occuring, and (iii) the conditional probability* of B 

occurring when  A  occurs  is  greater  than  the  unconditional  probability of B occurring.   

 It is, however, possible that in a real world problem our attempt to establish a causal 

relationship between our state variables fails. In a probabilistic framework this is not a 

tragedy, provided that we have a sufficient series of observations. We can build a model (for 

instance for the soil water s) without having identified the system dynamics. This is actually 

done in many cases of hydrological simulations.  

 All graphs in the above example indicate that the trajectories of the state variables of our 

system are irregular; simultaneously, they do not look like a purely random phenomenon, 

such as a series of roulette outcomes. This is very important and should be taken into serious 

consideration in any modelling attempt using probabilistic tools. In fact, the trajectories of 

natural systems never look like our more familiar purely random systems.† One major 

difference is the dependence in time, which may be very complex, contrary to the 

independence of roulette outcomes or to simple type of dependence (e.g. Markovian) 

encountered in simplistic stochastic models. In one of the next chapters we will examine these 

properties (revisiting the above example). We note, however, that such properties of natural 

processes, which seem peculiar in comparison to simple random systems, have been 

overlooked for years. Even worse, the standard statistical framework that was developed for 

independent events has been typically used in hydrological and geophysical applications, and 

this gave rise to erroneous results and conceptions.  

Acknowledgment I thank Richard Mackey for his discussions that have influenced and fed 

this text.  

                                                 
* For a formal definition of conditional probability see chapter 2. 
† We will revisit these differences in chapter 4. 
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Summary 

This chapter aims to serve as a reminder of basic concepts of probability theory, rather than a 

systematic and complete presentation of the theory. The text follows Kolmogorov’s axiomatic 

foundation of probability and defines and discusses concepts such as random variables, 

distribution functions, independent and dependent events, conditional probability, expected 

values, moments and L moments, joint, marginal and conditional distributions, stochastic 

processes, stationarity, ergodicity, the central limit theorem, and the normal, χ2
 and  Student 

distributions. Although the presentation is general and abstract, several examples with 

analytical and numerical calculations, as well as practical discussions are given, which focus 

on geophysical, and particularly hydrological, processes.  

2.1 Axiomatic foundation of probability theory  

For the understanding and the correct use of probability, it is very important to insist on the 

definitions and clarification of its fundamental concepts. Such concepts may differ from other, 

more familiar, arithmetic and mathematical concepts, and this may create confusion or even 

collapse of our cognitive construction, if we do not base it in concrete fundaments. For 

instance, in our everyday use of mathematics, we expect that all quantities are expressed by 

numbers and that the relationship between two quantities is expressed by the notion of a 

function, which to a numerical input quantity associates (maps) another numerical quantity, a 

unique output. Probability too does such a mapping, but the input quantity is not a number but 

an event, which mathematically can be represented as a set. Probability is then a quantified 

likelihood that the specific event will happen. This type of representation was proposed by 

Kolmogorov (1956)*. There are other probability systems different from Kolmogorov’s 

axiomatic system, according to which the input is not a set. Thus, in Jaynes (2003)† the input 

of the mapping is a logical proposition and probability is a quantification of the plausibility of 

the proposition. The two systems are conceptually different but the differences mainly rely on 

                                                 
* Here we cite the English translation, second edition, whilst the original publication was in German in 1933. 
† Jaynes’s book that we cite here was published after his death in 1998. 
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interpretation rather than on the mathematical results. Here we will follow Kolmogorov’s 

system. 

 Kolmogorov’s approach to probability theory is based on the notion of measure, which 

maps sets onto numbers. The objects of probability theory, the events, to which probability is 

assigned, are thought of as sets. For instance the outcome of a roulette spin, i.e. the pocket in 

which the ball eventually falls on to the wheel is one of 37 (in a European roulette – 38 in an 

American one) pockets numbered 0 to 36 and coloured black or red (except 0 which is 

coloured green). Thus all sets {0}, {1}, … {36} are events (also called elementary events). 

But they are not the only ones. All possible subsets of Ω, including the empty set Ø, are 

events. The set Ω := {0, 1, …, 36} is an event too. Because any possible outcome is contained 

in Ω, the event Ω occurs in any case and it is called the certain event. The sets ODD := {1, 3, 

5, …, 35}, EVEN := {2, 4, 6, …, 36}, RED := {1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 

30, 32, 34, 36}, and BLACK := Ω – RED – {0} are also events (in fact, betable). While 

events are represented as sets, in probability theory there are some differences from set theory 

in terminology and interpretation, which are shown in Table 2.1. 

Table 2.1 Terminology correspondence in set theory and probability theory (adapted from 

Kolmogorov, 1956) 

Set theory Events 

A = Ø Event A is impossible 

A = Ω Event A is certain 

AB = Ø (or A ∩ B = Ø; disjoint sets) Events A and B are incompatible (mutually 

exclusive) 

AB…N = Ø  Events A, B, …, N are incompatible 

X := AB…N Event X is defined as the simultaneous 

occurrence of A, B, …, N 

X
 
:=

 
A

 
+

 
B

 
+ … +

 
N (or X

 
:=

 
A

 U 
B

 U 
…

 U 
N ) Event X is defined as the occurrence of at least 

one of the events A, B, …, N 

X := A
 
–

 
B Event X is defined as the occurrence of A and, 

at the same time, the non-occurrence of B 

A  (the complementary of A) The opposite event A  consisting of the non-

occurrence of A 

B ⊂ A (B is a subset of A) From the occurrence of event B follows the 

inevitable occurrence of event A 

 Based on Kolmogorov’s (1956) axiomatization, probability theory is based on three 

fundamental concepts and four axioms. The concepts are:  

1. A non-empty set Ω, sometimes called the basic set, sample space or the certain event 

whose elements ω are known as outcomes or states. 
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2. A set Σ known as ı-algebra or ı-field whose elements E are subsets of Ω, known as 

events. Ω and Ø are both members of Σ, and, in addition, (a) if E is in Σ then the 

complement Ω – E is in Σ; (b) the union of countably many sets in Σ is also in Σ.  

3. A function P called probability that maps events to real numbers, assigning each event 

E (member of Σ) a number between 0 and 1.  

The triplet (Ω, Σ, P) is called probability space. 

 The four axioms, which define properties of P, are  

Non-negativity: For any event A, P(A) ≥ 0 (2.1.I) 

Normalization: P(Ω) = 1  (2.1.II) 
   

Additivity: For any events A, B with AB = Ø, P(A + B) = P(A) + P(B) (2.1.III) 

IV. Continuity at zero: If A1 ⊃ A2 ⊃ … ⊃ An ⊃ … is a decreasing sequence of  

events, with A1A2…An… = Ø, then limn→∞P(An) = 0 (2.1.IV) 

 In the case that Σ is finite, axiom IV follows from axioms I-III; in the general case, 

however, it should be put as an independent axiom.  

2.2 Random variables 

A random variable X is a function that maps outcomes to numbers, i.e. quantifies the sample 

space Ω. More formally, a real single-valued function X(ω), defined on the basic set Ω, is 

called a random variable if for each choice of a real number a the set {X < a} for all ω for 

which the inequality X(ω) < α holds true, belongs to Σ.  

 With the notion of the random variable we can conveniently express events using basic 

mathematics. In most cases this is done almost automatically. For instance in the roulette case 

a random variable X that takes values 0 to 36 is intuitively assumed when we deal with a 

roulette experiment.  

 We must be attentive that a random variable is not a number but a function. Intuitively, we 

could think of a random variable as an object that represents simultaneously all possible states 

and only them. A particular value that a random variable may take in a random experiment, 

else known as a realization of the variable is a number. Usually we denote a random variable 

by an upper case letter, e.g. X, and its realization by a lower case letter, e.g. x. The two should 

not be confused. For example, if X represents the rainfall depth expressed in millimetres for a 

given rainfall episode (in this case Ω is the set of all possible rainfall depths) then {X ≤ 1} 

represents an event in the probability notion (a subset of Ω and a member of Σ – not to be 

confused with a physical event or episode) and has a probability P{X ≤ 1}.* If x is a 

realization of X then x ≤ 1 is not an event but a relationship between the two numbers x and 1, 

 
* The consistent notation here would be P({X ≤ 1}). However, we simplified it dropping the parentheses; we will 

follow this simplification throughout this text. Some texts follow another convention, i.e., they drop the curly 

brackets.  
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which can be either true or false. In this respect it has no meaning to write P{x ≤ 1}. 

Furthermore, if we consider the two variables X and Y it is meaningful to write P{X ≥ Y} (i.e. 

{X ≥ Y} represents an event) but there is no meaning in the expression P{x ≥ y}.  

2.3 Distribution function 

Distribution function is a function of the real variable x defined by 

 FX(x) := P{X ≤ x} (2.2) 

where X is a random variable*. Clearly, FX(x) maps numbers (x values) to numbers. The 

random variable to which this function refers (is associated) is not an argument of the 

function; it is usually denoted as a subscript of F (or even omitted if there is no risk of 

confusion). Typically FX(x) has some mathematical expression depending on some parameters 

βi. The domain of FX(x) is not identical to the range of the random variable X; rather it is 

always the set of real numbers. The distribution function is a non-decreasing function obeying 

the relationship 

 1)()()(0 =+∞≤≤−∞= XXX FxFF  (2.3) 

For its non-decreasing attitude, in the English literature the distribution function is also known 

as cumulative distribution function (cdf) – though cumulative is not necessary here. In 

hydrological applications the distribution function is also known as non-exceedence 

probability. Correspondingly, the quantity  

 ( ) { } )(1:* xFxXPxF XX −=>=  (2.4) 

is known as exceedence probability, is a non-increasing function and obeys 

  (2.5) 0)()()(1 *** =+∞≥≥−∞= XXX FxFF

 The distribution function is always continuous on the right; however, if the basic set Ω is 

finite or countable, FX(x) is discontinuous on the left at all points xi that correspond to 

outcomes ωi, and it is constant in between consecutive points. In other words, the distribution 

function in these cases is staircase-like and the random variable is called discrete. If FX(x) is 

continuous, then the random variable is called continuous. A mixed case with a continuous 

part and a discrete part is also possible. In this case the distribution function has some 

discontinuities on the left, without being staircase-like.  

 The derivative of the distribution function  

 ( ) ( )
dx

xdF
xf X =:  (2.6) 

                                                 
* In original Kolmogorov’s writing FX(x) is defined as P{X < x}; however replacing ‘<’ with ‘≤’ makes the 

handling of distribution function more convenient and has prevailed in later literature.  
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is called the probability density function (sometimes abbreviated as pdf). In continuous 

variables, this function is defined everywhere but this is not the case in discrete variables, 

unless we use Dirac’s δ functions. The basic properties of fX(x) are 

  (2.7) ( ) ( ) 1,0 =≥ ∫
∞

∞−

dxxfxf XX

Obviously, the probability density function does not represent a probability; therefore it can 

take values higher than 1. Its relationship with probability is described by the following 

equation:  

 ( ) { }
x∆

x∆xXxP
xf

x∆X

+≤≤
=

→0
lim  (2.8) 

 The distribution function can be calculated from the density function by the following 

relationship, inverse of (2.6)  

  (2.9) ( ) ( ) ξdξfxF

x

XX ∫
∞−

=

 For continuous random variables, the inverse function  of 1−
XF ( )xFX  exists. Consequently, 

the equation u = FX(x) has a unique solution for x, that is ( )uFx Xu

1−= . The value xu, which 

corresponds to a specific value u of the distribution function, is called u-quantile of the 

ariable X. v
 

2.3.1 An example of the basic concepts of probability 

For clarification of the basic concepts of probability theory, we give the following example 

from hydrology. We are interested on the mathematical description of the possibilities that a 

certain day in a specific place and time of the year is wet or dry. These are the outcomes or 

states of our problem, so the basic set or sample space is  

 Ω = {wet, dry} 

The field Σ contains all possible events, i.e.,  

 { } { }{ }ΩΣ ,dry,wet,∅=  

To fully define probability on Σ it suffices to define the probability of one of either states, say 

P(wet). In fact this is not easy – usually it is done by induction, and it needs a set of 

observations to be available and concepts of the statistics theory (see chapter 3) to be applied. 

For the time being let us arbitrarily assume that P{wet} = 0.2. The remaining probabilities are 

obtained by applying the axioms. Clearly, P(Ω) = 1 and P(∅) = 0. Since “wet” and “dry” are 

incompatible, P{wet} + P{dry} = P({wet} + {dry}) = P(Ω) = 1, so P{dry} = 0.8.  

 We define a random variable X based on the rule 

 ( ) ( ) 1wet,0dry == XX  

We can now easily determine the distribution function of X. For any x < 0,  
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 FX(x) = P{X ≤ x} = 0 

(because X, cannot take negative values). For 0 ≤ x < 1, 

 ( ) { } { } 8.00 ===≤= XPxXPxFX
 

Finally, for x ≥ 1, 

 ( ) { } { } { } 110 ==+==≤= XPXPxXPxFX
 

The graphical depiction of the distribution function is shown on Fig. 2.1. The staircase-like 

shape reflects the fact that random variable is discrete. 

 If this mathematical model is to represent a physical phenomenon, we must have in mind 

that all probabilities depend on a specific location and a specific time of the year. So the 

model cannot be a global representation of the wet and dry state of a day. The model as 

formulated here is extremely simplified, because it does not make any reference to the 

succession of dry or wet states in different days. This is not an error; it simply diminishes the 

predictive capacity of the model. A better model would describe separately the probability of 

a wet day following a wet day, a wet day following a dry day (we anticipate that the latter 

should be smaller than the former), etc. We will discuss this case in section 2.4.2. 
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Fig. 2.1 Distribution function of a random variable representing the dry or wet state of a given day at a certain 

area and time of the year. 

2.4 Independent and dependent events, conditional probability  

Two events A and B are called independent (or stochastically independent), if 

 ( ) ( ) ( )BPAPABP =  (2.10) 

Otherwise A and B are called (stochastically) dependent. The definition can be extended to 

many events. Thus, the events A1, A2, …, are independent if 

 ( ) ( ) ( ) ( )
nn iiiiii APAPAPAAAP LL

2121
=  (2.11) 
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for any finite set of distinct indices i1, i2, …, in.  

 The handling of probabilities of independent events is thus easy. However, this is a special 

case because usually natural events are dependent. In the handling of dependent events the 

notion of conditional probability is vital. By definition (Kolmogorov, 1956), conditional 

probability of the event A given B (i.e. under the condition that the event B has occurred) is 

the quotient  

 ( ) ( )
( )BP

ABP
BAP =:|  (2.12) 

Obviously, if P(B) = 0, this conditional probability cannot be defined, while for independent 

A and B, P(A|B) = P (A). From (2.12) it follows that 

 ( ) ( ) ( ) ( ) ( )APABPBPBAPABP || ==  (2.13) 

and 

 ( ) ( )
( )AP

BAP
BPABP

|
)(:| =  (2.14) 

The latter equation is known as the Bayes theorem. It is easy to prove that the generalization 

of (2.11) for dependent events takes the forms 

 ( ) ( ) ( ) ( )112111 || APAAPAAAPAAP nnn LLL −=  (2.15) 

 ( ) ( ) ( ) ( )BAPBAAPBAAAPBAAP nnn |||| 112111 LLL −=  (2.16) 

which are known as the chain rules. It is also easy to prove (homework) that if A and B are 

mutually exclusive, then 

 ( ) ( ) ( )CBPCAPCBAP ||| +=+  (2.17) 

 ( ) ( ) ( ) ( ) ( )
( ) ( )BPAP

BPBCPAPACP
BACP

+
+

=+
||

|  (2.18) 

2.4.1 Some examples on independent events 

a.  Based on the example of section 2.3.1, calculate the probability that two consecutive days 

are wet assuming that the events in the two days are independent. 

Let A := {wet} the event that a day is wet and A  = {dry} the complementary event that a day 

is dry. As in section 2.3.1 we assume that p := P(A) = 0.2 and q := P( A ) = 0.8. Since we are 

interested on two consecutive days, our basic set will be  

 { }21212121 ,,, AAAAAAAAΩ =  

where indices 1 and 2 correspond to the first and second day, respectively. By the 

independence assumption, the required probability will be 

 ( ) ( ) ( ) 04.0: 2

21211 ==== pAPAPAAP  
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For completeness we also calculate the probabilities of all other events, which are: 

 ( ) ( ) ( ) 64.0,16.0 2

212121 ===== qAAPpqAAPAAP  

As anticipated, the sum of probabilities of all events is 1. 

b. Calculate the probability that two consecutive days are wet if it is known that one day is 

wet. 

 Knowing that one day is wet means that the event 21AA  should be excluded (has not 

occurred) or that the composite event 212121 AAAAAA ++  has occurred. Thus, we seek the 

probability  

 P2 := )|( 21212121 AAAAAAAAP ++  

which according to the definition of conditional probability is  

 

( )( )
( )

212121

21212121
2

AAAAAAP

AAAAAAAAP
P

++
++

=
 

Considering that all combinations of events are mutually exclusive, we obtain  

 
( )

( ) ( ) ( ) K111.0
222

2

212121

21

2 =
+

=
+

=
++

=
qp

p

pqp

p

AAPAAPAAP

AAP
P  

c. Calculate the probability that two consecutive days are wet if it is known that the first day 

is wet 

 Even though it may seem that this question is identical to the previous one, in fact it is not. 

In the previous question we knew that one day is wet, without knowing which one exactly. 

Here we have additional information, that the wet day is the first one. This information alters 

the probabilities as we will verify immediately.  

 Now we know that the composite event 2121 AAAA +  has occurred (events 21 AA  and 21 AA  

should be excluded). Consequently, the probability sought is  

 )|(: 2121213 AAAAAAPP +=  

which according to the definition of conditional probability is  

 
( )( )

( )
2121

212121
3

AAAAP

AAAAAAP
P

+
+

=  

or 

 
( )

( ) ( ) 2.0
2

2

2121

21

3 ==
+

=
+

=
+

= p
qp

p

pqp

p

AAPAAP

AAP
P  

It is not a surprise that this is precisely the probability that one day is wet, as in section 2.3.1. 

 With these examples we demonstrated two important thinks: (a) that the prior information 

we have in a problem may introduce dependences in events that are initially assumed 
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independent, and, more generally, (b) that the probability is not an objective and invariant 

quantity, characteristic of physical reality, but a quantity that depends on our knowledge or 

information on the examined phenomenon. This should not seem strange as it is always the 

case in science. For instance the location and velocity of a moving particle are not absolute 

objective quantities; they depend on the observer’s coordinate system. The dependence of 

probability on given information, or its “subjectivity” should not be taken as ambiguity; there 

was nothing ambiguous in calculating the above probabilities, based on the information given 

each time. 

2.4.2 An example on dependent events 

The independence assumption in problem 2.4.1a is obviously a poor representation of the 

physical reality. To make a more realistic model, let us assume that the probability of today 

being wet (A2) or dry 2A  depend on the state yesterday (A1 or 1A ). It is reasonable to assume 

that the following inequalities hold: 

 ( ) ( ) pAPAAP => 212 | , ( ) ( ) qAPAAP => 212 |  

  ( ) ( ) pAPAAP =< 212 | , ( ) ( ) qAPAAP =< 212 |  

The problem now is more complicated than before. Let us arbitrarily assume that  

  = 0.40,   ( 12 | AAP ) ( )
12 | AAP  = 0.15  

Since 

  + ( )12 | AAP ( )
12 | AAP  = 1  

we can calculate 

 ( )
12 | AAP  = 1 – ( )12 | AAP  = 0.60  

Similarly,  

 ( )
12 | AAP  = 1 – ( )

12 | AAP  = 0.85  

 As the event 11 AA +  is certain (i.e. ( ) 111 =+ AAP ) we can write  

 ( ) ( )
1122 | AAAPAP +=   

and using (2.18) we obtain 

 ( ) ( ) ( ) ( ) ( )
1121122 || APAAPAPAAPAP +=  (2.19) 

It is reasonable to assume that the unconditional probabilities do not change after one day, i.e. 

that  and ( ) ( ) pAPAP == 12
( ) ( ) pqAPAP −=== 112 . Thus, (2.19) becomes 

 p = 0.40 p + 0.15 (1 – p)   

from which we find p = 0.20 and q = 0.80. (Here we have deliberately chosen the values of 

 and ( )12 | AAP ( )
12 | AAP  such as to find the same p and q as in 2.4.1a).  
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 Now we can proceed to the calculation of the probability that both days are wet: 

 ( ) ( ) ( ) 04.008.02.04.0| 2

11212 =>=×== pAPAAPAAP  

For completeness we also calculate the probabilities of all other events, which are: 

 ( ) ( ) ( ) 12.080.015.0| 11212 =×== APAAPAAP , ( ) ( ) ( ) 12.020.060.0| 11212 =×== APAAPAAP  

  ( ) ( ) ( ) 64.068.080.085.0| 2

11212 =>=×== qAPAAPAAP  

Thus, the dependence resulted in higher probabilities of consecutive events that are alike. This 

corresponds to a general natural behaviour that is known as persistence (see also chapter 4). 

2.5 Expected values and moments 

If X is a continuous random variable and g(X) is an arbitrary function of X, then we define as 

the expected value or mean of g(X) the quantity 

  (2.20) ( )[ ] ( ) ( )∫
∞

∞−

= dxxfxgXgE X:

Correspondingly, for a discrete random variable X, taking on the values x1, x2, …,  

  (2.21) ( )[ ] ( ) ( )∑
∞

=

==
1

:
i

ii xXPxgXgE

For certain types of functions g(X) we take very commonly used statistical parameters, as 

specified below: 

1. For g(X) = X
 r
, where r = 0, 1, 2, …, the quantity  

 [ ]rr

X XEm =:)(  (2.22) 

  is called the rth moment (or the rth moment about the origin) of X. For r = 0, obviously the 

moment is 1.  

2. For g(X) = X, the quantity 

 [ ]XEmX =:  (2.23) 

  (that is the first moment) is called the mean of X. An alternative, commonly used, symbol 

for E[X] is µX. 

3. For , where r = 0, 1, 2, …, the quantity ( ) ( )r

XmXXg −=

 ( )[ ]r

X

r

X mXEµ −=:)(  (2.24) 

 is called the rth central moment of X. For r = 0 and 1 the central moments are respectively 

1 and 0. The central moments are related to the moments about the origin by 

  (2.25) ( ) ( ) r

XX

rj

X

jr

X

j

X

r

X

r

X

r

X mmmm
j

r
mm

r
mµ )0()()1()()( 11

1
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −− LL
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 These take the following forms for small r 

  2)2()2(

XXX mmµ −=

  (2.26) 3)2()3()3( 23 XXXXX mmmmµ +−=

   42)2()3()4()4( 364 XXXXXXX mmmmmmµ −+−=

 and can be inverted to read: 

  22)2(

XXX mım +=

  (2.27) 32)3()3( 3 XXXXX mmıµm ++=

  422)3()4()4( 64 XXXXXXX mmımµµm +++=

4. For , the quantity ( ) ( )2

XmXXg −=

 ( )[ ]  ][ : 222)2(2

XXXX mXEmXEµı −=−==  (2.28) 

 (that is the second central moment) is called the variance of X. The variance is also 

denoted as . Its square root, denoted as ıX or StD[X] is called the standard deviation 

of X.  

[ ]XVar

 The above families of moments are the classical ones having been used for more than a 

century. More recently, other types of moments have been introduced and some of them have 

been already in wide use in hydrology. We will discuss two families.  

5. For g(X) = X [F(X)]
r
, where r = 0, 1, 2, …, the quantity  

 := E{X [F(X)]
 r
}= x [F(x)]

 r
 f(x) dx = x(u) u

r
 du (2.29) )(r

Xβ ∫
∞

∞−
∫
1

0

 is called the rth probability weighted moment of X (Greenwood et al., 1979). All 

probability weighted moments have dimensions identical to those of X (this is not the case 

in the other moments described earlier).  

6. For g(X) = X (F(X)), where r = 1, 2, …, (u) is the rth shifted Legendre polynomial, 

i.e., 

*

1−rP *

rP

 (u) := ∑ with  := *

rP
=

r

k

k

kr up
0

*

,

*

,krp
)!()!(

)!()1(
)1(

2 krk

kr

k

kr

k

r kr
kr

−
+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−  

 the quantity  

 := E[X (F(X))] = x(u) (u) du (2.30) )(r

Xλ
*

1−rP ∫
1

0

*

1−rP



12  2. Basic concepts of probability 

 
 is called the rth L moment of X (Hosking, 1990). Similar to the probability weighted 

moments, the L moments have dimensions identical to those of X. The L moments are 

related to the probability weighted moments by  

 : =  (2.31) )(r

Xλ ∑
−

=

1

0

*

,

r

k

krp )(r

Xβ

 which for the most commonly used r takes the specific forms 

  =  (= mX) )1(

Xλ
)0(

Xβ

  = 2  –   )2(

Xλ
)1(

Xβ
)0(

Xβ

  = 6  – 6  +  (2.32) )3(

Xλ
)2(

Xβ
)1(

Xβ
)0(

Xβ

  = 20  – 30  + 12  –  )4(

Xλ
)3(

Xβ
)2(

Xβ
)1(

Xβ
)0(

Xβ

 In all above quantities the index X may be omitted if there is no risk of confusion. The first 

four moments, central moments and L moments are widely used in hydrological statistics as 

they have a conceptual or geometrical meaning easily comprehensible. Specifically, they 

describe the location, dispersion, skewness and kurtosis of the distribution as it is explained 

below. Alternatively, other statistical parameters with similar meaning are also used, which 

are also explained below. 

2.5.1 Location parameters 

Essentially, the mean describes the location of the centre of gravity of the shape defined by 

the probability density function and the horizontal axis (Fig. 2.2a). It is also equivalent with 

the static moment of this shape about the vertical axis (given that the area of the shape equals 

1). Often, the following types of location parameters are also used:  

1. The mode, or most probable value, xp, is the value of x for which the density fX(x) becomes 

maximum, if the random variable is continuous, or, for discrete variables, the probability 

becomes maximum. If fX(x) has one, two or many maxima, we say that the distribution is 

unimodal, bi-modal or multi-modal, respectively.  

2. The median, x0.5, is the value for which P{X ≤ x0.5} = P{X ≥ x0.5} = 1/2, if the random 

variable is continuous (analogously we can define it for a discrete variable). Thus, a 

vertical line at the median separates the shape of the density function in two equivalent 

parts each having an area of 1/2. 

 Generally, the mean, the mode and the median are not identical unless the density is has a 

symmetrical and unimodal shape.  
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2.5.2 Dispersion parameters 

The variance of a random variable and its square root, the standard deviation, which has same 

dimensions as the random variable, describe a measure of the scatter or dispersion of the 

probability density around the mean. Thus, a small variance shows a concentrated distribution 

(Fig. 2.2b). The variance cannot be negative. The lowest possible value is zero and this 

corresponds to a variable that takes one value only (the mean) with absolute certainty. 

Geometrically it is equivalent with the moment of inertia about the vertical axis passing from 

the centre of gravity of the shape defined by the probability density function and the 

horizontal axis.  

0

0.2

0.4

0.6

0 2 4 6 8

(0)

(1)

(2)

0

0.2

0.4

0.6

0 2 4 6 8

(0)(1)

0

0.2

0.4

0.6

0 2 4 6 8

(0)

(1)

0

0.2

0.4

0.6

0 2 4 6 8

(0)

(1) (2)

f X (x )

x x

x x

(d)(c)

(b)(a)

f X (x )

f X (x )

f X (x )

 

Fig. 2.2 Demonstration of the shape characteristics of the probability density function in relation to various 

parameters of the distribution function: (a) Effect of the mean. Curves (0) and (1) have means 4 and 2, 

respectively, whereas they both have standard deviation 1, coefficient of skewness 1 and coefficient of kurtosis 

4.5. (b) Effect of the standard deviation. Curves (0) and (1) have standard deviation 1 and 2 respectively, 

whereas they both have mean 4, coefficient of skewness 1 and coefficient of kurtosis 4.5. (c) Effect of the 

coefficient of skewness. Curves (0), (1) and (2) have coefficients of skewness 0, +1.33 and -1.33, respectively, 

but they all have mean 4 and standard deviation 1; their coefficients of kurtosis are 3, 5.67 and 5.67, 

respectively. (d) Effect of the coefficient of kurtosis. Curves (0), (1) and (2) have coefficients of kurtosis 3, 5 and 

2, respectively, whereas they all have mean 4, standard deviation 1 and coefficient of skewness 0.  

 Alternative measures of dispersion are provided by the so-called interquartile range, 

defined as the difference x0.75 − x0.25, i.e. the difference of the 0.75 and 0.25 quantiles (or 

upper and lower quartiles) of the random variable (they define an area in the density function 

equal to 0.5), as well as the second L moment. This is well justified as it can be shown that 
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the second L moment is the expected value of the difference between any two random 

realizations of the random variable.  

 If the random variable is positive, as happens with most hydrological variables, two 

dimensionless parameters are also used as measures of dispersion. These are called the 

coefficient of variation and the L coefficient of variation, and are defined, respectively, by: 

 
X

X

m

ı
C

X
=:v ,  

X

X
X

m

λĲ
)2(

)2( :=  (2.33) 

2.5.3 Skewness parameters  

The third central moment and the third L moment are used as measures of skewness. A zero 

value indicates that the density is symmetric. This can be easily verified from the definition of 

the third central moment. Furthermore, the third L moment indicates the expected value of the 

difference between the middle of three random realizations of a random variable from the 

average of the other two values (the smallest and the largest); more precisely the third central 

moment is the 2/3 of this expected value. Clearly then, in a symmetric distribution the 

distances of the middle value to the smallest and largest ones will be equal to each other and 

thus the third L moment will be zero. If the third central or L moment is positive or negative, 

we say that the distribution is positively or negatively skewed respectively (Fig. 2.2c). In a 

positively skewed unimodal distribution the following inequality holds: ; the 

reverse holds for a negatively skewed distribution. More convenient measures of skewness are 

the following dimensionless parameters, named the coefficient of skewness and the L 

coefficient of skewness, respectively: 

Xmxx ≤≤ 5.0p

 
3

)3(

s :
X

X

ı
µ

C
X
= ,  

)2(

)3(
)3( :

X

X
X λ

λĲ =  (2.34) 

2.5.4 Kurtosis parameters  

The term kurtosis describes the “peakedness” of the probability density function around its 

mode. Quantification of this property provide the following dimensionless coefficients, based 

on the fourth central moment and the fourth L moment, respectively:  

 
4

)4(

k :
X

X

ı
µ

C
X
= ,  

)2(

)4(
)4( :

X

X
X λ

λĲ =  (2.35) 

These are called the coefficient of kurtosis  and the L coefficient of kurtosis. Reference values 

for kurtosis are provided by the normal distribution (see section 2.10.2), which has  = 3 

and  = 0.1226. Distributions with kurtosis greater than the reference values are called 

leptokurtic (acute, sharp) and have typically fat tails, so that more of the variance is due to 

infrequent extreme deviations, as opposed to frequent modestly-sized deviations. 

Distributions with kurtosis less than the reference values are called platykurtic (flat; Fig. 

.2d). 

X
Ck

)4(

XĲ

2
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2.5.5 A simple example of a distribution function and its moments 

We assume that the daily rainfall depth during the rain days, X, expressed in mm, for a certain 

location and time period, can be modelled by the exponential distribution, i.e., 

 ( ) 0,1 / ≥−= − xexF λx

X  

where λ = 20 mm. We will calculate the location, dispersion, skewness and kurtosis 

parameters of the distribution.  

 Taking the derivative of the distribution function we calculate the probability density 

function:  

 ( ) 0,)/1( / ≥= − xeλxf λx

X  

Both the distribution and the density functions are plotted in Fig. 2.3. To calculate the mean, 

we apply (2.20) for g(X) = X: 

  [ ] ∫∫
∞

−
∞

∞−

===
0

/)/1()( dxxeλdxxxfXEm λx

XX

After algebraic manipulations: 

 mm 20== λmX  

In a similar manner we find that for any r ≥ 0 

 [ ] rrr

X λrXEm !)( ==  

and finally, applying (2.26) 

  33)3(222 mm 000162,mm 400 ==== λµλı XX

  44)4( mm 00044019 == λµX

0
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Fig. 2.3 Probability density function and probability distribution function of the exponential distribution, 

modelling the daily rainfall depth at a hypothetical site and time period.  

  The mode is apparently zero (see Fig. 2.3). The inverse of the distribution function is 

calculated as follows: 
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  ( ) )1ln(1

/
uλxueuxF u

λx

uX
u −−=→=−→= −

Thus, the median is mm. 9.135.0ln205.0 =×−=x  We verify that the inequality 

, which characterizes positively skewed distributions, holds. Xp mxx ≤≤ 5.0

 The standard deviation is ıX = 20 mm and the coefficient of variation 
X

Cv  = 1. This is a 

very high value indicating high dispersion.  

 The coefficient of skewness is calculated for (2.34):  

  2/2 33 == λλC
Xs

This verifies the positive skewness of the distribution, as also shown in Fig. 2.3. More 

specifically, we observe that the density function has an inverse-J shape, in contrast to other, 

more familiar densities (e.g. in Fig. 2.2) that have a bell-shape. 

 The coefficient of kurtosis is calculated from (2.35): 

  9/9 44 == λλC
Xk

Its high value shows that the distribution is leptokurtic, as also depicted in Fig. 2.3. 

 We proceed now in the calculations of probability weighted and L moments as well as 

other parameters based on these. From (2.29) we find  

 

  = x(u) u
r
 du = –λ ln(1 – u) u

r
 du = )(r

Xβ ∫
1

0

∫
1

0
1+r

λ ∑
+

=

1

1

1r

i i
 (2.36) 

(This was somewhat tricky to calculate). This results in  

  = λ,   = )0(

Xβ
)1(

Xβ
4

3λ
,   = )2(

Xβ
18

11λ
,   = )3(

Xβ
48

25λ
 (2.37) 

Then, from (2.32) we find the first four L moments and the three L moment dimensionless 

coefficients as follows: 

  = λ = 20 mm (= mX) )1(

Xλ

  = 2)2(

Xλ
4

3λ
 – λ = 

2

λ
 = 10 mm  

  = 6)3(

Xλ
18

11λ
 – 6

4

3λ
 + λ = 

6

λ
 = 3.33 mm  

  = 20)4(

Xλ
48

25λ
 – 30

18

11λ
 + 12

4

3λ
  – λ = 

12

λ
 = 1.67 mm 

 
)1(

)2(
)2(

X

X
X λ

λĲ =  = 
2

1
 = 0.5,  

)2(

)3(
)3(

X

X
X λ

λĲ =  = 
3

1
 = 0.333,  

)2(

)4(
)4(

X

X
X λ

λĲ =  = 
6

1
 = 0. 167 
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Despite the very dissimilar values in comparison to those of classical moments, the results 

indicate the same behaviour, i.e., that the distribution is positively skewed and leptokurtic. In 

the following chapters we will utilize both classical and L moments in several hydrological 

problems. 

 

2.5.6 Time scale and distribution shape  

In the above example we saw that the distribution of a natural quantity such as rainfall, which 

is very random and simultaneously takes only nonnegative values, at a fine timescale, such as 

daily, exhibits high variation, strongly positive skewness and inverted-J shape of probability 

density function, which means that the most probable value (mode) is zero. Clearly, rainfall 

cannot be negative, so its distribution cannot be symmetric. It happens that the main body of 

rainfall values are close to zero, but a few values are extremely high (with low probability), 

which creates the distribution tail to the right. As we will see in other chapters, the 

distribution tails are even longer (or fatter, stronger, heavier) than described by this simple 

exponential distribution. In the exponential distribution, as demonstrated above, all moments 

(for any arbitrarily high but finite value of r) exist, i.e. take finite values. This is not, however, 

the case in long-tail distributions, whose moments above a certain rank r* diverge, i.e. are 

infinite. 

 As we proceed from fine to coarser scales, e.g. from the daily toward the annual scale, 

aggregating more and more daily values, all moments increase but the standard deviation  

increases at a smaller rate in comparison to the mean, so the coefficient of variation decreases. 

In a similar manner, the coefficients of skewness and kurtosis decrease. Thus, the 

distributions tend to become more symmetric and the density functions take a more bell-

shaped pattern. As we will se below, there are theoretical reasons for this behaviour for coarse 

timescales, which are related to the central limit theorem (see section 2.10.1). A more general 

theoretical explanation of the observed natural behaviours both in fine and coarse timescales 

is offered by the principle of maximum entropy (Koutsoyiannis, 2005a, b). 

2.6 Change of variable  

In hydrology we often prefer to use in our analyses, instead of the variable X that naturally 

describes a physical phenomenon (such as the rainfall depth in the example above), another 

variable Y which is a one-to-one mathematical transformation of X, e.g. Y = g(X). If X is 

modelled as a random variable, then Y should be a random variable, too. The event { } is 

identical with the event 

yY ≤
( ){ }ygX 1−≤  where g

−1
 is the inverse function of g. Consequently, the 

distribution functions of X and Y are related by 

 ( ) { } ( ){ } ( )( )ygFygXPyYPyF XY

11 −− =≤=≤=  (2.38) 

 In the case that the variables are continuous and the function g differentiable, it can be 

shown that the density function of Y is given from that of X by  
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 ( ) ( )( )
( )( )ygg

ygf
yf X

Y 1

1

−

−

′
=  (2.39) 

where g΄ is the derivative of g. The application of (2.39) is elucidated in the following 

xamples.  e
 

2.6.1 Example 1: the standardized variable 

Very often the following transformation of a natural variable X is used: 

 XX ımXZ /)( −=  

This is called the standardized variable, is dimensionless and, as we will prove below, it has 

(a) zero mean, (b) unit standard deviation, and (c) third and fourth central moments equal to 

the coefficients of skewness and kurtosis of X, respectively. 

 From (2.38), setting X = g
−1

(Z) = ıXZ + mX, we directly obtain 

 ( ) ( )( ) ( )XXXXZ mzıFzgFzF +== −1  

Given that g΄(x) = 1 / ıX, from (2.39) we obtain 

 ( ) ( )( )
( )( ) ( )XXXX

X

Z mzıfı
zgg

zgf
zf +=

′
=

−

−

1

1

 

 Besides, from (2.20) we get 

 [ ] ( )[ ] ( ) ( ) ( ) =
−

=== ∫∫
∞

∞−

∞

∞−

dxxf
ı

mx
dxxfxgXgEZE X

X

X

X  

 ( ) ( ) 1
11

X

X

X

X

X

X

X

X

X ı
m

m
ı

dxxf
ı
m

dxxxf
ı

−=−= ∫∫
∞

∞−

∞

∞−

 

and finally 

 [ ] 0== ZEmZ  

This entails that the moments about the origin and the central moments of Z are identical. 

Thus, the rth moment is 

 [ ] ( )( )[ ] ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
== ∫

∞

∞−

dxxf
ı

mx
XgEZE X

r

X

Xrr
 

 ( ) ( ) )(11 r

Xr

X

X

r

Xr

X

µ
ı

dxxfmx
ı ∫

∞

∞−

=−=  

and finally 

 r

X

r

Xr

Z

r

Z ı
µ

mµ
)(

)()( ==  
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2.6.2 Example 2: The exponential transformation and the Pareto distribution 

Assuming that the variable X has exponential distribution as in the example of section 2.5.5, 

we will study the distribution of the transformed variable Y = e
X
. The density and distribution 

of X are  

 ( ) ( ) λx

X

λx

X exFeλxf // 1,)/1( −− −==  

and our transformation has the properties 

 ( ) ( ) ( ) XX eXgYYgeXgY =′=== − ,ln, 1  

where X ≥ 0 and Y ≥ 1. From (2.38) we obtain 

 ( ) ( )( ) ( ) λλy

XYY yeyFygFyF /1/ln1 11ln −−− −=−===  

and from (2.39)  

 ( ) ( )( )
( )( )

)1/1(

ln

/ln

1

1

)/1(
)/1( +−

−−

−

−

===
′

= λ
λ

y

λy

X
Y yλ

y

yλ
e

eλ
ygg

ygf
yf  

The latter can be more easily derived by taking the derivative of FY(y).  

 This specific distribution is known as the Pareto distribution. The rth moment of this 

distribution is  
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This clearly shows that only a finite number of moments (r < 1/λ) exist for this distribution, 

which means that the Pareto distribution has a long-tail. 

2.7 Joint, marginal and conditional distributions 

In the above sections, concepts of probability pertaining to the analysis of a single variable X 

have been described. Often, however, the simultaneous modelling of two (or more) variables 

is necessary. Let the couple of random variables (X, Y) represent two sample spaces (ΩX, ΩY), 

respectively. The intersection of the two events { }xX ≤  and { }yY ≤ , denoted as 

 is an event of the sample space ΩXY = ΩX × ΩY. Based on 

the latter event, we can define the joint probability distribution function of (X, Y) as a function 

of the real variables (x, y): 

{ } { } { yYxXyYxX ≤≤≡≤∩≤ , }

 ( ) { }yYxXPyxFXY ≤≤= ,:,  (2.40) 

The subscripts X, Y can be omitted if there is no risk of ambiguity. If FXY is differentiable, 

then the function 

 ( ) ( )
yx

yxF
yxf XY

XY ∂∂
,∂

:,
2

=  (2.41) 
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is the joint probability density function of the two variables. Obviously, the following 

equation holds:  

  (2.42) ( ) ( ) ξdωdωξfyxF

x y

XYXY ∫ ∫
∞− ∞−

= ,,

 The functions 

 
( ) ( ) ( )yxFxXPxF XY

y
X ,lim:

∞→
=≤=

 (2.43) 

 ( ) ( ) ( )yxFyYPyF XY
x

Y ,lim:
∞→

=≤=  

are called the marginal probability distribution functions of X and Y, respectively. Also, the 

marginal probability density functions can be defined, from 

  (2.44) ( ) ( ) ( ) ( )∫∫
∞

∞−

∞

∞−

== dxyxfyfdyyxfxf XYYXYX ,,,

 Of particular interest are the so-called conditional probability distribution function and 

conditional probability density function of X for a specified value of Y = y; these are given by 
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∫
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respectively. Switching X and Y we obtain the conditional functions of Y. 

2.7.1 Expected values - moments 

The expected value of any given function g(X, Y) of the random variables (X, Y) is defined by  

  (2.46) ( )[ ] ( )∫ ∫
∞

∞−

∞

∞−

= dxdyyxfyxgYXgE XY ,),(:,

 The quantity  is called p + q moment of X and Y. Likewise, the quantity 

 is called the p + q central moment of X and Y. The most common of 

the latter case is the 1+1 moment, i.e., 

][ qpYXE

])()[( q

Y

p

X mYmXE −−

 ( )( )[ ] [ ] YXYXXY mmXYEmYmXEı −=−−=:  (2.47) 

known as covariance of X and Y and also denoted as [ ]YX ,Cov . Dividing this by the standard 

deviations ıX and ıY we define the correlation coefficient  

 
[ ]

YX

XY
XY ıı

ı
YX

YXρ ≡=
][Var][Var

,Cov
:  (2.48) 

which is dimensionless with values 11 ≤≤− XYρ . As we will see later, this is an important 

parameter for the study of the correlation of two variables.  

 The conditional expected value of a function g(X) for a specified value y of Y is defined by  
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  (2.49) [ ] [ ] ( )∫
∞

∞−

==≡ dxyxfxgyYXgEyXgE
YX |)(:|)(|)(
|

An important quantity of this type is the conditional expected value of X: 

  (2.50) [ ] [ ] ( )∫
∞

∞−

==≡ dxyxxfyYXEyXE YX |:|| |

Likewise, the conditional expected value of Y is defined. The conditional variance of X for a 

given Y = y is defined as  

[ ]( )[ ] [ ]( ) (∫
∞

∞−

=−===−== dxyxfyYXExyYyYXEXEyYX YX ||||:]|Var[ |

22 )  (2.51)  

or  

 [ ] [ ]( )22 ||:]|Var[]|Var[ yYXEyYXEyYXyX =−===≡  (2.52)  

Both  ≡  =: Ș(y) and [ ]yYXE =| [ yXE | ] ]|Var[ yYX =  ≡ ] =: υ(y) are functions 

of the real variable y, rather than constants. If we do not specify in the condition the value y of 

the random variable Y, then the quantities 

|Var[ yX

[ ]YXE |  = Ș(Y) and  = υ(Y) become 

functions of the random variable Y. Hence, they are random variables themselves and they 

have their own expected values, i.e., 

]|Var[ YX

   (2.53) [ ] [ ] ( )∫
∞

∞−

= dyyfyXEYXEE Y|]|[ , [ ] ( )∫
∞

∞−

= dyyfyXYXE Y]|Var[]|Var[

It is easily shown that . [ ] ][]|[ XEYXEE =

2.7.2 Independent variables 

The random variables (X, Y) are called independent if for any couple of values (x, y) the 

following equation holds: 

 ( ) ( ) ( )yFxFyxF YXXY =,  (2.54) 

The following equation also holds: 

 ( ) ( ) ( )yfxfyxf YXXY =,  (2.55) 

and is equivalent with (2.54). The additional equations  

 [ ] [ ] [ ]YEXEXYEρı XYXY =↔=↔= 00  (2.56) 

 [ ] [ ] [ ] [ ]YExXYEXExYXE ==== |,|  (2.57) 

are simple consequences of (2.54) but not sufficient conditions for the variable (X, Y) to be 

independent. Two variables (X, Y) for which (2.56) holds are called uncorrelated.  

2.7.3 Sums of variables 

A consequence of the definition of the expected value (equation (2.46)) is the relationship 
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 ( ) ( )[ ] ( )[ ] ( )[ ]YXgEcYXgEcYXgcYXgcE ,,,, 22112211 +=+  (2.58) 

where c1 and c2 are any constant values whereas g1 and g2 are any functions. Apparently, this 

property can be extended to any number of functions gi. Applying (2.58) for the sum of two 

variables we obtain  

 [ ] [ ] [ ]YEXEYXE +=+  (2.59) 

Likewise, 

 ( )[ ] ( )[ ] ( )[ ] ( )( )[ ]YXYXYX mYmXEmYEmXEmYmXE −−+−+−=−+− 2
222

 (2.60) 

which results in 

 [ ] [ ] [ ] [ ]YXYXYX ,Cov2VarVarVar ++=+  (2.61) 

 The probability distribution function of the sum Z = X + Y is generally difficult to 

calculate. However, if X and Y are independent then it can be shown that  

  (2.62) dwwfwzfzf YXZ )()()( ∫
∞

∞−

−=

he latter integral is known as the convolution integral of fX(x) and fY(y). T
 

2.7.4 An example of correlation of two variables 

We study a lake with an area of 10 km
2
 lying on an impermeable subsurface. The inflow to 

the lake during the month of April, composed of rainfall and catchment runoff, is modelled as 

a random variable with mean 4.0 × 10
6
 m

3
 and standard deviation 1.5 × 10

6
 m

3
. The 

evaporation from the surface of the lake, which is the only outflow, is also modelled as a 

random variable with mean 90.0 mm and standard deviation 20.0 mm. Assuming that inflow 

and outflow are stochastically independent, we seek to find the statistical properties of the 

water level change in April as well as the correlation of this quantity with inflow and outflow.

 Initially, we express the inflow in the same units as the outflow. To this aim we divide the 

inflow volume by the lake area, thus calculating the corresponding change in water level. The 

mean is 4.0 × 10
6
 / 10.0 × 10

6 
= 0.4 m = 400.0 mm and the standard deviation 1.5 × 10

6
 / 

10.0 × 10
6 
= 0.15 m = 150.0 mm. 

 We denote by X and Y the inflow and outflow in April, respectively and by Z the water 

level change in the same month. Apparently,  

 Z = X − Y (2.63) 

We are given the quantities 

 [ ] [ ] mm 0.150,mm 0.400 ==== XVarıXEm XX  

 [ ] [ ] mm 0.20,mm 0.90 ==== YVarıYEm YY  
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and we have assumed that the two quantities are independent, so that their covariance 

Cov[X, Y] = 0 (see 2.56) and their correlation ρXY = 0. 

 Combining (2.63) and (2.58) we obtain 

 [ ] [ ] [ ] [ ] YXZ mmmYEXEYXEZE −=→−=−=  (2.64) 

or mZ = 310.0 mm. Subtracting (2.63) and (2.64) side by side we obtain 

 ( ) ( )YXz mYmXmZ −−−=−  (2.65) 

and squaring both sides we find  

 ( ) ( ) ( ) ( )( )YXYXz mYmXmYmXmZ −−−−+−=− 2
222

 

which, by taking expected values in both sides, results in the following equation (similar to 

(2.61) except in the sign of the last term) 

 [ ] [ ] [ ] [ ] [ ]YXYXYXZ ,Cov2VarVarVarVar −+=−=  (2.66) 

Since Cov[X, Y] = 0, (2.66) gives 

   
2222 mm 0.900220.200.150 =+=Zı

and ıZ = 151.3 mm. 

 Multiplying both sides of (2.65) by (X − mX) and then taking expected values we find 

 ( )( )[ ] ( )[ ] ( )( )[ ]YXXXz mYmXEmXEmXmZE −−−−=−− 2  

or 

 [ ] [ ] [ ]YXXXZ ,CovVar,Cov −=  (2.67) 

in which the last term is zero. Thus, 

   
222 mm 0.500220.150 === XZY ıı

Consequently, the correlation coefficient of X and Z is  

  =ZXρ ( ) ( ) 991.00.1503.151/0.50022/ =×=XZZX ııı  

 Likewise, 

 [ ] [ ] [ ]YYXYZ Var,Cov,Cov −=  (2.68) 

The first term of the right hand side is zero and thus  

   
222 mm 0.4000.20 −=−=−= YZY ıı

Consequently, the correlation coefficient of Y and Z is  

 ( ) ( ) 132.00.203.151/0.400/ −=×−== YZZYZY ıııρ  

 The positive value of ρZX manifests the fact that the water level increases with the increase 

of inflow (positive correlation of X and Z). Conversely, the negative correlation of Y and Z 

(ρZY < 0) corresponds to the fact that the water level decreases with the increase of outflow. 
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The large, close to one, value of ρZX in comparison to the much lower (in absolute value) 

value of ρZY reflects the fact that in April the change of water level depends primarily on the 

inflow and secondarily on the outflow, given that the former is greater than the latter and also 

has greater variability (standard deviation). 

2.7.5 An example of dependent discrete variables 

Further to the example of section 2.4.2, we introduce the random variables X and Y to quantify 

the events (wet or dry day) of today and yesterday, respectively. Values of X or Y equal to 0 

and 1 correspond to a day being dry and wet, respectively. We use the values of conditional 

probabilities (also called transition probabilities) of section 2.4.2, which with the current 

notation are: 

 π1|1 := P{X = 1|Y = 1} = 0.40, π0|1 := P{X = 0|Y = 1} = 0.60 

 π1|0 := P{X = 1|Y = 0} = 0.15, π0|1 := P{X = 0|Y = 1} = 0.85 

The unconditional or marginal probabilities, as found in section 2.4.2, are  

 p1 := P{X = 1} = 0.20, p0 := P{X = 0} = 0.80 

and the joint probabilities, again as found in section 2.4.2, are  

 p11 := P{X = 1, Y = 1} = 0.08, p01 := P{X = 0, Y = 1} = 0.12 

 p10 := P{X = 1, Y = 0} = 0.12, p00 := P{X = 0, Y = 0} = 0.68 

It is reminded that the marginal probabilities of Y were assumed equal to those of X, which 

resulted in time symmetry (p01 = p10). It can be easily shown (homework) that the conditional 

quantities πi|j can be determined from the joint pij and vice versa, and the marginal quantities 

pi can be determined for either of the two series. Thus, from the set of the ten above quantities 

only two are independent (e.g. π1|1 and π1|0) and all others can be calculated from these two.  

 The marginal moments of X and Y are  

 E[X] = E[Y] = 0 p0 + 1 p1 = p1 = 0.20,  E[X 
2
] = E[Y

2
] = 0

2
 p0 + 1

2
 p1 = p1 = 0.20 

 Var[X] = E[X 
2
] – E[X]

2
 = 0.2 – 0.2

2
 = 0.16 = Var[Y] 

and the 1+1 joint moment is  

 E[XY] = 0 × 0 p00 + 0 × 1 p01 + 1 × 0 p10 + 1 × 1 p11= p11 = 0.08 

so that the covariance is  

 ıXY ≡ Cov[X, Y] = E[XY] – E[X] E[Y] = 0.08 – 0.2
2
 = 0.04  

and the correlation coefficient 
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[ ]
25.0

16.0

04.0

][Var][Var

,Cov
: =≡=

YX

YXρXY  

 If we know that yesterday was a dry day, the moments for today are calculated from 

(2.49)-(2.52), replacing the integrals with sums and the conditional density fX|Y with the 

conditional probabilities πi|j: 

 E[X|Y = 0] = 0 π0|0 + 1 π1|0 = π1|0 = 0.15,  E[X 
2
|Y = 0] = 0

2
 π0|0 + 1

2
 π1|0 = π1|0 = 0.15 

 Var[X|Y = 0] = 0.15 – 0.15
2
 = 0.128 

Likewise, 

 E[X|Y = 1] = 0 π0|1 + 1 π1|1 = π1|1 = 0.40,  E[X 
2
|Y = 1] = 0

2
 π0|1 + 1

2
 π1|1 = π1|1 = 0.40 

 Var[X|Y = 1] = 0.40 – 0.40
2
 = 0.24 

We observe that in the first case, Var[X|Y = 0] < Var[X]. This can be interpreted as a decrease 

of uncertainty for the event of today, caused by the information that we have for yesterday. 

However, in the second case Var[X|Y = 1] > Var[X]. Thus, the information that yesterday was 

wet, increases uncertainty for today. However, on the average the information about yesterday 

results in reduction of uncertainty. This can be expressed mathematically by E[Var[X|Y]] 

defined in (2.53), which is a weighted average of the two Var[X|Y = j]: 

 E{Var[X|Y]} := Var[X|Y = 0] p0 + Var[X|Y = 1] p1 

This yields 

 E{Var[X|Y} := 0.128 × 0.8 + 0.24 × 0.2 = 0.15 < 0.16 = Var[X] 

2.8 Many variables 

All above theoretical analyses can be easily extended to more than two random variables. For 

instance, the distribution function of the n random variables X1, X2, …, Xn is 

 ( ) { }nnnXX xXxXPxxF
n

≤≤= ,,:,, 111,,1
KKL  (2.69) 

and is related to the n-dimensional probability density function by 

  (2.70) ( ) ( )∫ ∫
∞− ∞−

=
1

11 11,,1,, ,,,,

x x

nnXXnXX

n

nn
ξdξdξξfxxF LKLK LL

The variables X1, X2, …, Xn are independent if for any x1, x2, …, xn the following holds true:  

 ( ) ( ) ( )nXXnXX xFxFxxF
nn

KLL 11,, 11
,, =  (2.71) 

 The expected values and moments are defined in a similar manner as in the case of two 

variables, and the property (2.58) is generalized for functions gi of many variables. 
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2.9 The concept of a stochastic process 

An arbitrarily (usually infinitely) large family of random variables X(t) is called a stochastic 

process (Papoulis, 1991). To each one of them there corresponds an index t, which takes 

values from an index set T. Most often, the index set refers to time. The time t can be either 

discrete (when T is the set of integers) or continuous (when T is the set of real numbers); thus 

we have respectively a discrete-time or a continuous-time stochastic process. Each of the 

random variables X(t) can be either discrete (e.g. the wet or dry state of a day) or continuous 

(e.g. the rainfall depth); thus we have respectively a discrete-state or a continuous-state 

stochastic process. Alternatively, a stochastic process may be denoted as Xt instead of X(t); the 

notation Xt is more frequent for discrete-time processes. The index set can also be a vector 

space, rather than the real line or the set of integers; this is the case for instance when we 

assign a random variable (e.g. rainfall depth) to each geographical location (a two 

dimensional vector space) or to each location and time instance (a three-dimensional vector 

space). Stochastic processes with multidimensional index set are also known as random fields.  

 A realization x(t) of a stochastic process X(t), which is a regular (numerical) function of the 

time t, is known as a sample function. Typically, a realization is observed at countable time 

instances (not in continuous time, even in a continuous-time process). This sequence of 

observations is also called a time series. Clearly then, a time series is a sequence of numbers, 

whereas a stochastic process is a family of random variables. Unfortunately, a large literature 

body does not make this distinction and confuses stochastic processes with time series.  

2.9.1 Distribution function 

The distribution function of the random variable Xt, i.e.,  

 ( ) ( ){ }xtXPtxF ≤=:;  (2.72) 

is called first order distribution function of the process. Likewise, the second order 

distribution function is 

 ( ) ( ) ( ){ }22112121 ,:,;, xtXxtXPttxxF ≤≤=  (2.73) 

and the nth order distribution function 

 ( ) ( ) ( ){ }nnnn xtXxtXPttxxF ≤≤= ,,:,,;,, 1111 KKK  (2.74) 

A stochastic process is completely determined if we know the nth order distribution function 

for any n. The nth order probability density function of the process is derived by taking the 

derivatives of the distribution function with respect to all xi.  

2.9.2 Moments 

The moments are defined in the same manner as in sections 2.5 and 2.7.1. Of particular 

interest are the following:  

1. The process mean, i.e. the expected value of the variable X(t): 
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  (2.75) ( ) ( )[ ] ( )∫
∞

∞−

== dttxfxtXEtm ;:

2. The process autocovariance, i.e. the covariance of the random variables X(t1) and X(t2): 

 ( ) ( ) ( )[ ] ( ) ( )( ) ( ) ( )( )[ ]22112121 ,Cov:, tmtXtmtXEtXtXttC −−==  (2.76) 

 The process variance (the variance of the variable X(t)), is Var[X(t)] = C(t, t). 

Consequently, the process autocorrelation (the correlation coefficient of the random variables 

X(t1) and X(t2)) is 

 ( ) ( ) ( )[ ]
( )[ ] ( )[ ]

( )
( ) ( )2211

21

21

21
21

,,

,,Cov
:,

ttCttC

ttC

tXVartXVar

tXtX
ttρ ==  (2.77) 

2.9.3 Stationarity  

As implied by the above notation, in the general setting, the statistics of a stochastic process, 

such as the mean and autocovariance, depend on time and thus vary with time. However, the 

case where these statistical properties remain constant in time is most interesting. A process 

with this property is called stationary process. More precisely, a process is called strict-sense 

stationary if all its statistical properties are invariant to a shift of time origin. That is, the 

distribution function of any order of X(t + Ĳ) is identical to that of X(t). A process is called 

wide-sense stationary if its mean is constant and its autocovariance depends only on time 

differences, i.e.  

 E[X(t)] = µ,    Ε[(X(Ĳ) – µ) (X(t + Ĳ) – µ)] = C(Ĳ) (2.78) 

A strict-sense stationary process is also wide-sense stationary but the inverse is not true. 

 A process that is not stationary is called nonstationary. In a nonstationary process one or 

more statistical properties depend on time. A typical case of a nonstationary process is a 

cumulative process whose mean is proportional to time. For instance, let us assume that the 

rainfall intensity Ξ(t) at a geographical location and time of the year is a stationary process, 

with a mean µ. Let us further denote X(t) the rainfall depth collected in a large container (a 

cumulative raingauge) at time t and assume that at the time origin, t = 0, the container is 

empty. It is easy then to understand that E[X(t)] = µ t. Thus X(t) is a nonstationary process.  

 We should stress that stationarity and nonstationarity are properties of a process, not of a 

sample function or time series. There is some confusion in the literature about this, as a lot of 

studies assume that a time series is stationary or not, or can reveal whether the process is 

stationary or not. As a general rule, to characterise a process nonstationary, it suffices to show 

that some statistical property is a deterministic function of time (as in the above example of 

the raingauge), but this cannot be straightforwardly inferred merely from a time series.  

 Stochastic processes describing periodic phenomena, such as those affected by the annual 

cycle of Earth, are clearly nonstationary. For instance, the daily temperature at a mid-latitude 

location could not be regarded as a stationary process. It is a special kind of a nonstationary 
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process, as its properties depend on time on a periodical manner (are periodic functions of 

time). Such processes are called cyclostationary processes.  

2.9.4 Ergodicity 

The concept of ergodicity (from the Greek words ergon – work – and odos – path) is central 

for the problem of the determination of the distribution function of a process from a single 

sample function (time series) of the process. A stationary stochastic process is ergodic if any 

statistical property can be determined from a sample function. Given that in practice, the 

statistical properties are determined as time averages of time series, the above definition can 

be stated alternatively as: a stationary stochastic process is ergodic if time averages equal 

ensemble averages (i.e. expected values). For example, a stationary stochastic process is mean 

ergodic if  

 [ ] ( )∑
=

∞→
=

N

t
N

tX
N

tXE
0

1
lim)(  (for a discrete time process) 

  (2.79) 

 [ ] ∫∞→
=

T

T
dttX

T
tXE

0

)(
1

lim)(  (for a continuous time process) 

 The left-hand side in the above equations represents the ensemble average whereas the 

right-hand side represents the time average, for the limiting case of infinite time. Whilst the 

left-hand side is a parameter, rather than a random variable, the right-hand side is a random 

variable (as a sum or integral of random variables). The equating of a parameter with a 

random variable implies that the random variable has zero variance. This is precisely the 

condition that makes a process ergodic, a condition that does not hold true for every stochastic 

process. 

2.10 The central limit theorem and some common distribution functions 

The central limit theorem is one of the most important in probability theory. It concerns the 

limit distribution function of a sum of random variables – components, which, under some 

conditions but irrespectively of the distribution functions of the components, is always the 

same, the celebrated normal distribution. This is the most commonly used distribution in 

probability theory as well as in all scientific disciplines and can be derived not only as a 

consequence of the central limit theorem but also from the principle of maximum entropy, a 

very powerful physical and mathematical principle (Papoulis, 1990, p. 422-430). 

 In this section we will present the central limit theorem, the normal distribution, and some 

other distributions closely connected to the normal (χ2
 and Student). All these distributions are 

fundamental in statistics (chapter 3) and are commonly used for statistical estimation and 

prediction. Besides, the normal distribution has several applications in hydrological statistics, 

which will be discussed in chapters 5 and 6.  
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2.10.1 The central limit theorem and its importance 

Let Xi (i = 1, …, n) be random variables and let Z := X1 + X2 + … + Xn be its sum with E[Z] = 

mZ and Var[Z] = sZ
2
. The central limit theorem says that the distribution of Z, under some 

general conditions (see below) has a specific limit as n tends to infinity, i.e., 

 ( )
( )

ȗde
πı

zF Z

Z

ı
mȗz

Z

nZ

2

2

2

2

1
−

−

∞−
∞→ ∫⎯⎯ →⎯  (2.80) 

and in addition, if Xi are continuous variables, the density function of Z has also a limit, 

 ( )
( )

2

2

2

2

1
Z

Z

ı
mz

Z

nZ e
πı

zf

−
−

∞→⎯⎯ →⎯  (2.81) 

The distribution function in the right-hand side of (2.80) is called the normal (or Gauss) 

distribution and, likewise, the function in the right-hand side of (2.81) is called the normal 

probability density function.  

 In practice, the convergence for n → ∞ can be regarded as an approximation if n is 

sufficiently large. How large should n be so that the approximation be satisfactory, depends 

on the (joint) distribution of the components Xi. In most practical application, a value n = 30 is 

regarded to be satisfactory (with the condition that Xi are independent and identically 

distributed). Fig. 2.4 gives a graphical demonstration of the central limit theorem based on an 

example. Starting from independent random variables Xi with exponential distribution, which 

is positively skewed, we have calculated (using (2.62)) and depicted the distribution of the 

sum of 2, 4, 8, 16 and 32 variables. If the distribution of Xi were symmetric, the convergence 

would be much faster.  

0

0.2

0.4

0.6

0.8

1

-2.5 -1.5 -0.5 0.5 1.5 2.5
x, z n

f X (x ), f Zn (z n )

 

Fig. 2.4 Convergence of the sum of exponentially distributed random variables to the normal distribution (thick 

line). The dashed line with peak at x = −1 represents the probability density of the initial variables Xi, which is 

fX(x) = e−(x−1) (mean 0, standard deviation 1). The dotted lines (going from the more peaked to the less peaked) 

represent the densities of the sums Zn = (X1 + … + Xn) / n for n = 2, 4, 8, 16 and 32. (The division of the sum by 

n helps for a better presentation of the curves, as all Zi have the same mean and variance, 0 and 1, respectively, 

and does not affect the essentials of the central limit theorem.)  

 The conditions for the validity of the central limit theorem are general enough, so that they 

are met in many practical situations. Some sets of conditions (e.g. Papoulis, 1990, p. 215) 
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with particular interest are the following: (a) the variables Xi are independent identically 

distributed with finite third moment; (b) the variables Xi are bounded from above and below 

with variance greater than zero; (c) the variables Xi are independent with finite third moment 

and the variance of Z tends to infinity as n tends to infinity. The theorem has been extended 

for variables Xi that are interdependent, but each one is effectively dependent on a finite 

number of other variables. Practically speaking, the central limit theorem gives satisfactory 

approximations for sums of variables unless the tail of the density functions of Xi are over-

exponential (long, like in the Pareto example; see section 2.6.2) or the dependence of the 

variables is very strong and spans the entire sequence of Xi (long range dependence; see 

chapter 4). Note that the normal density function has an exponential tail (it can be 

approximated by an exponential decay for large x) and all its moments exist (are finite), 

whereas in over-exponential densities all moments beyond a certain order diverge. Since in 

hydrological processes the over-exponential tails, as well as the long-range dependence, are 

not uncommon, we must be attentive in the application of the theorem. 

 We observe in (2.80) and (2.81) that the limits of the functions FZ(z) and fZ(z) do not 

depend on the distribution functions of Xi, that is, the result is the same irrespectively of the 

distribution functions of Xi. Thus, provided that the conditions for the applicability of the 

theorem hold, (a) we can know the distribution function of the sum without knowing the 

distribution of the components, and (b) precisely the same distribution describes any variable 

that is a sum of a large number of components. Here lies the great importance of the normal 

distribution in all sciences (mathematical, physical, social, economical, etc.). Particularly, in 

statistics, as we will see in chapter 3, the central limit theorem implies that the sample average 

for any type of variables will have normal distribution (for a sample large enough). 

 In hydrological statistics, as we will see in chapters 5 and 6 in more detail, the normal 

distribution describes with satisfactory accuracy variables that refer to long time scales such 

as annual. Thus, the annual rainfall depth in a wet area is the sum of many (e.g. more than 30) 

independent rainfall events during the year (this, however, is not valid for rainfall in dry 

areas). Likewise, the annual runoff volume passing through a river section can be regarded as 

the sum of 365 daily volumes. These are not independent, but as an approximation, the central 

limit theorem can be applicable again.  

2.10.2 The normal distribution 

The random variable X is normally distributed or (Gauss distributed) with parameters µ and ı 
(symbolically N(µ, ı) if its probability density is  
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The corresponding distribution function is 
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 The mean and standard deviation of X are µ and ı, respectively. The distribution is 

symmetric (Fig. 2.5) and thus its third central moment and its third L moment are zero. The 

fourth central moment is 3ı4
 (hence Ck = 3) and the fourth L moment is   (hence 

). 

)2(0.1226 Xλ
0.1226)4( =XĲ

 The integral in the right-hand side of (2.83) is not calculated analytically. Thus, the typical 

calculations (x → FX(x) or FX(x) → x) are done either numerically or using tabulated values of 

the so-called standard normal variate Z, that is obtained from X with the transformation 

 ZıµX
ı

µX
Z +=↔

−
=  (2.84) 

and its distribution is N(0,1). It is easy to obtain (see section 2.6.1) that  
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Such tables are included in all textbooks of probability and statistics, as well as in the 

Appendix of this text. However, nowadays all common numerical computer packages 

(including spreadsheet applications etc.) include functions for the direct calculation of the 

integral.*  
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Fig. 2.5 Two examples of normal probability density function (a) N(0,1) and (b) N(2, 2). 

2.10.3 A numerical example of the application of the normal distribution 

We assume that in an area with wet climate the annual rainfall depth is normally distributed 

with µ = 1750 mm and ı = 410 mm. To find the exceedence probability of the value 2500 mm 

we proceed with the following steps, using the traditional procedure with tabulated z values: z 

= (2500 − 1750) / 410 = 1.83. From normal distribution tables, FZ(z) = 0.9664 (= FX(x)). 

Hence,  = 1 − 0.9664 = 0.0336. ( )xFX

*

                                                 
* For instance, in Excel, the x → FX(x) and FX(x) → x calculations are done through the functions NormDist and 

NormInv, respectively (the functions NormSDist and NormSInv can be used for the calculations z → FZ(z) and 

FZ(z) → z, respectively). 
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 To find the rainfall value that corresponds to exceedence probability 2%, we we proceed 

with the following steps: FX(x) = FZ(z) = 1 – 0.02 = 0.98; from the table, z = 2.05 hence x = 

1750 + 410 × 2.05 = 2590.5 mm. The calculations are straightforward. 

2.10.4 The χ2
 distribution 

The chi-squared density with n degrees of freedom (symbolically χ2
(n)) is  

 ( ) ( ) K,2,1,0,
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where Γ ( ) is the gamma function (not to be confused with the gamma distribution function 

whose special case is the χ2
 distribution), defined from 
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The gamma function has some interesting properties such as 
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 The χ2
 distribution is a positively skewed distribution (Fig. 2.7) with a single parameter 

(n). Its mean and variance are n and 2n, respectively. The coefficients of skewness and 

kurtosis are nC s /22=  and nCk /123+= , respectively. 
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Fig. 2.6 Examples of the χ2(n) density for several values of n.  

 The integral in (2.86) is not calculated analytically, so the typical calculations are based 

either on tabulated values (see Appendix) or on numerical packages.*  

 The χ2
 distribution is not directly used to represent hydrological variables; instead the more 

general gamma distribution (see chapter 6) is used. However, the χ2
 distribution has great 

importance in statistics (see chapter 3), because of the following theorem: If the random 

variables Xi (i = 1, …, n) are distributed as N(0, 1) , then the sum of their squares,  

                                                 
* E.g. in Excel, the relative functions are ChiDist and ChiInv. 
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is distributed as χ2
(n). Combining this theorem with the central limit theorem we find that for 

large n the χ2
(n) distribution tends to the normal distribution. 

2.10.5 The Student (t) distribution 

We shall say that the random variable X has a Student (or t) distribution with n degrees of 

freedom (symbolically t(n)) if its density is 
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 This is a symmetric distribution (Fig. 2.7) with a single parameter (n), mean zero and 

variance n / (n − 2). In contrast to the normal distribution, it has an over-exponential tail but 

for large n (≥ 30) practically coincides with the normal distribution. 
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Fig. 2.7 Examples of the t(n) probability density function for n = 1, 2, 4 and 8 (continuous thin lines from down 

to up), in comparison to the standard normal density N(0, 1) (thick line). 

 The integral in (2.90) is not calculated analytically, so the typical calculations are based 

either on tabulated values (see Appendix) or on numerical packages.*  

 The t distribution is not directly used to represent hydrological variables but it has great 

importance in statistics (see chapter 3), because of the following theorem: If the random 

variables Z and W are independent and have N(0, 1) and χ2
(n) distributions, respectively, then 

the ratio 

 
nW

Z
T

/
=  (2.91) 

has t(n) distribution. 

                                                 
* E.g. in Excel, the relative functions are TDist and TInv. 
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Chapter 3 

Elementary statistical concepts 

Demetris Koutsoyiannis 

Department of Water Resources and Environmental Engineering 

Faculty of Civil Engineering, National Technical University of Athens, Greece 

Summary 

This chapter aims to serve as a reminder and synopsis of elementary statistical concepts, rather 

than a systematic and complete presentation of the concepts. Statistics is the applied branch of 

probability theory which deals with real world problems, trying to draw conclusions based on 

observations. Two major tasks in statistics are estimation and hypothesis testing. Statistical 

estimation can be distinguished in parameter estimation and prediction and can be performed 

either on a point basis (resulting in a single value, the expectation), or on an interval basis 

(resulting in an interval in which the quantity sought lies, associated with a certain probability or 

confidence). Uses of statistical estimation in engineering applications include the estimation of 

parameters of probability distributions, for which several methods exist, and the estimation of 

quantiles of distributions. Statistical hypothesis testing is also an important tool in engineering 

studies, not only in typical decision making processes, but also in more analytical tasks, such as in 

detecting relationships among different geophysical, and particularly hydrological, processes. All 

this concepts are briefly discussed both in a theoretical level, to clarify the concepts and avoid 

misuses, and a more practical level to demonstrate the application of the concepts.  

3.1 Introductory comments 

Statistics is the applied branch of probability theory which deals with real world problems, 

trying to draw conclusions based on observations. The conclusions are only inferences based 

on induction, not deductive mathematical proofs; however, if the associated probabilities tend 

to 1, they become almost certainties. The conclusions are attributed to a population, while 

they are drawn based on a sample. Although the content of term population is not strictly 

defined in the statistical literature, loosely speaking we consider that the term describes any 

collection of objects whose measurable attributes are of interest. It can be an abstraction of a 

real world population or of the repetition of a real experiment. The population can be finite 

(e.g. the population of the annual flows of the hydrologic year 1990-91 for all hydrologic 

basins of earth with size greater than 100 km
2
) or infinite and abstractively defined (e.g. the 

population of all possible annual flows of a hydrologic basin). The term sample describes a 

collection of observations from the particular population (see definition in section 3.2.1).  

An important concept of statistics is the estimation. It is distinguished in parameter 

estimation and prediction. In order to clarify these concepts, we consider a population that is 
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represented by a random variable X with distribution function FX(x; ș) where ș is a parameter. 

A parameter estimation problem is a problem in which the parameter is unknown and we seek 

an estimate of it. A prediction problem is a problem in which the parameter is known and we 

seek an estimate of the variable X or a function of X. As we will see below, these two 

problems are dealt with using similar methods of statistics, and thus they are both called 

estimation problems. The results of the estimation procedures are called estimates. 

An estimate can be either a point estimate, i.e. a numerical value, or an interval estimate, 

i.e. one interval that contains the value sought with a given degree of certainty. Conversely, 

for a given interval, statistics can calculate the corresponding degree of certainty or, on the 

contrary, the degree of uncertainty, that the quantity sought lies within the interval.  

Another important area of statistics is hypothesis testing that constitutes the basis of the 

decision theory. The process of hypothesis testing requires the formulation of two statements: 

the basic H0, that is referred to as the null-hypothesis, and the alternative hypothesis H1. We 

start the process of testing by considering that the null hypothesis is true and we use the 

observations to decide if this hypothesis should be rejected. This is done using of statistical 

methods. Although the hypothesis testing is based on the same theoretical background as the 

estimation, the difference lies in the examination of two alternative models, while in the 

estimation we use only one model.  

The background for all these concepts is described in this chapter while in the next 

chapters several additional numerical examples are given. Of course, statistics include many 

other areas, such as the Bayesian analysis, but these are not covered in this text. 

3.2 Concepts and definitions 

3.2.1 Sample 

We consider a random variable X with probability density function f(x). The variable is 

defined based on a sample space Ω and is conceptualized with some population. A sample of 

X of size (or length) n of is a sequence of n independent identically distributed (IID random 

variables X1, X2, …, Xn (each having density f(x)) defined on the sample space Ω n
 = 

Ω × 
…

 × Ω (Papoulis, 1990, p. 238). Each one of the variables Xi corresponds to the possible 

results of a measurement or an observation of the variable X. After the observations are 

performed, to each variable there corresponds a numerical value. Consequently, we will have 

a numerical sequence x1, x2, …, xn, called the observed sample. 

 The concept of a sample is, therefore, related to two types sequences: an abstractive 

sequence of random variables and the corresponding sequence of their numerical values. It is 

common in engineering application to use the term sample indistinguishably for both 

sequences, omitting the term observed from the second sequence. However, the two notions 

are fundamentally different and we should be attentive to distinguish each time in which of 

the two cases the term sample refers to.  
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In statistics it is assumed that the construction of a sample of size n or the sampling is done 

by performing n repetitions of an experiment. The repetitions should be independent to each 

other and be performed under virtually the same conditions. However, in dealing with natural 

phenomena and in engineering it is not possible to repeat the same experiment, and thus 

sampling is a process of multiple measurements of the a natural process at different times. As 

a consequence, it is not possible to ensure that independence and same conditions will hold. 

Nonetheless, for certain situations we can assume that the previous conditions are 

approximately valid (an assumption equivalent to simultaneously assuming independence, 

stationarity and ergodicity, cf. chapters 2 and 4) and thus we can use classical statistical 

methods of statistics to analyse them. However, there are cases where these conditions (the 

independence in particular) are far from holding and the use of classical statistics may become 

dangerous as the estimations and inferences may be totally wrong (see chapter 4). 

3.2.2 Statistic 

A statistic is defined to be a function of a sample’s random variables, i.e. Θ = g(X1, …, Xn) (in 

vector notation, Θ = g(X), where X := [X1, …, Xn]
T
 is known as the sample vector; note that 

the superscript T denotes the transpose of a vector or matrix). From the observations we can 

calculate the numerical value of the statistic, i.e. ș = g(x1, …, xn). Clearly, the statistic Θ is not 

identical with its numerical value ș. In particular, the statistic, as a function of random 

variables, is a random variable itself, having a certain distribution function. Whereas the 

numerical value of the statistic is simply calculated from the mathematical expression 

g(x1, …, xn) using the sample observations, its distribution function is deducted based on 

theoretical considerations as we will see in later sections. Typical examples of commonly 

used statistics are given below. 

3.2.3 Estimators and estimates 

A statistics is used to estimate a population parameter. For any population parameter Ș, there 

exists one or more statistic of the form Θ = g(X1, …, Xn) suitable for the estimation of this 

parameter. In this case we say that Θ = g(X1, …, Xn) is an estimator of the parameter Ș and 

that the numerical value ș = g(x1, …, xn) is an estimate of Ș.  
 There is not a unique criterion to decide if a statistic can be used for the estimation of a 

population parameter. Often the mathematical expression g(X1, …, Xn) is formulated as if Ș 
was a population parameter of a finite sample space identical with the available sample. For 

example, if we wish to find an estimator of the mean value Ș ≡ mX of a variable X, based on 

the sample (X1, …, Xn) with observations (x1, …, xn), we can think of the case where X is a 

discrete variable taking values (x1, …, xn), each with the same probability P(X = xi) = 1/n. In 

this case, by definition of the mean (eq. (2.21) - (2.23)) we find that Ș = (x1 + … + xn)/n. If in 

the latter equation we replace the numerical values with the corresponding variables, we 

obtain the statistic Θ = (X1 + … + Xn)/n. As we will see, this is the estimator of the mean 
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value of any random variable, it is named sample mean and it is typically denoted as X . 

However, this empirical approach does not give always a good estimator. 

 Whereas an estimator is not defined by in a strict mathematical procedure in the general 

case, several estimator categories have rigorous definitions. Thus: 

1. A statistic Θ is an unbiased estimator of the parameter Ș if E[Θ] = Ș. Otherwise, it is a 

biased estimator and the difference E[Θ] – Ș is called bias. 

2. An estimator is Θ is a consistent estimator of the parameter Ș if the estimation error Θ – Ș 
tends to zero with probability 1 as n → ∞. Otherwise, the estimator is inconsistent. 

3. A statistic Θ is the best estimator of the parameter Ș if the mean square error E[(Θ – Ș)2
] is 

minimum. 

4. A statistic Θ is the most efficient estimator of the parameter Ș if it is unbiased and with 

minimum variance (where due to unbiasednees the variance equals the estimation error). 

It is easy to show that the estimator X  of the previous example is an unbiased and 

consistent estimator of the population mean mX (see section 3.3.1). Moreover, for certain 

distributions functions, it is best and most efficient.  

 In practice, efforts are taken to use unbiased and consistent estimators, while the 

calculation of the best and most effective estimator is more of theoretical interest. For a 

certain parameter it is possible to find more than one unbiased or consistent estimator. Often, 

the determination of unbiased estimators is difficult or impossible, and thus we may content 

with the use of biased estimators. 

3.2.4 Interval estimation and confidence intervals 

An interval estimate of a parameter Ș is an interval of the form (ș1, ș2), where ș1 = g1(x1, …, 

xn) and ș2 = g2(x1, …, xn) are functions of the sample observations. The interval (Θ1, Θ2) 

defined by the corresponding statistics Θ1 = g1(X1, …, Xn) and Θ2 = g2(X1, …, Xn) is called the 

interval estimator of the parameter Ș. 
 We say that the interval (Θ1, Θ2) is a Ȗ-confidence interval of the parameter Ș if 

 P{Θ1 < Ș < Θ2} = Ȗ (3.1) 

where Ȗ is a given constant (0 < Ȗ < 1) called the confidence coefficient, and the limits Θ1 and 

Θ2 are called confidence limits. Usually we choose values of Ȗ near 1 (e.g. 0.9, 0.95, 0.99, so 

as the inequality in (3.1) to become near certain). In practice the term confidence limits is 

often (loosely) used to describe the numerical values of the statistics ș1 and ș2, whereas the 

same happens for the term confidence interval. 

 In order to provide a general manner for the calculation of a confidence interval, we will 

assume that the statistic Θ = g(X1, …, Xn) is an unbiased point estimator of the parameter Ș 
and that its distribution function is FΘ(ș). Based on this distribution function it is possible to 
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calculate two positive numbers ξ1 and ξ2, so that the estimation error Θ – Ș lies in the interval 

(–ξ1, ξ2) with probability Ȗ, i.e. 

 P{Ș – ξ1 < Θ < Ș + ξ2} = Ȗ (3.2) 

and at the same time the interval (–ξ1, ξ2) to be the as small as possible.* Equation (3.2) can be 

written as 

 P{Θ – ξ2 < Ș < Θ + ξ1} = Ȗ (3.3) 

Consequently, the confidence limits we are looking for are Θ1 = Θ – ξ2 and Θ2 = Θ + ξ1.  

 Although equations (3.2) and (3.3) are equivalent, their statistical interpretation is 

different. The former is a prediction, i.e. it gives the confidence interval† of the random 

variable Θ. The latter is a parameter estimation, i.e. it gives the confidence limits of the 

unknown parameter Ș, which is not a random variable. 

3.3 Typical point estimators  

In this section we present the most typical point estimators referring to the population 

moments of a random variable X irrespectively of its distribution function F(x). Particularly, 

we give the estimators of the mean, the variance and the third central moment of a variable. 

We will not extend to higher order moments, firstly because it is difficult to form unbiased 

estimators and secondly because for typical sample sizes the variance of estimators is very 

high, thus making the estimates extremely uncertain. This is also the reason why in 

engineering applications moments higher than third order are not used. Even the estimation of 

the third moment is inaccurate for a small size sample. However, the third moment is an 

important characteristic of the variable as it describes the skewness of its distribution. 

Moreover, hydrological variables are as a rule positively skewed and thus an estimate of the 

skewness is necessary. 

 Apart form the aforementioned moment estimators we will present the L-moment 

estimators as well as the covariance and correlation coefficient estimators of two variables 

that are useful for the simultaneous statistical analysis of two (or more) variables. 

3.3.1 Moment estimators 

The estimators of raw moments (moments about the origin) of one or two variables, i.e. the 

estimators of  and  (where r and s are chosen integers), formed according to the 

empirical method described in section 3.2.3, are given by the following relationships: 

)(r

Xm )(rs

XYm

                                                 
* If the distribution of Q is symmetric then the interval (–ξ1, ξ2) has minimum length for ξ1 = ξ2. For non-

symmetric distributions, it is difficult to calculate the minimum interval, thus we simplify the problem by 

splitting the ( ) into the equations P{Θ < Ș – ξ1} = P{Θ > Ș + ξ2} = (1 – Ȗ) / 2. 3.2
† The terms confidence limits, confidence interval, confidence coefficient etc. are also used for this prediction 

form of the equation. 
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It can be proved (Kendall and Stewart, 1968, p. 229) that 
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Consequently, the moment estimators are unbiased. The variances of these estimators are  
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It can be observed that if the population moments are finite, then the variances tend to zero as 

n → ∞; therefore the estimators are consistent.  

 Typical central moment estimators, i.e. estimators of  and  of one and two 

variables, respectively, are those defined by the equations 
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These have been formed based on the empirical method described in section 3.2.3.These 

estimators are biased (for r + s > 1).  

3.3.2 Sample mean 

The most common statistic is the sample mean. As we have seen in section 3.2.3, the sample 

mean is an estimator of the true (or population) mean mX = E[X] and is defined by  

 ∑
=

=
n

i

iX
n

X
1

1
 (3.8) 

which is a special case of (3.4) for r = 1. Its numerical value  

 ∑
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ix
n

x
1

1
 (3.9) 

is called the observed sample mean or simply the average. The symbols X  and x  should not 

be conceptually confused with each other nor with the true mean of the random variable X, i.e. 

mX = E[X], which is defined based on the equations (2.20) or (2.21) and (2.23). Nevertheless, 

these three quantities are closely related. Implementation of equations (3.5) and (3.6) gives 

 [ ] [ ] [ ] [ ]
n

X
XXEXE

Var
Var, ==  (3.10) 

regardless of the distribution function of X*. Thus, the estimator is unbiased and consistent. 

                                                 
* However, Var[ X ] depends on the dependence structure of the variables Xi; the formula given in ( ) holds 

only if Xi are independent. On the other hand, the formula for E[

3.10

X ] holds always. 



3.3 Typical point estimators 7 

3.3.3 Variance and standard deviation 

A biased estimator of the true (population) variance  is: 2
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It can be proved (Kendall and Stewart, 1968, p. 277) that 
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where  is the fourth central population moment. The two last terms in the expression of )4(

Xµ

[ ]2Var XS can be omitted for large values of n. From the expression of [ ]2

XSE  in (3.12) we 

observe that multiplication of  by n/(n – 1) results in an unbiased estimator of , i.e. 2

XS 2
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2*

XS  is known as sample variance. For large sample sizes, the two estimators  and  are 

practically the same. If the population is normally distributed, it can be shown that 
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 The standard deviation estimators in common use are the square roots of the variance 

estimators, namely the SX and SX
*
 and are not unbiased. Thus (Yevjevich, 1972, p. 193. 

Kendall and Stewart, 1968, p. 233), 
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where the terms O(1/n) are O(1/n
2
) are quantities proportional to 1/n and 1/n

2
, respectively, 

and can be omitted if the sample size is large enough (n ≥ 20). 

 If the population is normally distributed, the following approximate equations can be used 

for SX  
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2
Var,

1 2

≈
−

≈  (3.16) 
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For n ≥ 10 the errors of these equations are smaller than 2.5% and 2.7% respectively, while 

for n ≥ 100 are practically zero. The corresponding equations for  are* *

XS

 [ ] [ ] ( )12
Var,

2
**

−
≈≈

n

σ
SσSE X

XXX  (3.17) 

 Finally, one of the two following estimators of the coefficient of variation can be used:  

 
X

S
C

X

S
C X

v
X

v
XX

*
*ˆ,ˆ ==  (3.18) 

If the variable X is positive, then it can be shown that these estimators are bounded from 

above ( 1ˆ −≤ nC
Xv ) while the same does not hold for the corresponding population 

parameters. Obviously, this introduces bias.† 

3.3.4 Third central moment and skewness coefficient 

A biased estimator of the true (population) third central moment  is given by )3(

Xµ

 

( )
n

XX

M

n

i

i

X

∑
=

−
= 1

3

)3(ˆ  (3.19) 

for which it can be shown (Kendall and Stewart, p. 278-281) that 

 [ ] ( )( ) )3(

2

)3( 21ˆ
XX µ

n

nn
ME

−−
=  (3.20) 

It immediately follows that an unbiased (and consistent) estimator of µX
(3)

 is  

 

( )
( )( )21

ˆ 1

3

)3(*

−−

−
=

∑
=

nn

XXn

M

n

i

i

X  (3.21) 

For large sample size n, the two estimators are practically the same. 

 The estimation of the skewness coefficient  is done using the following estimator 
XsC

 
3

)3(ˆ
ˆ

X

X
s

S

M
C

X
=  22) 

                                                 
* More accurate approximations are given by  

 [ ] [ ] ( )
4
3

2
*

4
3

4
5

*

2
,

−
≈

−
−

≈
n

σ
SVar

n

nσSE X
XXX

  

the errors of which for n ≥ 10 are less than 0.005% and 0.2%, respectively. The precise equations are 

 [ ] ( )
( )

[ ] ( )
( )⎥⎦

⎤
⎢
⎣

⎡
−==

−−−−
2

12

2
1

2

2
2*

2
1

2
1

2* 1,
nn

n

XX
nn

n

XX Γ
ΓσSVar

Γ
ΓσSE  

† The expression of the estimator’s variance is quite complex and is omitted (cf. Kendall and Stewart, 1968, p. 

233). If X follows a normal distribution then  

  [ ]Var $ /C Cv vX X
≈ 2 2n
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which is not unbiased. The bias does not originate only from the fact that the two moment 

estimators (numerator and denominator) are not unbiased themselves, but also (mainly) from 

the fact that C
^

s
X
 is bounded both from above and from below, whilst the population Cs

X
 is not 

bounded. This is due to the finite sample size n, which determines the upper and lower limit. 

Thus, it has been shown (Kirby, 1974; Wallis et al., 1974) that |C
^

s
X
| ≤ (n – 2) / n – 1. 

 Several approximate bias correction coefficients have been proposed in the literature to be 

multiplied by C
^

s
X
 estimated from (3.22) to obtain a less biased estimate. None of them leads to 

a rigorous unbiased estimator of the coefficient of skewness. The four most common are: 

 
( )

2

1

−
−

n

nn
, ( )( )21

2

−− nn

n ( )
⎟
⎠
⎞

⎜
⎝
⎛ +

−
−

nn

nn 5.8
1

2

1
, 2

22
ˆ77.648.120.2051.6

1
XsC

nnnn
⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ ++  (3.23) , 

The first is obtained if in (3.22) the biased moment estimators are replaced by the unbiased 

ones.  The second results if in (3.22) we replace the biased third moment estimator with the 

unbiased one (Yevjevich, 1978, p. 110). The third one has been proposed by Hazen and the 

last one has been proposed by Bobée and Robitaille (1975), based on results by Wallis et al. 

(1974). 

3.3.5 L-moments estimates 

Unbiased estimates  of the probability weighted moments  are given by the following 

relationship (Landwehr et al., 1979): 

)(r

Xb )(r

Xȕ

  = )(r

Xb

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∑

−

=

r

n

x
r

jn

n

rn

i

i

1

1 1

)(

 = )(

1 ))...(2)(1(

)1)...(1)((1
i

rn

i

x
rnnn

rininin

n
∑

−

= −−−
++−−−−

 (3.24) 

where n is the sample size, and x(i) the ordered observations so that x(n) ≤ … ≤ x(2)≤ x(1)*. The 

estimates† of the first four probability weighted moments are:  

  =)0(

Xb ∑
=

n

i

ix
n 1

)(

1
 = x  

  = )1(

Xb )(

2

1 1

1
i

n

i

x
n

in

n
∑

−

= −
−

  

  = )2(

Xb )(

2

1 )2)(1(

)1)((1
i

n

i

x
nn

inin

n
∑

−

= −−
−−−

 (3.25) 

                                                 
* Notice that x(1) is the largest observation; the equations are somewhat simpler if the observations are ordered 

from smallest to largest but it has been the rule in engineering hydrology to put the observations in descending 

order.  
† The estimators of the same quantities are obtained by replacing x(i) with the variable X(i), the so called order 

statistic. 
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  = )3(

Xb )(

3

1 )3)(2)(1(

)2)(1)((1
i

n

i

x
nnn

ininin

n
∑

−

= −−−
−−−−−

 

Accordingly, the estimates of the first four L moments are calculated by the equations relating 

L moments and probability weighted moments (see equation (2.32)), i.e.,  

  =  (= )1(

Xl
)0(

Xb x ) 

  = 2  –   )2(

Xl
)1(

Xb )0(

Xb

  = 6  – 6  +  (3.26) )3(

Xl
)2(

Xb )1(

Xb )0(

Xb

  = 20  – 30  + 12  –  )4(

Xl
)3(

Xb )2(

Xb )1(

Xb )0(

Xb

3.3.6 Covariance and correlation 

A biased estimator of the covariance σXY of two variables X and Y is: 

 

( )( )
n

YYXX

S

n

i

ii

XY

∑
=

−−
= 1  (3.27) 

It can be shown (e.g. Papoulis, 1990, p. 295) that 

 [ ] XYXY σ
n

n
SE

1−
=  (3.28) 

Therefore, an unbiased (and consistent) estimator of σXY is  

 

( )( )
1

1*

−

−−
=

∑
=

n

YYXX

S

n

i

ii

XY  (3.29) 

known as sample covariance*. 

 The estimator of the correlation coefficient ρXY is given by the next relationship, known as 

the sample correlation coefficient: 

 

( )( )

( ) ( )∑∑

∑

==

=

−−

−−
===

n

i

i

n

i

i

n

i

ii

YX

XY

YX

XY
XY

YYXX

YYXX

SS

S

SS

S
R

1

2

1

2

1

**

*

 (3.30) 

The precise distribution function of this estimator and its moments are difficult to determine 

analytically; however, this estimator is regarded approximately unbiased. 

                                                 
* In many books, the denominator of (3.29) has the term n – 2, which is not correct. 
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3.4 Typical confidence intervals 

3.4.1 Mean – known population variance 

Let X be a random variable with mean µX and standard deviation σX. According to the central 

limit theorem and equation (3.10), the sample mean X  (the average of n random variables) 

will have normal distribution ( )nσµN XX /, , if n is large enough. Moreover, it will have 

precisely this normal distribution irrespectively of the size n, if the random variable X is 

normal. 

 The problem we wish to study here is the determination of the confidence intervals of the 

mean µX for confidence coefficient Ȗ. We denote z(1+Ȗ)/2 the ((1+Ȗ)/2)-quantile of the standard 

normal distribution N(0, 1) (that is the value z that corresponds to non-exceedence probability 

(1+Ȗ)/2). Apparently, due to symmetry, z(1–Ȗ)/2 = –z(1+Ȗ)/2 (see Fig. 3.1). Thus, 

 
( ) ( ) Ȗ

n

σz
µX

n

σz
µP

XȖ
X

XȖ
X =

⎭
⎬
⎫

⎩
⎨
⎧

+<<− ++ 2/12/1
 (3.31) 

or equivalently  

 
( ) ( ) Ȗ

n

σz
Xµ

n

σz
XP

XȖ
X

XȖ =
⎭
⎬
⎫

⎩
⎨
⎧

+<<− ++ 2/12/1
 (3.32) 

Equation (3.32) gives the confidence intervals sought. For the numerical evaluation we simply 

replace the estimator X  in (3.32) with its numerical value x . 

 For convenience, Table 3.1 displays the most commonly used confidence coefficients and 

the corresponding normal quantiles z(1+Ȗ)/2. We observe that as the confidence coefficient tends 

to 1, which means that the reliability of the estimate increases, the confidence interval 

becomes larger so that the estimate becomes more vague. On the contrary, if we choose a 

smaller confidence coefficient, a more “compact” estimate will result. In this case, the 

confidence interval will be narrower but the uncertainty will be higher. 

Area = Ȗ Area 

= (1–Ȗ )/2

Area 

= (1–Ȗ )/2

x

( )f x
X

µ
σγ

X

Xz

n
+ +( )/1 2µ

σγ
X

Xz

n
+ −( )/1 2 µ X

 

Fig. 3.1 Explanatory sketch for the confidence intervals of the mean.  
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Table 3.1 Typical values of the normal quantiles z(1+Ȗ)/2 useful for the calculation of 

confidence intervals. 

Ȗ 0.90 0.95 0.99 0.999 

(1+Ȗ)/2 0.95 0.975 0.995 0.9995

z(1+Ȗ)/2 1.645 1.960 2.576 3.291 

 We observe from (3.32) that the only way to increase the accuracy without increasing the 

length of the confidence interval is to increase the sample size n by taking additional 

measurements.  

 The previous analysis was based on the assumption of known population variance, which 

in practice it is not realistic, because typically all our information comes from a sample. 

However, the results are of practical interest, since (3.32) provides a good approximation if 

the sample size n is large enough (> 30) and if we replace the population variance with its 

sample estimate. 

3.4.2 Mean – unknown population variance 

The analysis that we present here can be used for unknown population variance and for any 

sample size. However, this analysis has a restrictive condition, that the random variable X is 

normal, N(µX, σX). In this case the following conclusions can be drawn: 

1. The sample mean has a normal distribution ( )nσµN XX /, . This conclusion is a 

consequence of a basic property of the normal distribution, specifically the normal 

distribution is closed under addition or, else, a stable distribution. 

2. The function of the sample variance ( ) 22* /1 XX σSn −  follows the χ2
(n – 1) distribution. This 

is concluded by the theorem of section 2.10.4, according to which the sum of the squares 

of a number of standard normal variables follows the χ2
 distribution. 

3. The random variables X  and  are independent. This results form a statistical theorem 

(see e.g. Papoulis, 1990, p. 222). 

2*

XS

4. The ratio )//()( * nSµX XX−  follows the Student t(n – 1) distribution. This results by a 

theorem of 2.10.5. 

 We denote t(1+Ȗ)/2 the [(1+Ȗ)/2]-quantile of the Student t(n – 1) distribution (that is the point 

t that corresponds to exceedence probability (1+Ȗ)/2, for n – 1 degrees of freedom). Because 

of the symmetry, t(1–Ȗ)/2 = –t(1+Ȗ)/2. Thus,  

 ( ) ( ) Ȗt
nS

µX
tP Ȗ

X

X
Ȗ =

⎭
⎬
⎫

⎩
⎨
⎧

<
−

<− ++ 2/1*2/1
/

 (3.33) 

or equivalently 
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( ) ( ) Ȗ

n

St
Xµ

n

St
XP

XȖ
X

XȖ =
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+<<− ++
*

2/1

*

2/1
 (3.34) 

Equation (3.34) provides the confidence interval sought. For its numerical evaluation we 

simply replace in the interval estimators of (3.34) the estimators X  and  with the 

corresponding sample estimates 

*

XS

x  and . *

Xs

 Even though (3.32) and (3.34) are considerably different regarding their theoretical 

grounds and the assumptions they rely upon, from a computational perspective they are quite 

similar. Furthermore, for large n (>30) they practically coincide taking into account that 

 (more precisely 2/)1(2/)1( ȖȖ zt ++ ≈ )3/()1(2/)1(2/)1( −−≈ ++ nnzt ȖȖ , for n – 1 degrees of freedom). 

 The two previous analyses do not include the case of a small sample size, unknown 

variance and non-normal distribution. This case is not covered in statistics in a general and 

rigorous manner. However, as an approximation, often the same methodology is also used in 

these cases, provided that the population distribution is bell shaped and not too skewed. In 

general, the cases where precise confidence intervals can be determined based on a consistent 

theoretical procedure, are the exception rather than the rule. In most of the following 

problems we will use just approximations of the confidence intervals. 

3.4.3 A numerical example of interval estimation of the mean 

From a sample of annual inflows to a reservoir with length 15 (years), the sample mean is 

10.05 hm
3
 and the sample standard deviation 2.80 hm

3
. We wish to determine (1) the 95% 

confidence interval of the annual inflow and (2) the sample size for 95% confidence 

coefficient that enables 10% precision in the estimation of the annual inflow. 

(1) We assume that the annual inflows are IID with normal distribution (section 2.10.2) and 

we use the equation (3.34). Using the table of the Student distribution (Appendix A3) or any 

computational method (see section 2.10.5) we find that for n – 1 = 14 degrees of freedom 

t(1+Ȗ)/2 = t0.975 = 2.14. Consequently, the 95% confidence interval is* 

 10.05 – 2.14 × 2.80/ 15  < µX < 10.05 + 2.14 × 2.80/ 15  (in hm
3
) 

or 

 8.50 < µX <11.60 (in hm
3
) 

 For comparison, we will calculate the confidence interval using equation (3.32), even 

though this is not correct. From Table 3.1 we find z(1+Ȗ)/2 = z0.975 = 1.96. Thus, the 95% 

confidence interval is  

                                                 
* It would not be mathematically correct to write (3.34) replacing the estimators with their estimates, i.e. 

P{10.05 – 2.62 × 2.80/ 15  < µX < 10.05 – 2.62 × 2.80/ 15 } = 0.95  

We note that µX is a (unknown) parameter (i.e. a number) and not a random variable, so it does not have a 

distribution function. Moreover, it is not correct to say e.g. that “with 95% probability the mean value lies in the 

interval (8.16, 11.94)”. The correct expression would be “with 95% confidence”. 
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 10.05 – 1.96 × 2.80/ 15  < µX < 10.05 + 1.96 × 2.80/ 15  (in hm
3
) 

or 

 8.63 < µX <11.47 (in hm
3
) 

The confidence interval is this case is a little smaller.  

 (2) Assuming that n ≥ 30 we can use (3.32). The following equation must hold  

 1.96 × 2.8 / n = 10% × 10.05  

so n = 30. We observe that the condition we have assumed (n ≥ 30) is valid. (If it were not 

valid we should proceed with a trial-and-error procedure, using equation (3.34)). 

3.4.4 Variance and standard deviation 

As in the section 0, we will assume that the random variable X has a normal distribution N(µX, 

σX). As mentioned before, in this case the function of the sample variance  

follows the χ2
(n – 1) distribution.  

( ) 22* /1 XX σSn −

 We denote  and the [(1+Ȗ)/2]- and [(1–Ȗ)/2]-quantiles, respectively, of the 

χ2
(n – 1) distribution (the two are not equal because the χ2

 distribution is not symmetric). 

Thus, we have 

2

2/)1( Ȗχ +
2

2/)1( Ȗχ −

 ( )
( )

( ) Ȗχ
σ

SnχP Ȗ
X

X
Ȗ =

⎭
⎬
⎫

⎩
⎨
⎧

<
−

< +−
2

2/12

2*
2

2/1

1
 (3.35) 

or equivalently  
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Equation (3.36) gives the confidence interval sought. It is easily obtained that confidence 

interval of the standard deviation is given by 
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 (3.37) 

3.4.5 A numerical example of interval estimation of standard deviation 

We wish to determine the 95% confidence interval of the standard deviation of annual inflow 

in the problem of section 3.4.3. 

 The sample standard deviation is 2.8 hm
3
. With the assumption of normal distribution for 

the inflow, we utilize equation (3.37). Using the χ2
 distribution table (Appendix 2) or any 

computational method (see section 2.10.4) we find that for n – 1 = 14 degrees of freedom 

χ2
(1+Ȗ)/2 = χ2

0.975 = 26.12 and χ2
(1–Ȗ)/2 = χ2

0.025 = 5.63. Thus, the 95% confidence interval is 

 
63.5

80.2*14

12.26

80.2*14
<< Xσ  (in hm

3
) 



3.4 Typical confidence intervals 15 

or 

 2.05 < σX < 4.41 (in hm
3
) 

3.4.6 Normal distribution quantile – Standard error 

In engineering design and management (in engineering hydrology in particular), the most 

frequent confidence interval problem that we face, concerns the estimation of design values 

for quantities that are modelled as random variables. For instance, in hydrological design we 

may wish to estimate the reservoir inflow that corresponds to a non-exceedence probability 

1%, that is the 1% quantile of the inflow. Let X be a random variable with distribution FX(x) 

representing a natural quantity, e.g. a hydrological variable. Here we assume that FX(x) is a 

normal distribution N(µX, σX), which can be easily handled, whereas in Chapter 6 we will 

present similar methods for a repertoire of distributions being commonly used in engineering 

applications. For a given non-exceedence probability u = FX(x), the corresponding value of 

the variable X ( symbolically xu, the u-quantile) will be 

 XuXu σzµx +=  (3.38) 

where zu the u-quantile of the standard normal distribution N(0, 1). However, in this equation 

the population parameters µX and σX are unknown in practice. Using their point estimates, we 

obtain an estimate Xuu szxx +=ˆ , that can be considered as a value of the random variable  

 Xuu SzXX +=ˆ  (3.39) 

This latter equation can be used to determine the confidence interval of xu. The precise 

determination is practically impossible, due to the complexity of the distribution function of 

. Here we will confine our analysis in seeking an approximate confidence interval, based 

on the assumption that  has normal distribution.  

uX̂

uX̂

 The mean of  is given from equation (2.59), which can be combined with (3.10) and 

(3.15) to give 

uX̂

 [ ] [ ] [ ] uXuXXuu xσzµSEzXEXE =+≈+=ˆ  (3.40) 

assuming that n is large enough and omitting the term O(1/n) in E[SX].* Likewise, the variance 

of  is given by equation (2.61), which can be written as uX̂

 [ ] [ ] [ ] [ ]XuXuu SXzSzXX ,Cov2VarVarˆVar 2 ++=  (3.41) 

Given that X has normal distribution, the third term of (3.41) is zero (as mentioned before, the 

variables X  and SX are independent). Combining (3.10) and (3.16), we write (3.41) as 

                                                 
* The analysis here has an approximate character, thus we do not discriminate between the estimators SX and , 

because for n large enough the two estimators are virtually identical. 

S X
*
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The quantity εu is known in literature as standard quantile error or simply as standard error.  

 Assuming that  has a normal distribution N(xu, εu) we can write uX̂

 Ȗz
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zP Ȗ

u

uu
Ȗ =

⎭
⎬
⎫

⎩
⎨
⎧

<
−

<− ++ 2/)1(2/)1(
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where Ȗ is the confidence coefficient. Equivalently, 

 { } ȖεzXxεzXP uȖuuuȖu =+<<− ++ 2/)1(2/)1(
ˆˆ  (3.44) 

Replacing in the previous equation the term εu from (3.42), and then the standard deviation σX 

with its estimator, we obtain the following final relationship  
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 The latter equation is an approximation, whose accuracy is increased a n increases. 

Moreover, it is valid only in the case of normal distribution. However, (3.44) is also used for 

other distributions of the variable X, but with a different expression of the standard error εu 
and a different calculation method. The interested reader for a general expression of the 

standard error may consult Kite (1988, p. 33-38). 

 The estimates of the confidence limits are 
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n
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2
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2
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Clearly these estimates are functions of u or, equivalently, of the exceedence probability, 1 – 

u. The depictions of those functions in a probability plot placed on either side of the xu curve 

are known as confidence curves of xu. 

3.4.7 A numerical example of interval estimation of distribution quantiles 

Further to the numerical example of section 3.4.3, we wish to determine the 95% confidence 

interval of the annual inflow that has exceedence probability (a) 1% and (b) 99%. We note 

that, because of the small sample size, we will not expect a high degree of accuracy in our 

estimates (recall that the theoretical analysis assumed large sample size).  

  We will calculate first the point estimates (all units are hm
3
). For the annual inflow with 

exceedence probability F
*
 = 0.01 we have u = 1 – F

*
 = 0.99 and zu = 2.326. Thus, the point 

estimate of  = 10.05 + 2.326 × 2.80 = 16.56. Likewise, for the annual inflow with 

exceedence probability F
*
 = 0.99 we have u = 1 – F

*
 = 0.01 and zu = –2.326, thus  = 10.05 

– 2.326 × 2.80 = 3.54. 

ux̂

ux̂
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  We can now proceed in the calculation of the confidence limits. For Ȗ = 95% and 

z(1+Ȗ)/2 = 1.96, the limits for the inflow with exceedence probability 1% are: 
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Likewise, the limits for exceedence probability 99% are: 
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3.4.8 Correlation coefficient  

To calculate the confidence limits of the correlation coefficient ρ of a population described by 

two variables X and Y, we use the auxiliary variable Z, defined by the so-called Fisher 

transformation:  

 Z
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where R the sample correlation coefficient. We observe that for –1 < R < 1 the range of Z is 

–∞  < Z < ∞, while for R = 0, Z = 0. It can be shown that if X and Y are normally distributed, 

then Z has approximately normal distribution N(µZ, σZ) where 
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As a consequence, if ȗ(1+Ȗ)/2 is the (1+Ȗ)/2-quantile of the standard normal distribution, we 

obtain 
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or equivalently 
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Replacing µZ from (3.48) into (3.50) and solving for ρ, and also taking into account the 

monotonicity of the transformation (3.47), we obtain 

 P{R1 < ρ < R2} (3.51) 

where 
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To numerically evaluate the confidence limits we implement equations (3.52) replacing the 

estimators with the corresponding estimates (e.g. R = r, etc.). 

3.5 Parameter estimation of distribution functions  

Assuming a random variable X with known distribution function and with unknown 

parameters ș1, ș2, …, șr we can denote the probability density function of X as a function 

fX(x; ș1, ș2, …, șr.). For known x, this, viewed as a function of the unknown parameters, is 

called the likelihood function. Here, we will examine the problem of the estimation of these 

parameters based on a sample X1, X2, …, Xn. Specifically, we will present the two most 

classical methods in statistics, namely the moments method and the maximum likelihood 

method. In addition, we will present a newer method that has become popular in hydrology, 

the method of L moments. 

 Several other general methods have been developed in statistics for parameter estimation, 

e.g. the maximum entropy method that has been also used in hydrology (the interested reader 

is referenced to Singh and Rajagopal, 1986). Moreover, in engineering hydrology in many 

cases, other types of methods like graphical, numerical, empirical and semi-empirical have 

been used. Examples of such methods will be given for certain distributions in chapter 6. 

3.5.1 The method of moments  

The method of moments is based on equating the theoretical moments of variable X with the 

corresponding sample moment estimates. Thus, if r is the number of the unknown parameters 

of the distribution, we can write r equations of the form 
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 Thus, the solution of the resulting system of the r equations gives the unknown parameters 

ș1, ș2, …, șr. In general, the system of equations may not be linear and may not have an 

analytical solution. In this case the system can be solved only numerically.  

 Equivalently, we can use the central moments (for k > 1) instead of the raw moments. In 

this case, the system of equations is  
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 We recall that the raw moments in (3.55) are unbiased estimates, while the central 

moments in (3.58) are biased estimates. Nevertheless, unbiased central moment estimates are 

often used instead of the biased. Regardless of using biased or unbiased estimates for 

moments, in general the method of moments does not result in unbiased estimates of the 

parameters ș1, ș2, …, șr (except in special cases). 

3.5.2 Demonstration of the method of moments for the normal distribution  

As an example of the implementation of the method of moments, we will calculate the 

parameters of the normal distribution. The probability density function is: 
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and has two parameter, µ and σ. Thus, we need two equations. Based on (3.56), these 

equations are 
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where in the latter equation we have denoted the theoretical and sample variance (that is, the 

second central moment) of X, by the more common symbols  and , respectively. We 

know (see section 2.10.2) that the theoretical moments are 

2
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Consequently, the final estimates are 
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  This estimation of σ biased, while that of µ is unbiased. If in the last equation we used 

the unbiased estimate of the variance, then we would have in the denominator (n-1) instead of 

n. Even in this case, the estimate of the σ would not be unbiased, for reasons explained in 

section 3.3.3. 

  As we have seen in this example, the application of the method of moments is very 

simple and this extends to other distribution functions. 

3.5.3 The method of L moments  

The logic of the method of L moments is the same as in the method of moments. If the 

distribution has r unknown parameters, we can write r equations of the form 

 λk = lk, k =1, 2,…, r (3.63) 

where λk are the theoretical L-moments, which are functions of the unknown parameters, and 

lk their sample estimates. Solving this system of equations we obtain the L-moment estimates 

of the unknown parameters of the distribution. Because L moments are linear combinations of 

the probability weighted moments, (3.63) can be written equivalently as  

 ȕk = bk, k =0, 2,…, r – 1 (3.64) 

where ȕk is the probability weighted moment of order k and bk is its estimate (see section 

3.3.5). 

Estimates based on L-moments are generally more reliable than those based on classical 

moments. Moreover, the L-moment estimators have some statistically desirable properties e.g. 

they are robust with respect to outliers, because contrary to standard moments, they do not 

involve squaring, cubing, etc., of the sample observations. In hydrology, the L moments have 

been widely used as descriptive statistics and in parameter estimation of several distributions. 

Examples of applications of the method can be found, among others, in Kjeldsen et al. (2002), 

Kroll and Vogel (2002), Lim and Lye (2003) and Zaidman et al. (2003). 

3.5.4 The maximum likelihood method 

Let X be a random variable with probability function fX(x, ș1, ș2, …, șr) where ș1, ș2, …, șr 

are parameters, and X1, X2, …, Xn a sample of the variable. Let  be 

the joint distribution function of the sample vector X := [X1, X2, …, Xn]T. Our entire observed 

sample can be thought of as single observation of the vector variable X. The idea behind the 

maximum likelihood method is that the probability density 

( )rnXX șșxxf
n

KKK ,;,, 11,,1

( )
nXXf ,,1K

 at this single point will 

be as high as possible (it is natural to expect an observation to lie in an area with high 

probability density). We can thus find ș1, ș2, …, șr, so that the function  have a 

value as high as possible at the point (x1, x2, …, xn).  

( )
nXXf ,,1K

 In a random sample, the variables X1, X2, …, Xn are independent and the joint probability 

density function is  
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and, viewed as a function of the parameters ș1, ș2, …, șr (for values of random variables equal 

to the observations x1, …, xn) is the likelihood function of these parameters.  

 Assuming that  is differentiable with respect to its parameters, the condition that 

maximizes it is  
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Using these r equations, the r unknown parameters will result. However, the manipulation of 

these equations may be complicated and, instead of maximizing the likelihood, we may 

attempt to maximize its logarithm 
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The function L( ) is called the log-likelihood function of the parameters ș1, ș2, …, șr. In this 

case, the condition of maximum is 
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Solving these r equations we obtain the values of the r unknown parameters. 

3.5.5 Demonstration of the maximum likelihood method for the normal distribution  

We will calculate the parameters of the normal distribution using the maximum likelihood 

method. The probability density function of the normal distribution is 
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Based on (3.65) we form the likelihood function 
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and taking its logarithm we form the log-likelihood function: 
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Taking the derivatives with respect of the unknown parameters µ and σ and equating them to 

0 we have 
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and solving the system we obtain the final parameter estimates: 
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 The results are precisely identical with those of the section 3.5.2, despite the fact that the 

two methods are fundamentally different. The application of the maximum likelihood method 

is more complex than that of the method of moments. The identical results found here are not 

the rule for all distribution functions. On the contrary, in most cases the two methods yield 

different results.  

3.6 Hypothesis testing 

A statistical hypothesis is a hypothesis related to the value of one or more parameters of a 

statistical model, which is described by a distribution function. The hypothesis testing is a 

process of establishing the validity of a hypothesis. The process has two possible outcomes: 

either the hypothesis is rejected or accepted (more precisely: not rejected).  

 In this section we present very briefly the related terminology and procedure, while in next 

chapters we will present some applications. The reader interested for a more detailed 

presentation of the theory should consult statistics books (e.g. Papoulis, 1990, p. 321-387, 

Freund et al., 1988, p. 310-542), while for a presentation for hydrological applications is 

referenced to Hirsch et al. (1993, p. 17.11-29). 

3.6.1 Terminology 

• Null hypothesis is the hypothesis to be tested (symbolically H0). Usually, it is a hypothesis 

of the form ș = ș0, where ș is parameter related to a distribution function of a given 

variable and ș0 is a numerical value. 

• Alternative hypothesis is a second hypothesis that should not be true at the same time with 

the null hypothesis (symbolically H1). It can be simple, such as ș = ș1, or (more 

commonly) composite, such as ș ≠ ș0, ș > ș0 or ș < ș0. 

• Test statistic is an appropriately chosen sample statistic, that is used for the test 

(symbolically Q). 

• Critical region is an interval of real values. When the test statistic value lies in the critical 

region then the null hypothesis is rejected (symbolically Rc; see Fig. 3.2). 

• One-sided test is a test where the alternative hypothesis is of the form ș > ș0 or ș < ș0. In 

this case the critical region is a half line of the form (q > qC) or (q < qC), respectively. 

• Two-side test is a test where the alternative hypothesis if of the form ș ≠ ș0. In this case the 

critical region consists of two half lines (q < qL) and (q > qU). 
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Fig. 3.2 Explanatory sketch of the concepts related to statistical testing: (a) a two-sided test, (b) an one-sided 

test. 

• Parametric is a test whose hypotheses include specification of the population distribution 

function. 

• Non parametric is a test valid for every population distribution function. 

• Decision rule is the rule to reject or not the null hypothesis, expressed as: 

 reject H0 if q ∈ Rc  

• Type ǿ error is the rejection (based on the decision rule) of a true null hypothesis. 

• Type ǿǿ error is the acceptance (based on the decision rule) of a false null hypothesis 

• Significance level of a test is the probability of type I error, namely the probability to reject 

a true null hypothesis. Symbolically 

 { }0| HRQPα c∈=  (3.74) 

• Power of a test is the probability of rejecting a false null hypothesis. Symbolically, 

 { }1|1 HRQPȕp c∈=−=  (3.75) 
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 where ȕ is the probability of type II error, that is 

 { }1| HRQPȕ c∉=  (3.76) 

3.6.2 Testing procedure 

The testing procedure consists of the following steps: 

1. Formulation of the null hypothesis H0 and of the alternative H1. 

2. Choice of the test statistic Q = g(X1, …, Xn) and determination of the probability density 

function of the fQ(q; ș). 

3. Choice of the significance level α of the test and determination of the critical region Rc. 

4. Calculation of the value q = g(x1, …, xn) of Q from the sample. 

5. Application of the decision rule and rejection or acceptance of H0. 

6. Calculation of the power p of the test. 

The last step is usually omitted in practice, due to its complexity. All remaining steps are 

clarified in the following section. 

3.6.3 Demonstration of significance testing for the correlation coefficient  

As an example of the above procedure we will present the significance testing of the 

correlation coefficient of two random variables X and Y, according to which we can decide 

whether or not the variables are linearly correlated. 

 If the variables are not linearly correlated then their correlation coefficient will be zero. 

Based on this observation, we proceed in the following steps of the statistical testing.  

1. The null hypothesis H0 is ρ = 0 and the alternative hypothesis H1 is ρ ≠ 0. As a 

consequence we will proceed with a two-sides test. (If we wanted to decide on the type of 

correlation, positive or negative, the alternative hypothesis would be formulated as ρ > 0 or 

ρ < 0, and we would perform an one-sided test). 

2. We choose the test statistic as 
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 where R is the sample correlation coefficient and Z is the auxiliary Fisher variable (section 

3.3.6), which, if H0 is true, has approximately a normal distribution with mean 0 and 

standard deviation 1 / 3−n . Consequently, Q has standard normal distribution N(0, 1). 

3. We choose a significance level α = 0.05. If z1–α/2 is the (1–α/2)-quantile of the normal 

distribution, then the corresponding critical region Rc is the |q| > z1–α/2 or |q| > z0.975, or 

finally |q| > 1.96, given that 
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P(|Q| > z1–α/2)= P(Q < –z1–α/2) + P(Q > z1–α/2)  

= 2P(Q < zα/2) = 2 α / 2 = α 

 (We recall that, because of the symmetry of the normal probability density function, z1–u 

= zu. In the case of the one-side test with alternative hypothesis ρ > 0, the critical region 

would be q > z1–α). 

4. The numerical value of q is determined from the observed sample by the following 

equations 
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5. The decision rule will be: 

 reject H0 if |q| > z1–α/2 

 and for α = 0.05 

 reject H0 if 96.13
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 At the limit of this inequality, solving for r, we find the critical value rc of the sample 

correlation coefficient, that determines the critical region Rc of the statistic R, that is, 
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A simple formula easy to remember that provides a very good approximation of (3.79) is: 

 
n
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2
≈  (3.80) 

 As a consequence, we can conduct the hypothesis testing in a more direct manner, by 

comparing the absolute value of r with the critical value rc. If |r| > rc then we conclude that 

there is statistically significant correlation between the two variables.  

3.6.4 A numerical example of significance testing for the correlation coefficient  

From a 18-year-long record of measurements of concurrent annual rainfall and runoff at a 

catchment, we have calculated the correlation coefficient equal to 0.58. Is there a linear 

correlation between the annual rainfall and runoff? 

 We calculate the critical value rc using one of (3.79) or (3.80). Here for comparison we use 

both: 
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Indeed, the two equations give practically the same result. Since 0.58 > 0.47 we conclude that 

there is statistically significant correlation between the annual rainfall and runoff.  

Acknowledgement I thank Simon Papalexiou for translating into English an earlier Greek 

version of this text. 
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Chapter 4  

Special concepts of probability theory in geophysical applications 
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Summary 

Geophysical processes (and hydrological processes in particular, which are the focus of this 

text) are usually modeled as stochastic processes. However, they exhibit several peculiarities, 

which make classical statistical tools inappropriate, unless several simplifications are done. 

Typical simplifications include time discetization at the annual time scale and selection of 

annual maxima and minima in a manner which eliminates the effect of the annual cycle and 

effectively reduces dependence, which always exists in geophysical processes evolving in 

continuous time. These simplifications allow us to treat certain geophysical quantities as 

independent random variables and observed time series as random samples, and then perform 

typical statistical tasks are using classical statistics. In turn, they allow convenient handling of 

concepts such as return period and risk, which are essential in engineering design. However, 

we should be aware that the independence assumption has certain limits and that dependence 

cannot be eliminated as natural processes are characterized by large-scale persistence, or more 

rarely antipersistence, which are manifestations of strong dependence in time.  

4.1 General properties of probabilistic description of geophysical processes  

In a probability theoretic approach, geophysical processes (and hydrological processes in 

particular, which are the focus of this text)  are modeled as stochastic processes. For example, 

the river discharge X(t) in a specific location at time t is represented as a random variable and 

thus, for varying time t, X(t) makes a family of random variables, or a stochastic process, 

according to the definition given in chapter 2. More specifically, X(t) is a continuous state and 

continuous time stochastic process, and a sequence of observations of the discharge at regular 

times is a time series. 

 Some clarifications are necessary to avoid misconceptions with regard to the introduction 

of the notion of a stochastic process to represent a natural process. The stochastic process is a 

mathematical model of the natural process and it is important to distinguish the two. For 

instance, once we have constructed the mathematical model, we can construct an ensemble of 

as many synthetic “realizations” (time series) of the stochastic process as we wish. In contrast, 

the natural process has a unique evolution and its observation can provide a single time series 

only.  
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 In addition, the adoption of a probabilistic model, a stochastic process, does not mean that 

we refuse causality in the natural process or that we accept that natural phenomena happen 

spontaneously. We simply wish to describe the uncertainty, a feature intrinsic in natural 

processes, in an effective manner, which is provided by the probability theory. All 

deterministic controls that are present in the natural process are typically included in the 

stochastic description. For instance, most geophysical quantities display periodic fluctuations, 

which are caused by the annual cycle of earth, which affects all meteorological phenomena.  
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Fig. 4.1 Daily discharge of the Evinos River, Western Greece, at the Poros Reganiou gauge 

(hydrological years 1971-72 and 1972-73 − zero time is 1971/10/01). Dashed line shows the 

average monthly discharge of each month, estimated from a time series extending from 1970-

71 to 1989-90.  

 An example is depicted Fig. 4.1, which shows the evolution of discharge of a river for a 

two-year period, where the annual cycle is apparent. A stochastic model can well incorporate 

the periodicity in an appropriate manner. This is typically done by constructing a 

cyclostationary, rather than a stationary, stochastic process (see chapter 2). Some authors have 

suggested that the process should be decomposed into two additive components, i.e. X(t) = 

d(t) + Ξ(t), where d(t) is a deterministic periodical function and Ξ(t) is a stationary stochastic 

component. This, however, is a naïve approach, which adopts a simplistic view of natural 

phenomena of the type “actual” = “deterministic” + “stochastic”. Stochastic theory provides 

much more powerful cyclostationary methodologies, whose presentation, however, are is of 

the scope of this text. Another common misconception (e.g. Haan, 1977; Kottegoda, 1980) is 

that deterministic components include the so-called “trends”, which are either increasing or 
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decreasing, typically linear, deterministic functions of time. Whilst it is true that geophysical 

(and hydrological in particular) time series display such “trends” for long periods, these are 

not deterministic components unless there exists a deterministic theory that could predict 

them in advance (not after their observation in a time series). Such “trends”, after some time 

change direction (the increasing become decreasing and vice versa) in an irregular manner. In 

other words, typically they are parts of large-scale irregular fluctuations (Koutsoyiannis, 

2006a). 

 We use the term “stochastic” instead of “random” in the mathematical process to stress the 

fact that our model does not assume pure randomness in the evolution of the natural process 

under study. In contrast, a stochastic model assumes that there is stochastic dependence 

between variables X(t) that correspond to neighbouring times. Using the terminology of 

chapter 2, we say that the process has non negligible autocovariance or autocorrelation. 

Generally, these are decreasing functions of time lag but they sustain very high values for 

small lags. For example, if the discharge of a river at time t0 is X(t0) = 500 m
3
/s, it is very 

improbable that, after a small time interval ∆t, say 1 hour, the discharge becomes X(t0 + ∆t) = 

0.5 m
3
/s. On the contrary, it is very likely that this discharge will be close to 500 m

3
/s and this 

is expressed by a high autocorrelation at a lag of 1 hour. 

 While the dependence of this type is easily understandable and is called short-range 

dependence or short-term persistence, hydrological and other geophysical processes (and not 

only) display another type of dependence, known as long-range dependence or long-term 

persistence. Thus, it is not uncommon that long time series of hydrological and other 

geophysical processes display significant autocorrelations for large time lags, e.g. 50 or 100 

years. This property is related to the tendency of geophysical variables to stay above or below 

their mean for long periods (long period excursions from means), observed for the first time 

by Hurst (1951), and thus also known as the Hurst phenomenon. Another name for the same 

behaviour, inspired from the clustering of seven year drought or flood periods mentioned in 

the Bible, is the Joseph effect (Mandebrot, 1977). Koutsoyiannis (2002, 2006a) has 

demonstrated that this dependence is equivalent to the existence of multiple time scale 

fluctuations of geophysical processes, which, as mentioned above, were regarded earlier as 

deterministic trends. The long-term persistence will be further discussed in section 4.5. 

 Apart from periodicity (seasonality) and long-term persistence, geophysical processes have 

also other peculiarities that make classical statistical and stochastic models inappropriate for 

many modelling tasks. Among these are the intermittency and the long tails of distributions. 

Intermittency is visible in the flow time series of Fig. 4.1, where the flow alternates between 

two states, the regular flow (base flow) state and the flood state. In rainfall (as well as in the 

flow in ephemeral streams) this switch of states is even more apparent, as most of the time the 

processes are at a zero (dry) state. This is manifested in the marginal probability distribution 

of rainfall depth by a discontinuity at zero. Furthermore, the distribution functions of 
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geophysical processes are quite skewed on fine and intermediate time scales. The skewness is 

mainly caused by the fact that geophysical variables are non-negative and sometimes 

intermittent. This is not so common in other scientific fields whose processes are typically 

Gaussian. While at their lower end probability distributions of geophysical variables have a 

lower bound (usually zero), on the other end they are unbounded. Moreover, their densities 

f(x) tend to zero, as state x tends to infinity, much more slowly than the typical exponential-

type distributions, to which the normal distribution belongs. This gives rise to the long tails, 

which practically result in much more frequent extreme events than predicted by the typical 

exponential type models, a phenomenon sometimes called the Noah effect (Mandebrot, 1977). 

4.2 Typical simplifications for geophysical applications 

4.2.1 Processes in discrete time 

The study of a geophysical process in continuous time is difficult and, in most practical 

engineering problems, not necessary. The continuous time description of geophysical 

processes is out of the scope of this text, which focuses on discrete time representation. 

However, the discrete time representation, requires consistency with the continuous time 

evolution of the actual processes. To establish this consistency we need two characteristic 

time steps. The first, D, is fixed to the duration of the year, in which a full cycle of 

geophysical phenomena is completed. In hydrology, the partitioning of the continuous time in 

years is done using the convention of a hydrological year, whose starting point does not 

generally coincide with that of a calendar year. Rather it is taken to be the beginning of the 

rainy period of the year. In Europe, this is typically regarded to be the 1
st
 of October. The 

second time step, ∆, defines a time window, or time scale, within which we view the process. 

In contrast to the year, this is not fixed but depends on the specific problem we study. It can 

range from a few minutes, if we study storms and floods in an urban area, to one year, if we 

study the hydrological balance of a catchment, or to many years, if we study overannual 

fluctuations of water balance.  

 Now we can proceed in several simplifications of a continuous time stochastic process 

representing a geophysical (hydrological in particular) process, as demonstrated in Fig. 4.2, 

where time in horizontal axis is measured in (hydrological) years whereas for demonstration 

purposes it was assumed ∆ = D/4. The first simplification of the full continuous time process 

(Fig. 4.2(1)) is the formation of a discrete time process (Fig. 4.2(2)). To this aim we partition 

continuous time t in intervals of length ∆. The values i = 1, 2, …, of discrete time correspond 

to continuous time intervals [0, ∆), [∆, 2∆), and so no. The discrete time process X∆(i) in time i 

is defined to be the time average of X(t) in the respective interval, i.e. 

 ( ) ( )∫
−

=
∆i

∆i

∆ dttX
∆

iX
)1(

1
:  ( 1) 4.
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For instance, if X(t) represents the instantaneous discharge of a river and ∆ is taken to be one 

day or one month, then X∆(i) represents the daily (more rigorously: the time averaged daily) or 

the monthly (more rigorously: the time averaged monthly) discharge, respectively. 

Sometimes, we wish to study the aggregated quantity, rather than the time average, in the 

corresponding time interval ∆, that is, the quantity  

  ( 2) ( ) ( )∫
−

=
∆i

∆i

∆ dttXiX
)1(

* : 4.

In this example, X
*
∆(i) represents the daily or the monthly runoff volume. Likewise, if X(t) 

represents the instantaneous rainfall intensity in a specific point of a catchment and ∆ is taken 

as one day or one month, then X
*
∆(i) represents the daily or the monthly rainfall depth, 

respectively.  

 Even though time discretization is a step toward simplification of the study of a 

geophysical process, yet the mathematical description of X∆(i) or X
*
∆(i) is complicated as it 

requires the analysis of periodicity and the autocorrelation of the process, for which the 

classical statistics, summarized in chapter 3, do not suffice. These issues are not covered in 

this text, except a few general discussions in the end of this chapter. The following 

simplifications, which are typical and useful in engineering problems, are more drastic and the 

resulting processes are easier to study using classical statistics. 

 If we construct the process X∆(i) (or X
*
∆(i)) assuming a time window equal to one year 

(∆ = D) then we obtain the annual process, XD(i) (or X
*
D(i)); now i denotes discrete time in 

years (Fig. 4.2(3)). Thus, 

 ( ) ( ) ( ) ( )∫∫
−−

==
iD

Di

D

iD

Di

D dttXiXdttX
D

iX
)1(

*

)1(

:,
1

:  ( 3) 4.

In this process the annual periodicity has been fully eliminated, because time intervals smaller 

than a year are not visible, and the process autocorrelation has been reduced significantly (but 

not eliminated), because of the large integration time step. This process, which represents the 

succession of an annual hydrological quantity (annual runoff, rainfall, evaporation, 

temperature) is very useful for problems of estimation of the water potential of an area.  

 One way to move to a time interval smaller than a year, simultaneously eliminating the 

annual periodicity and significantly reducing autocorrelation is shown in Fig. 4.2(4). In each 

hydrological year i = 1, 2, …, we take an interval of length ∆ < D, specifically the interval 

. Here j is a specified integer with possible values j = 1, 2, …, 

D/∆ (in Fig. 4.2(4) it has been assumed j = 1). The process obtained is: 

))1(,)1()1[( ∆jDi∆jDi +−−+−

 ( ) ( )
( )

( )
( ) ( )

( )

( )

∫∫
+−

−+−

+−

−+−

==
∆jDi

∆jDi

∆

∆jDi

∆jDi

∆ dttXiYdttX
∆

iY

1

)1(1

*

1

)1(1

:,
1

:  ( 4) 4.
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For instance if X(t) represents the instantaneous discharge of a river, ∆ is taken as one month, 

and j = 1, then Y∆(i) represents the average monthly discharge of the month of October of each 

hydrological year (assuming that it starts at the 1
st
 of October) and Y

*
∆(i) is the corresponding 

runoff volume.  

4.2.2 Processes of extreme quantities  

In many problems, our interest is focused not of time averages, but on extreme quantities for a 

certain time interval, that is the maximum quantities (e.g. for flood studies) or the minimum 

quantities (e.g. for drought studies). For the study of these quantities we construct appropriate 

discrete time processes. Thus, Fig. 4.2(5) demonstrates the construction of the process of 

instantaneous annual maxima, Z0(i). In each year in a realization of the continuous time 

process X(t) we have taken only one value, the instantaneous maximum value that occurs 

during the entire year. We can extend this from the realization to the process and write  

 ( ) ( ){ }tXiZ
iti <≤−

=
1

0 max:  ( 5) 4.

Likewise, we can define the process of instantaneous annual minima. Again in these 

processes the annual periodicity has been fully eliminated and the process autocorrelation has 

been reduced significantly. 

 If, instead of instantaneous quantities, we are interested on an average during a time 

interval ∆, then we can construct and study the process of annual maxima on a specified time 

scale, i.e. (Fig. 4.2(6)) 

 ( ) ( ) ( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∫∫
+
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+

−<≤−

∆s

s
∆isi

∆

∆s

s
∆isi

∆ dttXiZdttX
∆

iZ
1

*

1
max:,

1
max:  ( 6) 4.

This definition was based on the continuous time process X(t). Alternatively – but with 

smaller precision – it can be based on the already time discretized process X∆(i) (Fig. 4.2(7)):  

 ( ) ( ){ } ( ) ( ){ }jXiZjXiZ ∆
jjj

∆∆
jjj

∆
**

2121

max:,max:
≤≤≤≤

=′=′  ( 7) 4.

where . Comparing Fig. 4.2(6) and Fig. 4.2(7), it is apparent that 

Z

( ) ∆iDj∆Dij /:, 1/1: 21 =+−=

∆(i) țαȚ Z΄∆(i) are not identical in terms of the time position or their magnitude, but they do 

not differ much. Likewise, we construct the process of annual minima on a specified time 

scale. The typical values of the time interval ∆ in flood and drought studies vary from a few 

minutes (e.g. in design storm studies of urban drainage networks) to a few months (in water 

quality studies of rivers in drought conditions). 

 A last series of maxima, known as series above threshold or partial duration series is 

demonstrated in Fig. 4.2(8), and can serve as a basis of the definition of the related processes. 

This is usually constructed from the discrete time process X∆(i), as in Fig. 4.2(7). The 

difference here is that instead of taking the maximum over each year, we form the series of all 
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values that exceed a threshold c, irrespectively of the location of these values in hydrological 

years, i.e. 

 ( ){ } ( ) ( ){ }KK ,2,1,|:,2,1, =≥== jcjXjXiiW ∆∆∆  ( 8) 4.
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Fig. 4.2 Auxiliary sketch for the definition of the different types of stochastic processes; time 

t is in years. 

Strictly speaking, the index i does not represent time, but it is just a the rank of the different 

variables W∆(i) in the time ordered series. The threshold c is usually chosen so that each year 

includes on the average one value greater than the threshold. Thus, in Fig. 4.2(8) the 

threshold, depicted as a horizontal dashed line, has been chosen so that it yields three values 

over three hydrological years. We observe that two values are located in the first year, none in 

the second year and one in the third year. With the above definition, it is possible that 

consecutive elements of the series correspond to adjacent time intervals, as in the two values 
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of the first year in our example. This may introduce significant stochastic dependence in the 

series. To avoid this, we can introduce a second threshold of a minimum time distance 

between consecutive elements of the series.  

4.2.3 From stochastic processes to random variables  

As clarified above, this text does not cover the analysis of the complete geophysical processes 

either in continuous or discrete time. However, we have defined six other types of processes, 

in which the “time” index is discrete and may differ from actual time. Each of these processes 

includes one element per year, except of the process over threshold, which includes a variable 

number of elements per year, with an average of one per year. For our study, we shall make 

the following assumptions:  

1. The processes are stationary: the distribution of each random variable remains the same 

from year to year. 

2. The processes are ergodic: ensemble averages equal time averages. 

3. The variables corresponding to different times are independent.  

 To clarify the meaning of these assumptions, we will discuss an example. Let X(t) 

represent the instantaneous discharge of a river at time t, and (according to the above 

notation) XD(τ) represent the mean annual discharge of (hydrological) year τ. Let us assume 

that 30 years of observations are available, so that we know the values xD(1), …, xD(30), 

which we regard as realizations of the random variables XD(1), …, XD(30). Obviously, for 

each of the variables XD(i) we can have (and we have) only one realization xD(i). In contrast to 

laboratory conditions, in nature we cannot repeat multiple experiments with different 

outcomes to acquire a sample for the same variable XD(i). Given the above observations, we 

can calculate time averages of certain quantities, for instance the standard sample average Dx  

= [xD(1) + … + xD(30)]/30. Does this quantity give any information for the variable XD(31)? 

In general, the answer is negative. However, if assumptions 1 and 2 are valid, then Dx  gives 

important information for XD(31) and, thus, it helps make a statistical prediction. Specifically, 

under the stationarity assumption all XD(i) have the same statistical properties, and this 

provides grounds to treat them collectively; otherwise a quantity such as Dx  would not have 

any mathematical or physical meaning at all. Simultaneously, the stationarity assumption 

allows us to transfer any statistical property concerning the variables XD(1), …, XD(30) to the 

variable XD(31). The ergodicity assumption makes it possible to transform the time average 

Dx  to an estimate of the unknown true average of each of the variables XD(i), i.e. to estimate 

m = E[XD(i)] as Dx . So, both stationarity and ergodicity assumptions are fundamental and 

powerful and allow us to make predictions of future events, e.g. E[XD(31)] = m. The third 

assumption, the independence, is not a fundamental one. It is just a simplification that makes 

possible the use of classical statistics. Otherwise, if the variables are dependent, the classical 

statistics need adaptations before they can be used (Koutsoyiannis, 2003).  
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 It is important to stress that the stationarity assumption is not some property of the natural 

system under study, e.g. the river and its flow. It is an assumption about the mathematical 

model, i.e. the stochastic process, that we build for the natural system (Koutsoyiannis, 2006a). 

In this respect, it is related to the behaviour of the system but also to our knowledge of the 

system. For instance, let us assume that we have a reliable deterministic model of the 

evolution of the river discharge that predicts that at year 31 the average discharge will be 

xD(31) = 2m. If we build an additional stochastic model for our system, in an attempt to 

describe the uncertainty of this deterministic prediction, it will be reasonable to assume that 

E[XD(31)] = 2m, rather than E[XD(31)] = m. Thus, our process will be not stationary. Even 

without this hypothetical deterministic model, we can arrive to a similar situation if there is 

stochastic dependence among the consecutive variables. In case of dependence, the past 

observations affect our future predictions. In this situation, it is natural to use the conditional 

mean E[XD(31)|xD(1), …, xD(30)] instead of the unconditional mean E[XD(31)] = m as a 

prediction of the next year; the two quantities are different. Likewise, for year 32, given past 

information, the quantity E[XD(32)|xD(1), …, xD(30)] will be different both from 

E[XD(31)|xD(1), …, xD(30)] and m. In other words, dependence along with past observation 

make our model to behave as a nonstationary one in terms of conditional expectations, even 

though in an unconditional setting it is a stationary process (see also Koutsoyiannis et al., 

2007).  

 Under the assumptions of stationarity, ergodicity and independence, we can replace the 

notion of a stochastic process XD(t) with a unique realization xD(t), with the notion of a single 

underlying random variable XD with an ensemble of realizations xD(i), that are regarded as an 

observed sample of XD. In the latter case the time ordering of xD(i) does not matter at all.  

4.2.4 A numerical investigation of the limits of the independence assumption 

We assume that, based on observational data of river discharge, we have concluded that the 

probability of the event of annual runoff volume smaller than 500 hm
3* is very small, equal to 

10
−2

. What is the probability that this event occurs for five consecutive years? 

 Assuming stationarity, ergodicity and independence, this probability is simply  = 

10

52)10( −

−10
. This is an extremely low probability: it means that we have to wait on the average 10

10
 

or 10 billion years to see this event happen (by the way, the age of earth is much smaller than 

this duration). However, such events (successive occurrences of extreme events for multiyear 

periods) have been observed in several historical samples (see section 4.5.3). This indicates 

that the independence assumption is not a justified assumption and yields erroneous results. 

Thus we should avoid such an assumption if our target is to estimate probabilities for 

multiyear periods. Methodologies admitting dependence, i.e. based on the theory of stochastic 

 
* We remind that the unit hm3 represents cubic hectometers (1 hm3 = (100 m)3 = 1 000 000 m3). 
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processes, are more appropriate for such problems and will result in probabilities much 

greater than 10
−10

; these however are out of the scope of this text.  

 Now let us assume that for four successive years our extreme event has already occurred, 

i.e. that the runoff volume was smaller than 500 hm
3
 in all four years. What is the probability 

that this event will also occur in the fifth year? 

 Many people, based on an unrefined intuition, may answer that the occurrence of the event 

already for four years will decrease the probability of another consecutive occurrence, and 

would be inclined to give an answer in between 10
−2

 and 10
−10

. This is totally incorrect. If we 

assume independence, then the correct answer is precisely 10
−2

; the past does not influence 

the future. If we assume positive dependence, which is a more correct assumption for natural 

processes, then the desired probability becomes higher than 10
−2

; it becomes more likely that 

a dry year will be followed by another dry year.  

4.3 The concept of the return period  

For a specific event A, which is a subset of some certain event Ω, we define the return period, 

T, as the mean time between consecutive occurrences of the event A. This is a standard term 

in engineering applications (in engineering hydrology in particular) but needs some 

clarification to avoid common misuses and frequent confusion. Under stationarity, if p is the 

probability of the event, then the return period T is related to p by 

 
p∆

T 1
=  ( 9) 4.

4.

4.

where ∆ is the time interval on which the certain event Ω is defined or, for events defined on 

varying time frame, the mean interarrival time of the event Ω. For instance in panel (2) of Fig. 

4.2, ∆ = D/4, whereas in panels (3)-(8) ∆ = D, as by construction all these cases involve one 

event Ω per year (either one exactly or one on the average). In particular, in panel (8), as 

discussed above, we have chosen the threshold c that defines our event Ω so that each year 

includes on the average one event. Had we chosen a smaller threshold, so that each year 

include two events on the average, the mean interarrival time of Ω would be ∆ = D/2. 

 Apart from stationarity, no other conditions are needed for ( 9) to hold. To show this, we 

give the following general proof that is based on the simple identity P(CA) = P(C) – P(CB), 

valid for any events A and C, with B denoting the opposite event of A. We assume a stationary 

process in discrete time with time interval ∆. At time i, we denote as Ai the occurrence of the 

event A and as Bi the non occurrence. Because of stationarity P(A1) = P(A2) =… = P(A) = p 

(also P(B1) = P(B2) =… = P(B) = 1 – p). The time between consecutive occurrences of the 

event A is a random variable, say N, whose mean is the return period, T. Assuming that the 

event A has happened at time 0, if its next occurrence is at time n, we can be easily see that  

 P{N = n} = P(B1, B2, … Bn-1, An|A0) = P(A0, B1, B2, … Bn-1, An) / P(A0) ( 10) 
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or 

 P{N = n} = (1/p) P(A0, B1, B2, … Bn-1, An) ( 11) 4.

4.

4.

Obviously, T = E[N] ∆, where the expected value of N is (by definition) 

 E[N] = 1 P(N = 1) + 2 P(N = 2) + …  (4.12) 

Combining the last two equations we obtain 

 p E[N] = 1 P(A0, A1) + 2 P(A0, B1, A2) + 3 P(A0, B1, B2, A3) + … (4.13) 

and using the above mentioned identity,  

 p E[N] = 1 [P(A0) – P(A0, B1)] + 2 [P(A0, B1) – P(A0, B1, B2)] +  

  + 3 [P(A0, B1, B2) – P(A0, B1, B2, B3)] + … (4.14) 

or 

 p E[N] = P(A0) + P(A0, B1) + P(A0, B1, B2) + … (4.15) 

Using once more the same identity, we find 

 p E[N] = [1 – P(B0)] + [P(B1) – P(B0, B1)] + [P(B1, B2) – P(B0, B1, B2)] + … (4.16) 

and observing that, because of stationarity, P(B0) = P(B1), P(B0, B1) = P(B1, B2), etc., we 

conclude that 

 p E[N] = 1 ( 17) 

which proves (4.9). From this general proof we conclude that (4.9) holds true either if the 

process is time independent or dependent, whatever the dependence is. (In most hydrological 

and engineering texts, e.g. Kottegoda, 1980, p. 213; Kottegoda and Rosso, 1998, p. 190; 

Koutsoyiannis, 1998, p. 96, independence has been put as a necessary condition for ( 9) to be 

valid). All this analysis is valid for processes in discrete time; as the time interval ∆, on which 

the event A is defined, tends to zero, the return period will tend to zero too, provided that the 

probability of A is finite. 

 Extreme events that are of interest in geophysics (and hydrology) are usually of two types, 

highs (floods) or lows (droughts). In the former case the event we are interested is the 

exceedence of a certain value x, i.e. {X > x}, which is characterized by the probability of 

exceedence, ( )xFxXPxFp XX −=>== 1}{)(* . In the latter case the event we are interested is 

the non exceedence of a certain value x, i.e. {X ≤ x}, which is characterized by the probability 

of non exceedence, . As the processes that we deal with here are 

defined on the annual scale (∆ = D), for an exceedence event (high flow) we have  

}{)( xXPxFp X ≤==

 ( )xFxFxXPD

T

XX −
==

>
=

1

1

)(

1

}{

1
*

 ( 18) 4.

whereas for a non exceedence event (drought) we have 
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Sometimes we write the above relationships omitting D = 1 year, as it is very common to 

express the return period in years (essentially identifying T with E[N]). However, the correct 

(dimensionally consistent) forms are those written in equations (4.18)-(4.19). Sometimes 

(4.18) has been used as a definition of the return period, saying that the return period is the 

reciprocal of the exceedence probability. This again is not dimensionally consistent (given 

that return period should have dimensions of time) nor general enough (it does not cover the 

case of low flows). 

 The term return period should not trap us to imply that there is any periodic behaviour in 

consecutive occurrences of events such as in exceedence or nonexceedences of threshold 

values in nature. In a stochastic process the time between consecutive occurrences of the 

event is a random variable, N, whose mean is the return period, T. For example, if the value 

500 m
3
/s of the annual maximum discharge in a river has a return period of 50 years, this does 

not mean that this value would be exceeded periodically once every 50 years. Rather it means 

that the average time between consecutive exceedences will be 50 years. An alternative term 

that has been used to avoid “period” is recurrence interval. However, sometimes (e.g. in 

Chow et al., 1988) this term has been given the meaning of the random variable N and not its 

mean T. Typical values used in engineering design of flood protection works are given in 

Table 4.1. 

Table 4.1 Return periods most commonly used in hydrological design for high flows and 

corresponding exceedence and nonexceedence probabilities.  

Return period T 

(years) 

Exceedence 

probability F
*
 (%)

Nonexceedence 

probability F (%) 

2 50 50 

5 20 80 

10 10 90 

20 5 95 

50 2 98 

100 1 99 

500 0.2 99.8 

1000 0.1 99.9 

5 000 0.02 99.98 

10 000 0.001 99.99 

Note: To adapt the table for low flow events we must interchange 

the columns exceedence probability and nonexceedence 

probability.  
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4.4 The concept of risk 

Depending on the context, risk can be defined to be either a probability of failure or the 

product of probability of failure times the losses per failure. Here we use the former 

definition. A failure is an event that usually occurs when the load L, exceeds the capacity C of 

a construction. In the design phase, the design capacity is larger than the design load, so as to 

assure a certain safety margin 

 LC −=:SM  > 0 (4.20) 

or a certain safety factor  

 
L

C
=:SF  > 1 (4.21) 

In engineering hydrology, L could be, for instance, the design flood discharge of a dam 

spillway whereas C is the discharge capacity of the spillway, that is the discharge that can be 

routed through the spillway without overtopping of the dam. 

 In most empirical engineering methodologies both L and C are treated in a deterministic 

manner regarding them as fixed quantities. However, engineers are aware of the intrinsic 

natural uncertainty and therefore are not satisfied with a safety factor as low as, say, 1.01, 

even though in a deterministic approach this would suffice to avoid a failure. Rather, they 

may adopt a safety factor as high as 2, 3 or more, depending on empirical criteria about the 

specific type of structure. However, the empirical deterministic approach is more or less 

arbitrary, subjective and inconsistent. The probability theory can quantify the uncertainty and 

the risk and provide more design criteria. According to a probabilistic approach SM and SF 

are regarded as random variables and the risk is defined to be: 

 R := P{SF < 1} = P{SM < 0} (4.22) 

and its complement, 1 – R is known as reliability.  

 In the most typical problems of engineering hydrology, the design capacity (e.g. discharge 

capacity or storage capacity) could be specified with certainty (C = c), and is not regarded as a 

random variable. However, the load L should be taken as a random variable because of the 

intrinsic uncertainty of natural processes. In this case, the risk is  

 }{1}{ cLPcLPR ≤−=>=  ( 23) 4.

 The probability P{L ≤ c} (the reliability) depends on the variability of the natural process 

(e.g. the river discharge, the fixed quantity c, and the life time of the project n D (n years). 

With the notation of section 4.2.2, assuming an appropriate time window ∆ for the 

phenomenon studied, the event {L ≤ c} (which refers to the n year period) is equivalent to the 

event {Z∆(1) ≤ c, …, Z∆(n) ≤ c}. Assuming independence of Z∆(i) trough years, it is concluded 

that  
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 ( ) n

Ζ
n

∆ cFcZPR
∆

][1}]{[1 −=≤−=  ( 24) 4.

4.

where  is the distribution function of the annual flood. Expressing it in terms of the 

return period T from ( 18), we obtain the following relationship that relates the three basic 

quantities of engineering design, the risk R, the return period T and the life time n years: 

( )
∆Ζ

F

 

n

T

D
R ⎟

⎠
⎞

⎜
⎝
⎛ −−= 11  ( 25) 4.

4.

4.

Graphical depiction of (4.25) is given in Fig. 4.3 for characteristic return periods. Given that 

, the following approximation of ( 25), with 

error < 1% for T ≥ 50, is obtained:  

( ) ( ) ( ) nxxxnxnx
n −≈−−−=−=− L2/1ln1ln 2

  ( 26) TnDeR /1 −−≈
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Fig. 4.3 Graphical depiction of the interrelationship of the characteristic quantities of 

engineering design (equation 4.25). 

 Solving (4.25) for T we obtain the following relationship that gives the required return 

period for given design risk and design life time: 

 
( ) n

R

D
T

/1
11 −−

=  ( 27) 4.

All equations (4.24)-(4.27) are based on the assumption of independence and are not valid in 

case of dependence. To get an idea of the effect of dependence, let us examine the limiting 



4.5 An introduction to dependence, persistence and antipersistence 15 

 

case of complete dependence, in which the occurrence of a single event Z∆(1) ≤ c entails that 

all Z∆(i) ≤ c. It is easy to see that in this case we should substitute 1 for n in all equations. 

Thus, (4.27) becomes T = D/R so that it will yield a return period smaller than that estimated 

by (4.27) if the risk is specified. In other words, if we use (4.27) we are on the safe side in the 

case that there is dependence in the process.  

4.4.1 Numerical examples 

a. We assume that a diversion tunnel is planned to operate during the construction period of a 

dam, which has been estimated to be 5 years. What is the return period so that the risk be 

lower than an acceptable 10%? 

 From (4.27) we obtain 

( ) ( )
years 9.47

1.011

1

11

1
5/1/1
=

−−
=

−−
=

n
R

T

 

We round off the return period to 50 years.  

 b. What is the risk in a project, for which the return period was assumed equal to its design 

life time?  

 If the life time of the project is long enough (≥ 50 years), then from (4.26) we obtain R = 

1 − e
−1

 = 0.632 = 63.2%. Otherwise from (4.25), we obtain 
n

n
R ⎟

⎠
⎞

⎜
⎝
⎛ −−=

1
11  

which for values n = 5, 10 and 20 years results in R = 67.2%, 65.1% and 64.2%, respectively. 

4.5 An introduction to dependence, persistence and antipersistence 

4.5.1 Definitions and basic tools  

Common random series like those observed for example in games of chance (dice, roulette, 

etc.) are obtained by repetitive experiments, each of which is independent of all other. In 

contrast, geophysical time series are not outcomes of separate experiments. The entire length 

of a geophysical time series could be thought of as equivalent to a single never ending 

experiment. It is like observing the whole trajectory of a die throughout its entire movement, 

assumed to be endless, rather than waiting to observe the outcome when the die goes to rest. 

While independence is well justified in a series of outcomes of separate experiments, it is 

totally unjustified when we are interested in the continuous trajectory of the die. Obviously, 

the state (position, momentum) of the die at time t + ∆t depends on the state at time t. The two 

states tend to be identical as ∆t tends to zero.  

 Likewise, in all physical systems that evolve in continuous time, the autocorrelation 

coefficient for lag tending to zero tends to 1 (complete dependence). As lag increases, the 

autocorrelation decreases, generally tending to zero for lag tending to infinity. The positive 

autocorrelation is also termed persistence, as already discussed in section 4.1. The persistence 

is characterized as short-term persistence when the autocorrelation tends to zero as an 
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exponential function of lag time and as log-term persistence when the autocorrelation tends to 

zero as a power-law function of lag time. The latter case corresponds to stronger or longer tail 

of the autocorrelation function. Sometimes, for intermediate lags negative autocorrelations 

may appear. The general behaviour corresponding to this case is known as antipersistence. 

 An easier means to explain antipersistence and persistence, short- or long-term, is provided 

by studying the variation of the standard deviation with time scale. To avoid the effect of 

seasonality, here we consider time scales ∆ that are integer multiples of the annual time scale, 

i.e., 

 ∆ = k D,  k = 1, 2, … (4.28) 

By virtue of (4.1), which holds for any ∆ (also for ∆ > D), we easily obtain that the process at 

scale ∆ is related to that at scale D by 

 XkD(i) = [XD(ik – k + 1) + … + XD(ik)]/k ( 29) 

( 29)

4.

4.

This is nothing other than the time average of a number k of consecutive random variables. 

We can define similar time average processes for over-annual scales also for the other cases 

(Y and Z) that we discussed in section 4.2. For k sufficiently large (typically 30, even though 

sometimes k = 10 has been also used), such processes represent what we call climate; ∆ = 30 

years is the typical climatic time scale. However, here we will regard ∆ as varying and we will 

study the variation of the standard deviation of X∆(i) with ∆ = kD.  

 Let ı∆ ≡ ıkD denote the standard deviation at scale ∆ = kD, i.e. ıkD := StD[XkD(i)]. 

According to  XkD(i) is the average of k random variables. If these variables are 

independent, then we know from chapter 3 that  

 
k

ıı D
kD =  or 

∆
Dıı D∆ =  ( 30) 4.

where ıD is the standard deviation at scale 1. This provides a means to test whether or not the 

process at hand is independent in time. If it is independent, then the double logarithmic plot of 

ı∆ vs. ∆ will be a straight line with slope –0.5. Milder negative slopes (>–0.5) indicate 

persistence and steeper slopes (<–0.5) indicate antipersistence. Short-term persistence is 

manifested in the plot as a curve with mild slope for small k, which asymptotically tends to 

-0.5 for large k. In long-term persistence the slope remains milder than –0.5 even for large k. 

A more generalized law that asymptotically (for large k) holds in cases of long-term 

persistence and antipersistence is given by 

 
H

D
kD

k

ıı −∝
1

 or 

H

D∆ ∆
Dıı

−

⎟
⎠
⎞

⎜
⎝
⎛∝

1

 ( 31) 4.

The coefficient H is termed the Hurst coefficient, after Hurst (1951) who discovered the 
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long-term persistence in geophysical time series*. Clearly, H = 1 + d, where d is the slope of 

the plot of ı∆ vs. ∆. Generally, for stationary processes, 0 < H < 1 (Mandelbrot and van Ness, 

1968). For independent processes, H = 0.5; for persistent processes, 0.5 < H < 1 and for 

antipersistent processes, 0 < H < 0.5. For persistent processes it is possible that the law  

holds as an equality for any k. Mathematically, this is also possible for antipersistent 

processes (H < 0.5) but physically it is not realistic. To see the reason why this happens, we 

assume that the law  holds as an equality for any k; in this case it defines a stochastic 

process termed a simple scaling stochastic (SSS) process. It can be shown (e.g. 

Koutsoyiannis, 2002) that the autocorrelation X

( 31)

( 31)

4.

4.

4.

kD(i) of the process for scale kD and lag j, i.e. 

the quantity ρkD(j) := Cov[XkD(i), XkD(i + j)] / Var[X
(k)

i
]), is given by 

 ρkD(j) = ρ(j) = (1/2) (|j + 1|
2H

 + |j – 1|
2H

) – |j|
2H

 ( 32) 

This shows that the autocorrelation is independent of scale. Inspection shows that if H > 0.5 

the autocorrelation for any lag is positive (persistence), whereas if H < 0.5 the autocorrelation 

for any lag is negative (antipersistence). In the latter case it takes the most negative values at 

lag j = 1, which is ρkD(1) = ρ(1) = 2
2H –1

 – 1. However, physical realism demands that for 

small scales and lags, the autocorrelation should be positive.  

 Given a time series of sufficient length n at time scale D, we can test in a simple way 

whether the law (4.30) is fulfilled or not, and if not, we can see whether the time series 

implies persistence or antipersistence. To this aim, we can estimate from the time series the 

standard deviation ıkD for several values of k. Assuming k = 1, we estimate ıD from the n data 

values available. For k = 2 (and assuming for simplicity that the series length n is even) we 

can construct a size (n/2) sample X2D(1) = [XD(1) + XD(2)]/2, X2D(2) = [XD(3) + XD(4)]/2, …, 

X2D(n/2) = [XD(n – 1) + XD(n)]/2. From these we can estimate ı2D. Proceeding this way (e.g. 

X3D(1) = [XD(1) + XD(2) + XD(3)]/3, etc.) we can estimate ıkD for k up to, say, n/10 (in order to 

have 10 sample values for the estimation of standard deviation). Constructing a logarithmic 

plot of the estimate of standard deviation ıkD versus k we can test graphically the validity of 

the statistical law (4.30) and estimate the coefficient H of law (4.31). 

4.5.2 Synthetic examples 

Now we will demonstrate the above concepts with the help of a few examples. We will start 

with the synthetic example that was already studied in chapter 1. Although this example is 

referred to a fully deterministic system, it is useful in understanding the behaviours discussed; 

besides, the statistical analyses outlined above can be applied also in time series that result 

from deterministic systems. It is reminded that the working example of chapter 1 examines a 

hypothetical plain with water stored in the soil, which sustains some vegetation. Each year a 

 
* Hurst used a different formulation of this behaviour, based on the so-called rescaled range. The formulation in 

terms of standard deviation at the time scale kD, as in equation (4.31), is much simpler yet equivalent to Hurst’s 

(see theoretical discussion by Beran, 1994, p. 83, and practical demonstration by Koutsoyiannis, 2002, 2003). 
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constant amount of water enters the soil and the potential evapotranspiration is also constant, 

but the actual evapotranspiration varies following the variation of the vegetation cover f. The 

vegetation cover and the soil water storage s are the two state variables of the system that vary 

in time i; the system dynamics are expressed by very simple equations.  
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Fig. 4.4 Graphical depiction of the evolution of the system storage si (in mm) of the working 

example in chapter 1 for time up to 1000. 
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Fig. 4.5 Graphical depiction of a series of random numbers in the interval (-800, 800) having 

mean and standard deviation equal to those of the series in Fig. 4.4. 

 In chapter 1, Fig. 1.3, we have seen a graphical depiction of the system evolution for 

certain initial conditions that we called the “true” conditions. Now in Fig. 4.4 we depict the 

continuation of this evolution of the storage s(i) (or si) for time up to 1000. In addition, we 

have given in Fig. 4.4 a plot of the 30-year moving average* of si, which shows that this 

                                                 
*  The moving average is the average of k random variables consecutive in time, as in (4.29). However, for better 

illustration, here we used a slightly different definition, i.e., X30D(i) = [XD(i – 15) + … + XD(i + 14)]/30. 
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moving average is almost a horizontal straight line at s = 0. The experienced eye may 

recognize from this, without the need of further tools, a strongly antipersistent behaviour.  

 For comparison we have derived a random series* with mean and standard deviation equal 

to those of the original series, and we plotted it in Fig. 4.5. Comparing the plots of moving 

averages in Fig. 4.4 and Fig. 4.5 we see a clear difference. In the former case (antipersistence) 

the plot is virtually a horizontal straight line, whereas in the latter case (pure randomness) it is 

a curly line, which however does not depart very much from the line s = 0.  

 Sometimes antipersistence has been confused with periodicity or cyclic behaviour. 

However, periodicity would imply that the time between consecutive peaks in the time series 

would be constant, equal to the period of the phenomenon. To distinguish the two behaviours, 

we have calculated a series of times between peaks, Ĳ, from the time series of our example, 

which for better accuracy we extended up to 10 000 items by the same algorithm. From this 

series we constructed an histogram of times between peaks, which is shown in Fig. 4.6. We 

see that the time between peaks varies from 4 to 22 years, with a mode of 6 years. Clearly, 

this behaviour is totally different from a periodic phenomenon, and is better described by the 

term antipersistence.  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ĳ

ν

 

Fig. 4.6 Relative frequency ν of the time Ĳ between consecutive peaks, estimated from a series 

of 10 000 items of a series of si of the example system.  

                                                 
* This series has been produced as follows: First, we derive a series of integer random numbers qi by the 

recursive relationship qi = ț qi – 1 mod Ȝ, where ț = 75, Ȝ = 231 – 1, q0 = 78910785 and mod is the modulo operator 

that finds the remainder of an integer division. Then, we derive a series of real numbers in the interval [0, 1) as ri 

= qi / Ȝ. We obtain the final series si by si = c(2qi – 1), where c = 600.  
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 The same example system helps us to acquire an idea of persistence. To this aim we have 

constructed and plotted in  1000 terms of the time series of the peaks pFig. 4.7 j of the time 

series si. Now we see in Fig. 4.7 that the moving average of 30 values exhibits large and long 

excursions from the overall mean, which is about 800 (not plotted). These excursions are the 

obvious manifestation of persistence. 
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Fig. 4.7 Graphical depiction of a series of peaks pj (in mm) of the soil storage si; here j does 

not denote time but the rank of each peak in time order. 

 However, a better depiction and quantification of the persistence and antipersistence is 

provided by the plot of standard deviation ı∆ vs. time scale ∆, as described in section 4.5.1. 

 gives such plots for the series of storage shown in Fig. 4.4 (but for 10 000 items) and 

for the random series of Fig. 4.5 (also for 10 000 items). Clearly, the plot of the random series 

shows a straight line arrangement with slope –0.5, which corresponds to a Hurst coefficient H 

= 1 – 0.5 = 0.5 (as expected). The plot of the storage time series is more interesting. For low 

scales (∆ ≤ 4) the slope in the arrangement of the points is very low, indicating a positive 

dependence at small lags. However, for large scales (∆ ≥ 20), a straight line arrangement of 

points appears, which has large slope, equal to –0.98. This corresponds to a Hurst coefficient 

H = 1 – 0.98 = 0.02, which indicates very strong antipersistence.  

Fig. 4.8

Fig. 4.8

 Likewise,  gives a similar plot for the series of peaks shown in Fig. 4.7, also in 

comparison with that of the random series. The plot of the series of peaks shows a straight 

line arrangement of points for low and high ∆, which has very low slope, equal to –0.02. This 

corresponds to a Hurst coefficient H = 1 – 0.02 = 0.98, which indicates very strong 

persistence. 

Fig. 4.9

 We can observe in  that for scale ∆ = 1 the standard deviation of the series of 

storage is significantly greater than that of the random series, despite the fact that the latter 

was constructed so as to have the same mean and standard deviation with the former. This is 

because, after the expansion of the two series from 1000 to 10 000 items, ıD of the storage 

series increased significantly whereas ıD of the random series remained in the same level. The 
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large persistence in the peaks results in high fluctuations of standard deviation and this was 

the reason for the increased ıD of the storage time series. 
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Fig. 4.8 Standard deviation ı∆ (in mm) vs. time scale ∆ plot of the series of storage shown in 

Fig. 4.4 (but for 10 000 items) in comparison with that of the random series of Fig. 4.5 (also 

for 10 000 items).  

Slope -0.02

Slope -0.5

10

100

1000

1 10 100 1000

∆

ı ∆ 

Series of peaks

Random series

 

Fig. 4.9 Standard deviation ı∆ (in mm) vs. scale ∆ plot of the series of peaks shown in Fig. 4.7 

in comparison with that of the random series of Fig. 4.5 (also shown in Fig. 4.8).  
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4.5.3 Real world examples 

It is not easy to find real world examples with antipersistent behaviour. However, there are a 

few phenomena with such behaviour which are commonly called “oscillations”. The most 

widely known is the El Niño Southern Oscillation (ENSO), a fluctuation of air pressure and 

water temperature between the southeastern and southwestern Pacific. Typically it is 

quantified by the so-called Southern Oscillation Index (SOI), which expresses the difference 

in the air pressure between Tahiti (an island in French Polynesia) and Darwin (North 

Australia); this difference is typically standardized in monthly scale by monthly mean and 

standard deviation. Here, instead of SOI, we have used the raw time series of the air pressure 

in Tahiti*, to avoid the artificial effects of taking differences and standardizing, and we have 

averaged the monthly time series on annual basis to discard the effect of the annual cycle.  

 The annual series has been plotted in , where the antipersistent behaviour becomes 

apparent from the 30-year moving average, which is virtually an horizontal straight line. The 

same behaviour is also apparent in Fig. 4.11, which shows the plot of standard deviation ı

Fig. 4.10

∆ 

vs. time scale ∆. For large scales (∆ ≥ 2 years), a straight line arrangement of points appears, 

which has high slope, equal to –0.8. This corresponds to a Hurst coefficient H = 1 – 0.8 = 0.2, 

which indicates strong antipersistence. The figure also shows a series of points that were 

derived from the monthly time series. For large scales, the monthly plot is virtually the same 

with the annual plot. For low time scales, the monthly plot clearly shows a low slope, which 

manifests the combined effect of the annual cycle and positive autocorrelation for small lags 

at the monthly scale (even for the annual scale, the lag one autocorrelation is positive, 0.18). 

Generally, the figure resembles Fig. 4.8.  
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Fig. 4.10 Graphical depiction of the mean annual air pressure in Tahiti (in hPa), which is one 

of the two variables used to define the Southern Oscillation Index (SOI). 

 
* The series is available online at  ftp://ftp.bom.gov.au/anon/home/ncc/www/sco/soi/tahitimslp.html on a 

monthly scale. 
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Fig. 4.11 Plot of standard deviation ı∆ (in hPa) vs. scale ∆ (in years) for the series of air 

pressure in Tahiti shown in Fig. 4.10.  

 While antipersistence is very rarely seen in nature, persistence is a very common 

behaviour, which however requires long time series to be observed. Long-term persistence 

has been found to be omnipresent in several long time series such as meteorological and 

climatological (temperature at a point, regional or global basis, wind power, proxy series such 

as tree ring widths or isotope concentrations) and hydrological (particularly river flows), but it 

has been also reported in diverse scientific fields such as biology, physiology, psychology, 

economics, politics and Internet computing (Koutsoyiannis and Montanari, 2007). Thus, it 

seems that in real world processes this behaviour is the rule rather than the exception. The 

omnipresence can be explained based either on dynamical systems with changing parameters 

(Koutsoyiannis, 2006b) or on the principle of maximum entropy applied to stochastic 

processes at all time scales simultaneously (Koutsoyiannis, 2005).  

 The example we study here is the most common one and refers to the longest available 

instrumental data series. This is the annual minimum water level of the Nile river for the years 

622 to 1284 AD (663 observations), measured at the Roda Nilometer near Cairo (Beran, 

1994)*. The time series is plotted in Fig. 4.12, where the long excursions of the 30-year 

moving average from the overall mean are apparent. As discussed above, the large 

fluctuations at large scales distinguishes the time series from random noise and is the 

signature of long-term persistence.  

                                                 
* The data are available from http://lib.stat.cmu.edu/S/beran. 
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Fig. 4.12 Graphical depiction of the time series of the minimum annual water level at the 

Roda Nilometer (in cm) for the years 622 to 1284 AD (663 years). 

 The persistence is also apparent in Fig. 4.13, which shows the plot of standard deviation ı∆ 
vs. time scale ∆. Here, the straight line arrangement of points appears on all scales, which 

makes the law (4.31) valid virtually on all scales. The slope equals –0.14 and it corresponds to 

a Hurst coefficient H = 1 – 0.14 = 0.86, which indicates strong persistence.  
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Fig. 4.13 Plot of standard deviation ı∆ (in cm) vs. scale ∆ (in years) for the Nilometer 

minimum annual water lever time series shown in Fig. 4.12.  
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Chapter 5 

Typical univariate statistical analysis in geophysical processes 
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Department of Water Resources and Environmental Engineering 

Faculty of Civil Engineering, National Technical University of Athens, Greece 

Summary 

Assuming that a certain geophysical process on a particular time scale (typically annual) can 

be represented by a single random variable (rather than a stochastic process, in which time 

dependence cannot be neglected), we can use classical statistical analysis to carry out several 

statistical tasks, such as:  

1. Sample description by summary statistics. This is done either numerically, using some 

representative statistical indicators, or graphically, using box plots, histograms and 

empirical distribution plots.  

2. Fitting of a theoretical model. This comprises the selection of an appropriate model 

(distribution function), the estimation of its parameters and the statistical testing of the 

fitting. 

3. Statistical prediction. This aims to estimate the value of the variable (on a point or an 

interval basis) that corresponds to a certain return period. 

The first task belongs to the so-called descriptive statistics, whereas the other two tasks are 

part of the inferential statistics or statistical induction. Although such statistical analyses are 

applicable for any type of theoretical model, in the discourse of this chapter we merely use the 

normal distribution, which is simple and best for illustration purposes.  

5.1 Summary statistics 

Summary statistics or statistical characteristics are various statistical indicators that enable 

description of the most characteristic properties of an observed sample (or even of a 

population) using a few numbers. The most common statistical characteristics can be 

classified into two categories. The first comprises the sample moments and their derivative 

characteristics. In particular, it involves: (a) the average, which, as we have seen, is a location 

measure; (b) the sample variance and the derivative indicators of dispersion (standard 

deviation and coefficient of variation); (c) the third central moment and the coefficient of 

skewness. The second category includes simpler statistical indicators, whose computation 

requires the sorting of the sample in descending or ascending order. Here these are referred to 

as summary statistics of sorted sample and include the minimum and maximum value of the 

sample, the median (location parameter), the upper and lower quartiles and the interquartile 

range (dispersion parameter). 
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 The sample moments and their derivative characteristics are calculated by applying the 

related estimators that have been discussed in chapter 3 and are also summarized in Table 5.1, 

in a form convenient for calculations. Furthermore, Table 5.1 includes coefficients of bias 

correction (column 3), by which the simple estimates (column 2) must be multiplied to find 

unbiased estimates. Table 5.1 gives also instructions to find the summary statistics of the 

sorted sample. 

Table 5.1 Typical summary statistics and formulae for their calculation  

Statistical indicator 
 

Simple estimate 

Coefficient 

for bias 

correction 

1. Sample moments and derivative characteristics 

Mean value x
n

xi= ∑1
 — 

Variance ( )s
n

x
n

x

n
x x

X i

i

2 2

2

2

2 2

1 1

1

= −

= −

∑ ∑

∑

i  
n

n − 1  

Standard deviation sX ≈
−
n

n 1  

Coefficient of 

variability 
$C

s

x
v

X

X
=  ≈

−
n

n 1  

Third central moment ( )( ) ( )
323

3

3

2

2

3)3(

3
1

231
ˆ

xsxx
n

x
n

xx
n

x
n

µ

Xi

iiiiX

−−=

+−=

∑

∑∑∑∑  ( )( )
n

n n

2

1 2− −

Coefficient of 

skewness 
$

$ (

C
s

s
X

X
X

=
µ 3)

3  
See section 

3.3.4 

2. Summary characteristics of sorted sample 

Minimum value ( )$ minminx x x n= , , ,1 2 K x  — 

Maximum value ( )$ maxmaxx x x n= , , ,1 2 K x  — 

Median $x0.5 : The middle term of the sorted sample or, for 

even number of observations, the mean of the 

two middle values.  

 

— 

Lower quartile $x0.25 : The median of the part of the sample 

containing the values xi ≤ x̂0.5. 

— 

Upper quartile 75.0x̂ : The median of the part of the sample 

containing the values xi ≥ x̂0.5. 

— 

Interquartile range 
25.075.0

ˆˆˆ xxįX −=  
— 
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 The summary statistics of the sorted sample can be also visualized by means of a simple 

diagram, the so-called box plot (see an example in Fig. 5.1, p.6). This diagram contains a 

central orthogonal “box” and two vertical “whiskers”, up and down of it. All these elements 

are plotted in an appropriate scale. This is constructed according to the following guidelines 

(Hirsch et al., 1993, p. 17.10): 

1. The middle horizontal line of the box represents the median of the sample. 

2. The bottom line of the box represents the lower quartile of the sample. 

3.  The top line of the box represents the upper quartile of the sample. 

4. An auxiliary quantity, the step, is defined as 1.5 times the interquartile range. 

5. The lower whisker extends from the bottom line of the box to the smallest value of the 

sample that is one step away from this line.  

6. The upper whisker extends from the top line of the box to the largest value of the sample 

that is one step away from this line.  

7. Sample values lying 1-2 steps away of the box are called outside values and are marked 

with a ×. 

8. Sample values lying more that 2 steps away of the box are called far-outside values and are 

marked with a . 

According to the above, the minimum and the maximum values of the sample are indicated in 

the box plot either as the whiskers’ ends, if they are less than one step away from the box 

edges, or as the farthermost outside or far-outside values. The box plot provides thus a simple 

and general statistical depiction of the sample, illustrating simultaneously the characteristics 

of location (median), dispersion (interquartile range), and asymmetry. The symmetry or 

asymmetry of the sample is recognized from the position of the middle line in comparison to 

the bottom and top lines of the box, as well as from comparison of the lengths of the whiskers. 

Furthermore, the diagram informs us about how close to the normal distribution a sample is. 

For a normal distribution a symmetric picture of the diagram is expected and no outside or 

far-outside values are expected, except with frequencies 1 in 100 and 1 in 300 000 points, 

respectively. 

5.1.1 Demonstration of summary statistics via a numerical example 

Table 5.2 lists the observations of annual runoff of the Evinos river basin, central-western 

Greece, upstream of the hydrometric gauge at Poros Reganiou.* We wish to extract the 

summary statistics of the sample and draw its box plot. 

a. Sample moments and derivative characteristics 

Nowadays the computation of moments is easily performed by computers tools.† For 

completeness we present here the manual computations. 

                                                 
* Evinos river is part of the hydrosystem for the water supply of Athens. Poros Reganiou is located at a 

considerable distance downstream of the Aghios Demetrios dam, which enables diversion of Evinos to Athens.  
† See for instance the Excel functions Average, Var, StDev, VarP, StDevP etc. 
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Table 5.2 Annual runoff volume (in hm
3
)* of river Evinos, at Poros Reganiou gauge. 

 
Hydrolo-

gical year 

Runoff 

volume 

 Hydrolo-

gical year

Runoff 

volume 

Hydrolo-

gical year

Runoff 

volume 

1970-71 807 1977-78 715 1984-85 588 

1971-72 695 1978-79 1064 1985-86 874 

1972-73 788 1979-80 942 1986-87 552 

1973-74 705 1980-81 1042 1987-88 529 

1974-75 462 1981-82 1037 1988-89 469 

1975-76 580 1982-83 674 1989-90 217 

1976-77 807 1983-84 906 1990-91 772 
 

Table 5.3 Traditional calculations of sample moments. 
 

i xi xi
2
 xi

3
 

1 807 651 249 525 557 943 

2 695 483 025 335 702 375 

3 788 620 944 489 303 872 

4 705 497 025 350 402 625 

5 462 213 444 98 611 128 

6 580 336 400 195 112 000 

7 807 651 249 525 557 943 

8 715 511 225 365 525 875 

9 1064 1 132 096 1 204 550 144 

10 942 887 364 835 896 888 

11 1042 1 085 764 1 131 366 088 

12 1037 1 075 369 1 115 157 653 

13 674 454 276 306 182 024 

14 906 820 836 743 677 416 

15 588 345 744 203 297 472 

16 874 763 876 667 627 624 

17 552 304 704 168 196 608 

18 529 279 841 148 035 889 

19 469 219 961 103 161 709 

20 217 47 089 10 218 313 

21 772 595 984 460 099 648 

Sum 15 225 11 977 465 9 983 241 237 
 

 The calculation of sums ∑ x, ∑ x
2
 and ∑ x

3
 is done in Table 5.3; their values are ∑ x = 

15 225, ∑ x
2
  = 11 977 465 and ∑x

3
 = 9 983 241 237. The average is  

 x− = ∑ x / n  = 15 225 / 21 = 725.0 hm
3
 

The sample variance is  

                                                 
* We remind that the unit hm3 represents cubic hectometers (1 hm3 = (100 m)3 = 1 000 000 m3). 
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 s
2
X = ∑ x

2
 / n – x−2

 = 11 977 465 / 21 −725.0
2
 = 44 730.5 (hm

3
)

2
 

the sample standard deviation 

 sX = 44 730.5 = 211.5 hm
3
  

and the sample coefficient of variation  

 ĈvX
 = sX / x− = 211.5 / 725.0 = 0.29 

The third central moment is  

 µ̂
(3)
X  = ∑ x

3
 / n − 3 x− s

2
X − x−3

 = 9 983 241 237 / 21 − 3 × 725.0 × 44 730.5 − 725.0
3
  

  = −2 974 523 (hm
3
)

3
  

and the coefficient of skewness  

 ĈsX
 = µ̂

(3)
X  / s

3
X = −2 974 523 / 211.5

3
 = −0.31 

Table 5.4 Statistical characteristics (moments and derivative characteristics) of annual runoff 

(in hm
3
) of the Evinos river basin at Poros Reganiou. 

Statistical 

indicator 
Simple estimation 

Coefficient of bias 

correction 

Unbiased 

estimation 

Mean x− = ∑ x / n  = 725.0 — x− = 725.0 

 

Variance 
s

2
X = ∑ x2 / n − x−2  = 

44 730 

n

n − 1
 = 1.05 s

*2
X  = 46 967 

Standard 

deviation 
sX = 211.5 ≈

n

n−1
 = 1.025 s

*
X ≈ 216.7 

Coefficient 

of variation Ĉv
X
 = sX / x− = 0.29 ≈

n

n−1
 = 1.025 Ĉ

*
v

X
 ≈ 0.29 

Third central 

moment 
µ̂(3)

X  = ∑ x3/n − 3x−s
2
X

 − x−3 

= −2 974 523  

n2

(n−1)(n−2)
 =1.16 µ̂*(3)

X  = −3 542 012 

Coeficient of 

skewness 
Ĉs

X
 = µ̂(3)

X  / s
3
X =  −0.31. ≈

n2

(n−1)(n−2)
=1.16 Ĉ

*
s

X
 ≈ −0.36 

 
 

 The coefficients for correction of bias are: (i) for the variance  

 n / (n − 1) = 21 / 20 = 1.05.  

(ii) for the standard deviation and the coefficient of variation (approximately)  

 n / (n − 1) = 1.05 = 1.025 

and (iii) for the third central moment (and, approximately, for the coefficient of skewness) 

 n
2
 / [(n−1) (n−2)] = 21

2
 / (20 × 19) = 1.16 
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Table 5.5 Sorted (is descending order) sample of annual runoff (in hm
3
) of the Evinos river 

basin at Poros Reganiou. 
 

Rank
Runoff 

volume 

 
Rank

Runoff 

volume
Rank

Runoff 

volume 

1 1064  8 807 15 588 

2 1042  9 788 16 580 

3 1037  10 772 17 552 

4 942  11 715 18 529 

5 906  12 705 19 469 

6 874  13 695 20 462 

7 807  14 674 21 217 
  

Table 5.6 Summary characteristics of the sorted sample of annual runoff (in hm
3
) of the 

Evinos river basin at Poros Reganiou 

Statistical indicator Estimate 

Minimum value x̂max = min(x1, …, xn) = 217  

Maximum value x̂max = max(x1, …, xn) = 1064  

Median x̂0.5 =  x(11) = 715  

Lower quartile x̂0.25 =  x(16) =580 

Upper quartile x̂0.75 =  x(6) = 874 

Interquartile range d̂X = x̂0.75 - x̂0.25 = 294    
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Fig. 5.1 Box plot of the annual runoff of the Evinos river basin at Poros Reganiou. 

The results are summarized in Table 5.4. 

b. Summary characteristics of the sorted sample 

The observed sample, sorted in descending order*, is shown in Table 5.5. From this table we 

have calculated directly the summary characteristics of the sorted sample shown in Table 5.6. 

                                                 
* This sorting can be done in Excel using the function Large.  
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The median is the rank 11
 
(middle) value of the sorted sample, whereas the lower and upper 

quartiles are the rank 16 and 6 values, respectively. 

c. Box plot 

Following the procedure in section 5.1 and using the summary statistical characteristics of the 

sorted sample in Table 5.6, we easily construct the diagram of Fig. 5.1. The step size is 1.5 × 

294 = 441 hm
3
 and therefore the maximum ordinate of the upper whisker is 874 + 441 = 1315 

hm
3
. Given, however, that the maximum value of the sample is 1064 hm

3
, the upper whisker 

should end up in this value. Likewise, the minimum ordinate of the lower whisker is 580 − 

441 = 139 hm
3
. Given, however, that the minimum value of the sample is 217 hm

3
, the lower 

whisker should end up in this value. 

5.2 Histograms 

Histograms provide another graphical display of a sample, whose construction requires 

counting the sample values lying in k intervals, each of length ∆.* If the ith interval is 

ci ≤ x < ci+1 (where ci+1 = ci + ∆) and the number of the sample values lying within it is ni, then 

the histogram is the function 

 ( ) kicxc
∆n

n
x ii

i ,,1,, 1 K=<≤= +  (5.1) 

An example is depicted in Fig. 5.2. Often, the histogram is defined in a simpler manner, such 

as φ(x) = ni/n, or φ(x) = ni. For these two forms we use the terms relative frequency histogram 

and (absolute) frequency histogram, respectively. To avoid confusion, the histogram defined 

by (5.1) can be termed frequency density histogram.  

 To construct the histogram, we first select the number of intervals k. As a rule, we take k = 

ln n / ln 2 and the resulting value is rounded up. The length ∆ is taken equal for all intervals 

(although for the density frequency histogram irregular intervals are also allowed).  

5.2.1 Demonstration of histogram 

We will construct a histogram for the sample of section 5.1.1. The number of intervals should 

be taken k = ln 21 / ln 2 = 4.4. By rounding up, we choose 5 intervals. The range of the 

sample values is [217, 1064]. After rounding, we get the range [200, 1100] with ∆ = (1100 − 

200) / 5 = 180. The rest of calculations are given in tabular form in Table 5.7 and the 

histogram is illustrated in Fig. 5.2. For comparison, we also plot the theoretical probability 

density function of the normal distribution (see section 5.4). 

                                                 
* In Excel this can be done by the function CountIf. 
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Table 5.7 Calculations for the histogram of the sample of Table 5.2. 
 

Class 

rank

Class 

limits 

Absolute 

frequency ni

Relative 

frequency 

ni / n

Frequency 

density φ = 

ni / (n ∆) 
200  

1  1 0.048 0.
380  

2  4 0.190 0.
560  

3  6 0.286 0.
740  

4  6 0.286 0.
920  

5  4 0.190 0.
1100  

00026 

00106 

00159 

00159 

00106 
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Fig. 5.2 Histogram of the sample of Table 5.2. For comparison the probability density function of the 

normal distribution N(725, 211.5) is plotted (dotted line). 

5.3 Empirical distribution function 

The histogram is the empirical equivalent of the probability density function; likewise the 

empirical equivalent of the distribution function is the empirical distribution function. In 

principle, such an empirical function may be constructed from the histogram, by integrating 

with respect to x, hence getting an increasing broken line that corresponds to some type of a 

distribution function. However, the introduction of the empirical distribution function may be 

done in a more direct and objective manner, bypassing histogram, which has some degree of 

subjectivity, due to the arbitrary selection of the intervals and their limits. 

5.3.1 Order statistics 

Let X be a random variable with distribution function F(x) and X1, X2, …, Xn a sample of it. 

From realizations x1, x2, …, xn of the variables X1, X2, …, Xn, we take the maximum value x(1) 
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:= max(x1, x2, …, xn).* This can be thought of as a realization of a variable X(1). Likewise, we 

can construct the variables X(2) (corresponding to x(2), the second largest value), X(3), …, X(n). 

The random variables X(1), X(2), …, X(n) are called order statistics. Obviously, for each 

realization the values x(1) ≥ x(2) ≥ … ≥ x(n) represent the observed sample sorted in decreasing 

order.  

5.3.2 Classical empirical distribution function 

The classical empirical distribution function is a staircase-like function defined by  

 
n

n
xF x=)(ˆ  (5.2) 

where nx is the number of sample values that do not exceed the value x.  is a point 

estimate of the unknown distribution function of the population F(x). 

)(ˆ xF

5.3.3 Plotting position 

Plotting position qi of the value x(i) of the sorted sample is the empirical exceedence 

probability of this value. Based on the classical definition of the empirical distribution, for 

x = x(1) we will have nx = n, and generally for x = x(i) we will have nx = n + 1 − i. Therefore, 

the empirical distribution function is 

 ( ) ni
n

in
xF i ,,1,

1ˆ
)( K=

−+
=  (5.3) 

Thus the plotting position, i.e. the empirical exceedance probability is 

 ( ) ( ) ni
n

i
xFxFq iii ,,1,

1ˆ1ˆ
)()(

* K=
−

=−==  (5.4) 

We observe that for n = 1 the above equation assumes zero exceedance probability. Thus, for 

example from an annual rainfall sample with maximum value x(1) = 1800 mm, we would 

conclude that the probability of an annual rainfall more than 1800 mm is zero. Evidently, this 

is a wrong conclusion; rainfall depths more than those observed are always possible. 

 To avoid the above problem we use the random variable 

 ( ) ( )
)()(

* 1 iii XFXFU −==  (5.5) 

A point estimate† of this variable is, simultaneously, an estimate of qi. From first glance, it 

seems impossible to calculate values of Ui from the sample, given that F(x) is an unknown 

function. However, it can be shown‡ that (for random samples) the distribution of Ui is 

independent of F(x) and has mean§  

                                                 
* Notice the difference in notation: x1 is the value first in time and x(1) is the (first) largest of all xi.  
† More precisely, and according to the terminology of chapter 3, this is a prediction of the variable, since Ui is a 

random variable and not a parameter. 
‡ This results from the distribution function of the order statistics (see e.g. Papoulis, 1990, p. 207-208) after 

appropriate substitution of variables. 
§ More precisely, Ui has beta distribution function (see chapter 6), with parameters i and n − i + 1. 
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 [ ]
1+

=
n

i
UE i  (5.6) 

and variance 

 [ ] ( )
( ) ( )21

1
Var

2 ++
+−

=
nn

ini
U i  (5.7) 

 The simplest estimate of Ui is its mean, namely 

 
1+

=
n

i
qi  (5.8) 

which is known in literature as Weibull plotting position. This is an unbiased estimate of the 

exceedance probability, because qi = E[Ui] = E[F
*
(X(i))]. We observe that with this estimation 

method we have eliminated the problem of a zero qi for i = 1. Indeed, for i = 1 we obtain 

qi = 1 / (n + 1) and for i = n, qi = n / (n + 1).  

Table 5.8 Alternative formulae for empirical exceedance probabilities (plotting positions)*  

 

Name 

Formula 

qi = 

Constant  

a = 

Return period of 

maximum value T1 =
Applicability 

Weibull 
i

n + 1
  0 n + 1 All distributions, unbiased 

estimation of exceedance probability

Blom 
i − 0.375

n + 0.25
 0.375 1.6 n + 0.4 Normal distribution, unbiased 

estimation of quantiles 

Cunnane 
i − 0.4

n + 0.2
 0.4 1.667 n + 0.33 Broad range of distributions, approx. 

unbiased estimation of quantiles 

Gringorten 
i − 0.44

n + 0.12
 0.44 1.786 n + 0.21 Gumbel distribution

†
  

Hazen 
i − 0. 5

n
 0.5 2 n The oldest proposed estimate; today 

it tends to be abandoned  

 Equation (5.8) is the most popular for the estimation of exceedance probabilities in 

engineering applications, but not the only one. Other similar equations have been developed 

in order to provide unbiased estimations of quantiles, namely to satisfy (approximately) the 

condition 

 ( ) [ ] ( )[ ]iii UFEXEqF 1

)(

1 −− ==  (5.9) 

In that case, this estimation, as opposed to (5.8), does depend on the distribution function 

F(x). The various equations that have been developed are expressed by the general formula 

 
an

ai
qi

21−+
−

=  (5.10) 

                                                 
* See also Stedinger et al. (1993) where additional formulae are also given. 
† See chapter 6. 
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where a is a constant (< 1). This equation is antisymmetric, since qi = 1 − qn+1−i and also 

incorporates (5.8) as a special case (a = 0). Table 5.8 lists the most frequently used formulae 

for calculating the plotting position along with the corresponding values of constant a. 

Application of the different formulae results in very similar values, except for very low values 

of i and mainly for i = 1, where the differences are appreciable (see col. 4 in Table 5.8). The 

value for i = 1 is of great importance in engineering applications, because it gives the 

empirical exceedance probability of the maximum observed value, i.e. T1 = 1 / q1.  

5.3.4 Probability plots 

Estimating the plotting position for each value of the sample using one of the above formulae, 

we construct a set of n points (x(i), qi) or (x(i), 1 − qi), which can be presented graphically to 

provide an overview of the distribution function. Initially, this could be done on a regular 

decimal plot, thus resulting in a graph similar to Fig. 2.1 or Fig. 2.3b, except that, instead of a 

staircase-like or a continuous line, we will get just a set of points. However, in engineering 

applications, since the information obtained by such a graph is very essential, we wish to be 

more systematic in plotting. In particular, we wish to obtain a linear arrangement of the points 

through appropriate transformations of the axes. This facilitates several purposes, such as 

easier drawing, more precise comparison of theoretical and empirical distribution, easier 

graphical extrapolation beyond sample limits etc. Plots on which the axes are designed via 

appropriate transformations, to represent the graphs of specific distribution functions as 

straight lines, are called probability plots. There exist commercial papers (like the logarithmic 

paper) constructed so as to incorporate the appropriate transformation for a specific 

distribution (e.g. the normal distribution) which can be readily used to make a probability 

plot. However, it is easy to construct such plots using computer tools.  

 Let us take, for instance, the normal distribution N(µ, σ). If we represent graphically the 

function F(x) with horizontal axis h = F and vertical v = x, we will obtain a shape like . On 

the other hand, we know that Fzσµx += , where zF the F-quartile of the standard normal 

distribution N(0, 1). Hence, if we set the horizontal axis as h = zF, then the equation to plot 

will be v = µ + σ h, which is a straight line. This is equivalent to transforming the horizontal 

axis as , where  is the inverse of the standard normal distribution. 

Through appropriate transformations of the horizontal or/and the vertical axis, we may 

achieve linearization of other distribution functions, as we will see in more detail in chapter 6. 

)(1

0 FFzh F

−== )(1

0

−F

 Since there is one-to-one correspondence between the quantities F and zF, the marking of 

the horizontal axis may be done is units of F instead of zF, which facilitates the interpretation 

of the graph. Moreover, the marking of the horizontal axis may be done in terms of the 

exceedence probability F
*
 = 1 − F or versus the return period T = 1 / F

*
. An example of a 

normal distribution plot is shown in Fig. 5.3, where two different markings of the horizontal 

axis (zF and F
*
) are simultaneously illustrated. 
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  The graphical representation of the set of points (x(i), qi) in a normal distribution plot 

(namely ) will give an almost linear arrangement of points, provided that the 

distribution of X is normal. Hence, this plot provides a graphical way for checking the 

normality of the distribution of a sample. The above are clarified via the following example. 

)(1 , iq xvzh
i

== −

5.3.5 Demonstration of numerical probability plot 

We will construct a normal probability plot of the sample of section 5.1.1. For the calculation 

of the empirical exceedence probabilities we use the formulae of Weibull (unbiased 

estimation of exceedence probability) and Blom (unbiased estimation of the normal 

distribution quantiles, see Table 5.8). The calculations are very simple, given that the sample 

has been put already in descending order (Table 5.5) and are shown in Table 5.9. For a 

manual plot on normal probability paper, the last two columns are not necessary. Otherwise, 

they are necessary because the normal probability plot (shown in Fig. 5.3) is a plot of 

observed values xi against values z1−qi
 of the standard normal distribution. The latter either are 

taken from the normal distribution table (Table A1, Appendix), or are calculated using 

numerical methods*. The empirical exceedence probabilities for this sample are shown in Fig. 

5.3, where for comparison, the theoretical normal distribution function it is also plotted (see 

section 5.5.4). 
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Fig. 5.3 Example of normal probability plot of the empirical distribution function using 

Weibull (diamonds) and Blom (symbols ×) plotting positions. For comparison, the theoretical 

normal distribution function N(725, 211.5) (see section 5.4.2) is also plotted (continuous line) 

along the corresponding 95% confidence curves (dashed curves, see section 5.6.1). 

                                                 
* In Excel the function to calculate z1−q from 1 – q is NormSInv. 
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Table 5.9 Demonstration of calculation of empirical exceedence probabilities. 
 

Rank Value Empirical exceedence 

probability 

Value of standardized 

normal variable 

 

i 

 

xi 

Weibull

qi = 
i

n+1

Blom  

qi = 
i−0.375

n+0.25

Weibull 

z1−qi
  

Blom 

z1−qi
  

1 1064 0.045 0.029 1.691 1.890 

2 1042 0.091 0.076 1.335 1.429 

3 1037 0.136 0.124 1.097 1.158 

4 942 0.182 0.171 0.908 0.952 

5 906 0.227 0.218 0.748 0.780 

6 874 0.273 0.265 0.605 0.629 

7 807 0.318 0.312 0.473 0.491 

8 807 0.364 0.359 0.349 0.362 

9 788 0.409 0.406 0.230 0.238 

10 772 0.455 0.453 0.114 0.118 

11 715 0.500 0.500 0.000 0.000 

12 705 0.545 0.547 -0.114 -0.118 

13 695 0.591 0.594 -0.230 -0.238 

14 674 0.636 0.641 -0.349 -0.362 

15 588 0.682 0.688 -0.473 -0.491 

16 580 0.727 0.735 -0.605 -0.629 

17 552 0.773 0.782 -0.748 -0.780 

18 529 0.818 0.829 -0.908 -0.952 

19 469 0.864 0.876 -1.097 -1.158 

20 462 0.909 0.924 -1.335 -1.429 

n = 21 217 0.955 0.971 -1.691 -1.890 
  

5.4 Selection and fitting of the theoretical distribution function 

In sections 5.1 and 5.2 the aim was to summarize a sample, which is part of descriptive 

statistics. Section 5.3, in addition to summarizing a sample, dealt also with statistical 

estimation of population properties, specifically the distribution function. However, we were 

able to make such estimations for a few values of the random variable only, those that were 

values of the sample. This could be combined with some empirical techniques, for instance 

interpolation, to make inferences for other values of the random variable. Thus, we could 

make an empirical interpolation of any value provided that it lies within the range defined by 

the minimum and maximum values in the observed sample. The range of such estimations 

would be limited. In engineering design, we usually have to deal with values far beyond the 

observed range (e.g. to estimate design quantities for return periods 100, 1000 or 10 000 years 

based on a sample of, say, 20-50 years), i.e. to make extrapolations. To this aim, we should 

follow a different path, which should be also able to provide interval estimates of the 

quantities of interest.  
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 This would be easy if we knew the distribution function of the population. Generally, the 

distribution of the population could be any function with the properties described in section 

2.4. Its precise knowledge would require to have measured the entire population, or, at least, 

to have a sample much longer than the return period for which an estimation is sought. 

Apparently, this is infeasible and thus the remaining solution is to hypothesize a probability 

model for the population. The term probability model refers to one of the typical distribution 

functions of the probability theory that have a specific, relatively simple, mathematical 

expression. The most typical case is the normal distribution discussed in section 2.10.2. Other 

examples will be provided in chapter 6. Certainly, the use of a probability model is always an 

approximation of the reality. The distributions of geophysical variables are not identical to the 

simple models of the probability theory. 

 The selection of an appropriate model is guided by the following: 

1. The probability theory. In some cases, there are theoretical reasons because of which a 

particular hydrological or geophysical variable is expected to have a particular distribution 

type. For instance, according to the central limit theorem, the annual rainfall in a wet area 

is expected to follow a normal distribution (see section 2.10.1). Another principle that can 

provide theoretical justification of a probability model is the principle of maximum entropy 

(Koutsoyiannis, 2005). 

2. The general empirical experience. In many cases, accumulated hydrological or geophysical 

experience indicates that specific variables tend to follow particular distribution types, 

even if there are not apparent theoretical reasons pointing to the latter. For instance, the 

monthly runoff has been very often modelled using gamma or log-normal distributions (see 

chapter 6). 

3. The properties of the specific sample. The statistical characteristics of the observed sample 

help us to choose or exclude a particular distribution type. For instance, if the sample 

coefficient of skewness has a value close to zero, then we can choose the normal (or 

another symmetric) distribution. Conversely, if the coefficient of skewness differs 

substantially from zero, we should exclude the normal distribution. 

Certainly, the suitability of a specific distribution type is not ensured by the above criteria, 

which are just indications of suitability. The testing of the suitability of the distribution is 

done a posteriori. After estimating its parameters, we examine the goodness of its fit to the 

empirical distribution function. Initially, this may be done empirically, on the basis of the 

graphical representation of the empirical and the theoretical distribution functions on an 

suitable probability paper. More objective results are achieved by means of formal statistical 

tests, as described in section 5.5. 

5.4.1 Indications of suitability of the normal distribution for geophysical variables 

So far, we have referred many times to indications of the suitability of the normal distribution 

for describing geophysical variables. Next, we list all these indications of suitability. 
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1. Theoretical criterion based on the central limit theorem. We examine whether the variable 

under study is a sum of various natural components, which should obey (even 

approximately) the assumptions of the central limit theorem. This criterion is theoretical 

and does not require numerical calculations. A similar theoretical criterion is provided by 

the principle of maximum entropy, independently of the central limit theorem 

(Koutsoyiannis, 2005).  

2. Numerical criterion based on the coefficient of skewness. A sample coefficient of skewness 

that is almost zero is a strong indication of the suitability for the normal distribution. 

3. Numerical criterion based on the coefficient of variation. Let X be random variable 

representing a physical quantity. In most cases, X can take only positive or zero values, 

whereas negative ones have no physical meaning. However, the normal distribution allows 

negative values of X. Thus, in theory, the normal distribution cannot represent physically 

nonnegative variables, except approximately. To ensure a satisfactory approximation, the 

probability P{X < 0} must be very low, so to be ignored, namely P{X < 0} ≤ İ where İ an 

acceptably low probability, e.g. İ < 0.02. If Z = (X − µX) / σX is the corresponding standard 

normal variable, then P{Z < −µX / σX} ≤ İ. If zİ is the İ-quantile of the standard normal 

distribution, then, equivalently, CvX = σX/µX ≤ −1/zİ. For İ = 0.02 we get zİ ≈ −2, so CvX ≤ 

0.5. Likewise, for İ = 0.00005 we get zİ ≈ −4, so CvX ≤ 0.25. Hence, we conclude that if CvX 

≤ 0.25 we have a very strong indication of suitability of the normal distribution. If CvX > 

0.5, the use of the normal distribution should be excluded. For intermediate values of the 

coefficient, the normal distribution may be acceptable but with lower degree of 

approximation. 

4. Graphical criterion based on the synoptic depiction of the sample. As referred in section 

5.1 a symmetric box plot of the sample, without unjustifiably large number of outside 

points, is an indication of the suitability of the normal distribution. 

5. Graphical criterion based on the empirical distribution function. The linear arrangement of 

the series of points of the empirical distribution function, in a normal probability plot, is a 

strong indication of the suitability of the normal distribution. 

 The above criteria are simple indications and cannot be thought of as statistical proofs of 

the suitability of the normal distribution. 

5.4.2 Demonstration of fitting the normal distribution  

The fitting of the normal distribution on the sample of section 5.1.1 is very simple. The 

parameters of the distribution are µ = x
−

 = 725.0 hm
3
, σ = sX = 211.5 hm

3
 (the value σ = s

*
X = 

216.7 hm
3
 is also acceptable). The normal distribution function with these parameters has 

been plotted in Fig. 5.3 and the corresponding probability density function in Fig. 5.2. The 

reader can confirm that in the example under study all indications of suitability of the normal 

distribution listed in section 5.4.1 are validated. In section 5.5.2 we will provide a statistical 

test of suitability of the normal distribution. 
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5.5 Testing the goodness of fit of a probability model 

After adopting a certain distribution function to model a physical variable and estimating its 

parameters, the next step is to test the fitting of this distribution to the observed sample. The 

test is based on the statistical theory of hypothesis testing that was summarized in section 3.6. 

Various statistical tests have been developed, which can be applied for testing the goodness of 

fit of a distribution function. We present the most classical of them, the χ2
 (chi-square) test. 

Other statistical tests often used in engineering applications are the Kolmogorov-Smirnov test 

(see e.g. Benjamin and Cornell, 1970, p. 466; Kottegoda, 1980, p. 89) and the more recent 

probability plot correlation coefficient test (see e.g. Stedinger et al., 1993, p. 18.27). 

5.5.1 The χ2
 test 

The χ2
 test is based on comparing the theoretical distribution function to the empirical one. 

The comparison is made on a finite set of selected points xj of the domain of the random 

variable, and not on the observed values xi of the sample. The null hypothesis H0 and its 

alternative Η1 are 

 H0: F(xj) = F0(xj) for all j,    H1: F(xj) ≠ F0(xj) for some j  (5.11) 

where F(x) the unknown true distribution function and F0(x) the hypothesized distribution. 

F0(x) may be completely known, in terms of its mathematical expression as well as its 

parameters values, prior to the examination of the specific sample. In this case, the null 

hypothesis is named perfect. However, the parameters values are most usually calculated from 

the sample and so we speak about an imperfect null hypothesis.  

 The control points xj, j = 0, …, k partition the domain of the random variable in k classes, 

namely intervals of the form (x0, x1], (x1, x2], …, (xk−1, xk]. For the hypothesized distribution 

function F0(x), the probability of finding a randomly selected point in (xj−1, xj] is obviously  

 pj = F0(xj) − F0(xj−1) (5.12) 

and therefore the expected number of sample points that would be located within this class is 

lj = n pj, where n is the sample size. Apparently, a small departure between nj and lj, namely a 

small |nj − n pj|, is in favour of the suitability of the distribution F0(xj) and hence of the non-

rejection of the null hypothesis. The Pearson’s test statistic defined by 

 Q := ∑
j = 1

k

 
(Nj − n pj)

2

n pj
  (5.13) 

where Nj is the random variable whose realization is nj, is an aggregated measure of the 

differences between the actual and the theoretical number of points in all classes. If the null 

hypothesis is perfect, the distribution of Q is χ2
 with k − 1 degrees of freedom. In the most 
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usual case of imperfect null hypothesis, the number of degrees of freedom is k − r − 1, where 

r is the number of parameters that are estimated from the sample.*  

 In the most common version of the χ2
 test the classes are chosen so that the probabilities pj 

are equal for all classes j. In this case, equation (5.13) simplifies to  

 Q:= 
 k 

 n 
 ∑
j = 1

k

 N
2
j  − n  (5.14) 

The advantage of this version is that it specifies the class limits for a given number of classes 

k and thus it is more objective For choosing the number of classes k, the following two 

conflicting rules are followed: 

• Necessarily, it must be k ≥ r + 2, where r is the number of parameters of the distribution 

that are estimated from the sample. 

• Generally, it is suggested (see e.g. Benjamin and Cornell, 1970, p. 465; Kottegoda, 1980, 

p. 88) that the theoretical number of points in each class must be grater than 5, which 

results in k ≤ n / 5.  

For small samples, these two rules may be not satisfied simultaneously, hence we satisfy the 

first one only.  

 The algorithm for applying the χ2
 test is described in the following steps: 

1. We choose the number of classes k, according to the above rules.† 

2. We divide the probability interval [0, 1] in k equal sub-intervals with limits uj = j / k (j = 0, 

…, k). 

3. We calculate the class limits xj (the value xj is the uj-quantile of the variable). 

4. We count the number of points nj in each class (this step is simplified if the sample is 

already sorted in descending or ascending order). 

5. From (5.14) (or (5.13)), we calculate the value q of the Pearson statistic. 

6. For a chosen significance level α, we calculate the critical value of the test statistic qc = 

q1−α. For this purpose, we use the χ2
 distribution with k − r − 1 degrees of freedom, where r 

is the number of distributional parameters estimated from the sample (see Table A2 in 

Appendix). 

7. We reject the null hypothesis if q > qc. 

The algorithm is clarified in the following example. 

                                                 
* Theoretical consistency demands that the maximum likelihood method is used for parameter estimation; 

however, this is often neglected in applications. 
† The choice of the number of classes can be made using the formula (see Kottegoda, 1980, p. 88): 

k = 21.2 [(n – 1) / z1 – α)]
0.4 

where z1 – α the (1 – α)-quantile of the normal distribution and α the significance level of the test. Kendall and 

Stuart (1973, p. 455) provide a more analytical method for choosing the number of classes, which however is for 

large samples that are rarely available in practice.  
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5.5.2 Demonstration of testing the goodness of fit 

Continuing the numerical example started in section 5.1.1, we will test the suitability of the 

normal distribution that has been already fitted (section 5.4.2), with parameters µ = x
−

 = 725.0 

hm
3
, σ = sX = 211.5 hm

3
. 

 The number of the parameters of the distribution is r = 2 and the sample size is n = 21. 

According to the above discussion, the number of classes k must satisfy the relationships  

 k ≥ 2 + 2 = 4,   k ≤ 21 / 5 = 4.2 

that hold for k = 4. Therefore, we take k = 4. 

  The calculations for steps 2-4 of the above algorithm are summarized in Table 5.10. The 

calculation of the limits of the variable is done as usual; for instance, the upper limit of the 

first class is 

 x1 = 725.0 − 0.675 × 211.5 = 528.3 

Table 5.10 Elementary calculations demonstrating the χ2
 test. 

 
Class  1  2  3  4  

Probability limits 0 0.25  0.5 0.75  1.0 

Variable limits -∞ 582.3  725.0 867.7  +∞ 

Actual number of points  6  5  4  6  
 

0
.0

5

0
.1

0
.2

0
.5

1251
02
0

3
04
0

5
0

9
9
.9

5

9
9
.9

9
9
.8

9
9
.5

9
9

9
8 9
5

9
0 8
0

7
0

6
0

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

-3.50 -3.00 -2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50

Standard normal variate z

A
n
n
u
a
l 
ru

n
o
ff

 v
o
lu

m
e
  x

 [
h
m

3
]

6 points

5 points

4 points

6 points

Exceedence probability F *
X (x )

 

Fig. 5.4 Explanatory sketch for the numerical example of section 5.5.2.  

 For the sake of demonstration (as it is not part of the test), we provide in Fig. 5.4 graphical 

depiction of the classes and their actual number of points on a normal probability plot. 
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 From (5.14) we obtain  

 q = (4/21) × (6
2
 + 5

2
 + 4

2
 + 6

2
) − 21 = 0.52  

For significance level α = 0.05 the critical value of the variable is  

 qc = χ2
0.95 (1) = 3.84  

(as derived from Table A2 in Appendix for u = 1 − α = 0.95 and number of degrees of 

freedom = 4 − 2 − 1 = 1). Hence, q < qc and the normal distribution is accepted. 

5.6 Statistical prediction 

Statistical prediction in engineering applications aims at estimating the value of a physical 

quantity that corresponds to a given exceedence probability (or return period). Provided that a 

specific probability model is already set up and fitted to the sample under interest, this 

prediction is computationally done applying the methods described in chapter 3. The 

prediction may be either point or interval, as demonstrated in the following example. 

5.6.1 Demonstration of statistical prediction  

Completing the numerical example started in section 5.1.1, we wish to estimate the 100-year 

maximum and minimum annual runoff volume of the Evinos river basin upstream of Poros 

Reganiou, as well as its 95% confidence limits. We apply the same procedure as in section 

3.4.7. As the sample size is very small in comparison to the return period of 100 years, we 

expect that the confidence intervals will be wide (high uncertainty). 

 We calculate first the point estimates. For the 100-year maximum runoff volume the 

probability of non-exceedence is u = 1 − 1/100 = 0.99 and zu = 2.326 (e.g. from Table A1 in 

the Appendix). Thus, the point estimate is  

 xu = 725.0 + 2.326 × 211.5 = 1216.9 hm
3
  

Likewise, for the 100-year minimum runoff volume, the probability of non-exceedence is u = 

1 / 100 = 0.01 and zu = −2.326, so  

 xu = 725.0 − 2.326 × 211.5 = 233.1 hm
3
 

 We proceed with the calculation of confidence limits. For γ = 95% and z(1+γ)/2 = 1.96, the 

limits for the 100-year maximum runoff volume are (equation (3.46)) : 
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Likewise, the limits for the 100-year minimum runoff volume are: 
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 Repeating these calculations for several other return periods we have determined a series 

of point estimates and confidence limits which we have plotted in Fig. 5.3. More specifically, 

connecting the points of the confidence limits in the graph we have obtained the 95% 

confidence curves of the distribution. We observe the all points of the observed sample lie 

within these confidence curves; particularly the lowest observed value (217 hm
3
 for the year 

1989-90) is just on the border, which reflects the severity of the drought of 1989-90.  

Acknowledgement I thank Andreas Efstratiadis for his help in translating Greek texts into 

English. 
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Chapter 6 

Typical distribution functions in geophysics, hydrology and water resources 

Demetris Koutsoyiannis 

Department of Water Resources and Environmental Engineering 

Faculty of Civil Engineering, National Technical University of Athens, Greece 

Summary 

In this chapter we describe four families of distribution functions that are used in geophysical 

and engineering applications, including engineering hydrology and water resources 

technology. The first includes the normal distribution and the distributions derived from this 

by the logarithmic transformation. The second is the gamma family and related distributions 

that includes the exponential distribution, the two- and three-parameter gamma distributions, 

the Log-Pearson III distribution derived from the last one by the logarithmic transformation 

and the beta distribution that is closely related to the gamma distribution. The third is the 

Pareto distribution, which in the last years tends to become popular due to its long tail that 

seems to be in accordance with natural behaviours. The fourth family includes the extreme 

value distributions represented by the generalized extreme value distributions of maxima and 

minima, special cases of which are the Gumbel and the Weibull distributions.  

5.1 Normal Distribution and related transformations 

5.1.1 Normal (Gaussian) Distribution 

In the preceding chapters we have discussed extensively and in detail the normal distribution 

and its use in statistics and in engineering applications. Specifically, the normal distribution 

has been introduced in section 2.8, as a consequence of the central limit theorem, along with 

two closely related distributions, the Ȥ2
 and the Student (or t), which are of great importance 

in statistical estimates, even though they are not used for the description of geophysical 

variables. The normal distribution has been used in chapter 3 to theoretically derive statistical 

estimates. In chapter 5 we have presented in detail the use of the normal distribution for the 

description of geophysical variables. 

 In summary, the normal distribution is a symmetric, two-parameter, bell shaped 

distribution. The fact that a normal variable X ranges from minus infinity to infinity contrasts 

the fact that hydrological variables are in general non-negative. This problem has been 

already discussed in detail in section 5.4.1. A basic characteristic of the normal distribution is 

that it is closed under addition or, else, a stable distribution. Consequently, the sum (and any 

linear combination) of normal variables is also a normal variable. Table 6.1 provides a 

concise summary of the basic mathematical properties and relations associated with the 

normal distribution, described in detail in previous chapters. 
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Table 6.1 Normal (Gaussian) distribution conspectus. 

Probability density function ( )
2

1
21

e
2

x

Xf x

µ
σ

πσ

−⎛ ⎞− ⎜ ⎟
⎝ ⎠=

 

Distribution function ( )( )
x

X XF x f s ds
−∞

= ∫  

Range −∞ < x < ∞ (continuous) 

Parameters µ: location parameter (= mean) 

ı > 0:  scale parameter (= standard deviation) 

Mean Xµ µ=  

Variance 
2 2

Xσ σ=  

Third central moment 0
)3( =Xµ  

Fourth central moment 
4)4(

3σµ =X
 

Coefficient of skewness 0
XsC =  

Coefficient of kurtosis  3
XkC =  

Mode xp = µ 

Median x0.5
 = µ 

Second L moment Ȝ(2)
X  = 

ı
π

 

Third L moment Ȝ(3)
X  = 0 

L coefficient of variation Ĳ(2)
X  = 

ı
π µ

 

L skewness Ĳ(3)
X  = 0 

L kurtosis Ĳ(4)
X  = 0.1226 

Typical calculations 

The most typical calculations are the calculation of the value u = FX(xu) of the distribution 

function for a given xu, or inversely, the calculation of the u-quantile of the variable, i.e. the 

calculation of xu, when the probability u is known. The fact that the integral defining the 

normal distribution function (Table 6.1) does not have an analytical expression, creates 

difficulties in the calculations. A simple solution is the use of tabulated values of the 

standardized normal variable z = (x − µ) / ı, which is a normal variable with zero mean and 

standard deviation equal to 1 (section 2.6.1 and Table A1 in Appendix). Thus, the calculation 

of the u-quantile (xu) becomes straightforward by  

 u ux zµ σ= +  (6.1) 

where zu, corresponding to u = FZ(zu), is taken from Table A1. Conversely, for a given xu, zu is 

calculated by (6.1) and u = FZ(zu) is determined from Table A1. 
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 Several numerical approximations of the normal distribution function are given in the 

literature, which can be utilized to avoid use of tables (Press et al., 1987; Stedinger et al., 

1993; Koutsoyiannis, 1997), whereas most common computer applications (e.g. 

spreadsheets*) include ready to use functions. 

Parameter estimation 

As we have seen in section 3.5, both the method of moments and the maximum likelihood 

result in the same estimates of the parameters of normal distribution, i.e., 

 xµ = ,  Xsσ =  (6.2) 

We notice that sX in (6.2) is the biased estimate of the standard deviation. Alternatively, the 

unbiased estimation of standard deviation is preferred sometimes. The method of L moments 

can be used as an alternative (see Table 6.1) to estimate the parameters based on the mean and 

the second L moment. 

Standard error and confidence intervals of quantiles 

In section 3.4.6 we defined the standard error and the confidence intervals of the quantile 

estimation and we presented the corresponding equations for the normal distribution. 

Summarising, the point estimate of the normal distribution u-quantile is 

 ˆ
u u xx x z s= +  (6.3) 

the standard error of the estimation is 

 
2

1
2

X
u

s

n
ε = + uz

 (6.4) 

and the corresponding confidence limits for confidence coefficient Ȗ are 

 x̂u
1,2

 ≈ (x– + zu sX) 
2

(1 ) / 2 1
2

X us z
z

n
γ+± +  = x̂u

2

(1 ) / 2 1
2

Xs
z

n
γ+± uz

+

                                                

 (6.5) 

Normal distribution probability plot 

As described in section 5.3.4, the normal distribution is depicted as a straight line in a normal 

probability plot. This depiction is equivalent to plotting the values of the variable x (in the 

vertical axis) versus and the standardized normal variate z (in the horizontal axis). 

5.1.2 Two-parameter log-normal distribution 

The two-parameter log-normal distribution results from the normal distribution using the 

transformation 

 y = ln x ↔ x = e
y
 (6.6) 

 
* In Excel, these functions are NormDist, NormInv, NormSDist and NormSInv. 
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Thus, the variable X has a two-parameter log-normal distribution if the variable Y has normal 

distribution N(µY, ıY). Table 6.2 summarizes the mathematical properties and relations 

associated with the two-parameter log-normal distribution. 

Table 6.2 Two-parameter log-normal distribution conspectus. 

Probability density function ( )
2

1
2

ln

1
e

2

Y

Y

x

X

Y

f x
x

µ
σ

πσ

⎛ ⎞−
− ⎜ ⎟

⎝ ⎠=
 

Distribution function ( )
0

( )
x

X XF x f s ds= ∫  

Range 0 < x < ∞ (continuous) 

Parameters µY:  scale parameter  

ıY > 0: shape parameter 

Mean 
2

2e
Y

Y

X

σ
µ

µ
+

=  

Variance ( )2 222 e eY Y Y

X

µ σ σσ +
1= −  

Third central moment ( )
2

2 2
3

3
3(3) 2e e 3e

Y
Y

Y Y

X

σ
µ σ σµ

+
2= − +  

Coefficient of skewness  
2

e 1Y

XvC
σ= −  

Coefficient of kurtosis  
33

X X Xs v vC C C= +  

Mode 
2

e Y Y

px
µ σ−=  

Median 0.5 e Yx
µ=  

 A direct consequence of the logarithmic transformation (6.6) is that the variable X is 

always positive. In addition, it results from Table 6.2 that the distribution has always positive 

skewness and that its mode is different from zero. Thus, the shape of the probability density 

function is always bell-shaped and positively skewed. These basic attributes of the log-normal 

distribution are compatible with observed properties of many geophysical variables, and 

therefore it is frequently used in geophysical applications. It can be easily shown that the 

product of two variables having a two-parameter log-normal distribution, has also a two-

parameter log-normal distribution. This property, combined with the central limit theorem and 

taking into account that in many cases the variables can be considered as a product of several 

variables instead of a sum, has provided theoretical grounds for the frequent use of the 

distribution in geophysics. 

Typical calculations 

Typical calculations of the log-normal distribution are based on the corresponding 

calculations of the normal distribution. Thus, combining equations (6.1) and (6.6) we obtain 

 e Y u Yz

u Y u Y uy z x
µ σµ σ += + ⇔ =  (6.7) 

where zu is the u-quantile of the standardized normal variable.  
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Parameter estimation 

Using the equations of Table 6.2, the method of moments results in: 

 ( )2 2ln 1 /Y Xs xσ = + ,  2ln / 2Y xµ σ= − Y  (6.8) 

Parameter estimation using the maximum likelihood method gives (e.g. Kite, 1988, p. 57)  

 
1

ln /
n

Y i

i

x n yµ
=

= =∑ ,  2

1

(ln ) /
n

Y i Y

i

Yx n sσ µ
=

= −∑ =  (6.9) 

We observe that the two methods differ not only in the resulted estimates, but also in that they 

are based on different sample characteristics. Namely, the method of moments is based on the 

mean and the (biased) standard deviation of the variable X while the maximum likelihood 

method is based on the mean and the (biased) standard deviation of the logarithm of the 

variable X. 

Standard error and confidence intervals of quantiles 

Provided that the maximum likelihood method is used to estimate the parameters of the log-

normal distribution, the point estimate of the u-quantile of y and x is then given by 

 ˆ ˆ ˆln( ) e u Yy z s

u u u Y uy x y z s x
+= = + ⇒ =  (6.10) 

where zu is the u-quantile of the standard normal distribution. The square of the standard error 

of the Y estimate is given by: 

 
2 2

2 ˆ ˆ=Var( ) Var(ln ) 1
2

Y
Y u u

s z
Y X

n
ε

⎛ ⎞
= = +⎜

⎝ ⎠
u ⎟  (6.11) 

Combining these equations we obtain the following approximate relationship which gives the 

confidence intervals of xu for confidence level Ȗ 

 x̂u
1,2

 ≈ 
2

(1 )/ 2exp ( ) 1
2

Y
u Y

s z
y z s z

n
γ+

⎡ ⎤
+ ± +⎢ ⎥

⎢ ⎥⎣ ⎦

u  = x̂u 
2

(1 ) / 2exp 1
2

Y us z
z

n
γ+

⎡ ⎤
± +⎢ ⎥

⎢ ⎥⎣ ⎦
  (6.12) 

where z(1+Ȗ)/2 is the [(1+Ȗ)/2]-quantile of the standard normal distribution. When the parameter 

estimation is based in the method of moments, the standard error and the corresponding 

confidence intervals are different (see Kite 1988, p. 60).  

Log-normal distribution probability plot 

The normal distribution probability plot can be easily transformed in order for the log-normal 

distribution to be depicted as a straight line. Specifically, a logarithmic vertical axis has to be 

used. This depiction is equivalent to plotting the logarithm of the variable, ln x, (in the vertical 

axis) versus the standard normal variate (in the horizontal axis). 
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Numerical example 

Table 6.3 lists the observations of monthly runoff of the Evinos river basin, central-western 

Greece, upstream of the hydrometric gauge at Poros Reganiou, for the month of January. We wish 

to fit the two-parameter log-normal distribution to the data and estimate the 50-year discharge. 

Table 6.3 Observed sample of January runoff volume (in hm
3
) at the hydrometric station of 

Poros Riganiou of the Evinos river. 
 

Hydrologi-

cal year 

Runoff  Hydrologi-

cal year 

Runoff Hydrologi-

cal year 

Runoff 

1970-71 102  1977-78 121 1984-85 178 

1971-72 74  1978-79 317 1985-86 185 

1972-73 78  1979-80 213 1986-87 101 

1973-74 48  1980-81 111 1987-88 57 

1974-75 31  1981-82 82 1988-89 24 

1975-76 48  1982-83 61 1989-90 22 

1976-77 114  1983-84 133 1990-91 51 
  

The sample mean is 

 x− = ∑ x / n  = 102.4 hm
3
 

The standard deviation (biased estimate) is  

 s
 
X = ( )∑ x

2
 / n − x−2 1/2

 = 70.4 hm
3
  

and the coefficient of variation  

 ĈvX
 = sX / x− = 70.4 / 102.4 = 0.69 

The skewness coefficient (biased estimate) is  

 ĈsX
  = 1.4 

These coefficients of variation and skewness suggest a large departure from the normal 

distribution. 

 The method of moments results in  

 ı
 
Y =                          ln (1 + s

2
X / x−2

) = 0.622,  2/ln 2
YY x σµ −= = 4.435  

whereas the maximum likelihood estimates are 

  µY = ∑ ln x / n  = 4.404,  ı
 
Y =                                       ∑ (ln x)

2
 / n − µ

2
Y  = 0.687  

 The 50-year discharge can be estimated from xu = exp (µY + zu ıY) where u = 1 − 1/50 = 

0.98 and zu = 2.054 (Table A1). Using the parameters estimated by the method of moments 

we obtain x0.98 = 302.7 hm
3
, while using the maximum likelihood parameter estimates we get 

x0.98 = 335.1. In the latter case the 95% confidence interval for that value is (based on (6.12), 

for zu = 2.054 and z(1+Ȗ)/2 = 1.96): 
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Fig. 6.1 Alternative empirical and theoretical distribution functions of the January runoff at 

Poros Riganiou (normal probability plot). 
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Fig. 6.2 Alternative empirical and theoretical distribution functions of the January runoff at 

Poros Riganiou (lognormal probability plot). 
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⎩
⎨
⎧

=±=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+××±×+≈

7.199

8.562
)518.0815.5exp(

2

054.2
1

21

687.0
96.1687.0054.2404.4expˆ

2

2,1ux

 

The huge width of the confidence interval reflects a poor reliability of the prediction of the 

50-year January runoff. The reduction of the uncertainty would be made possible only by a 

substantially larger sample. 

 To test the appropriateness of the log-normal distribution we can use the Ȥ2
 test (see section 

5.5.1). As an empirical alternative, we depict in Fig. 6.1 and Fig. 6.2 comparisons of the 

empirical distribution function and the fitted log-normal theoretical distribution functions, on 

normal probability plot and on log-normal probability plot, respectively. For the empirical 

distribution we have used two plotting positions, the Weibull and the Cunnane (Table 5.8). 

Both log-normal distribution plots, resulted from the methods and the maximum likelihood 

are shown in the figures. Clearly, the maximum likelihood method results in a better fit in the 

region of small exceedence probabilities. For comparison we have also plotted the normal 

distribution, which apparently does not fit well to the data, and the Gamma distribution (see 

section 5.2.2). 

5.1.3 Three-parameter log-normal (Galton) distribution 

A combination of the normal distribution and the modified logarithmic transformation 

  (6.13) yζxζxy e)ln( +=⇔−=

results in the three-parameter log-normal distribution or the Galton distribution. This 

distribution has an additional parameter, compared to the two-parameter log-normal, the 

location parameter ζ, which is the lower limit of the variable. This third parameter results in a 

higher flexibility of the distribution fit. Specifically, if the method of moments is used to fit 

the distribution, the third parameter makes possible the preservation of the coefficient of 

skewness. Table 6.4 summarizes the basic mathematical properties and equations associated 

with the three-parameter log-normal distribution. 

Typical calculations 

The three-parameter log-normal distribution, can be handled in a similar manner with the two-

parameter log-normal distribution according to the following relationship 

  (6.14) YuY ızµ

uYuYu ζxızµy
++=⇔+= e

where zu is the u-quantile of the standard normal distribution. 

Parameter estimation 

Using the equations of Table 6.4 for the method of moments, and after algebraic manipulation 

we obtain the following relationships that estimate the parameter ıY. 
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 ( )2ln 1Yσ φ= +  (6.15) 

where 

 
2/3

1/3

1 ωφ
ω
−

= ,  

2ˆ ˆ 4

2

X Xs sC C
ω

− + +
=  (6.16) 

Table 6.4 Three-parameter log-normal distribution conspectus 

Probability density function ( )
2

2

1 )ln(

e
2)(

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−

−
= Y

Y

ı
µζx

Y

X ıπζx
xf

 

Distribution function ( )( )
x

X X
c

F x f s ds= ∫  

Range ζ < x < ∞ (continuous) 

Parameters ζ:  location parameter  

µY:  scale parameter 

ıY > 0: shape parameter 

Mean 
2

2

e
Y

Y

ı
µ

X ζµ
+

+=  

Variance ( )2 222 e eY Y Y

X

µ σ σσ +
1= −  

Third central moment ( )
2

2 2
3

3
3(3) 2e e 3e

Y
Y

Y Y

X

σ
µ σ σµ

+
2= − +  

Coefficient of skewness  ( ) ( )2 21/ 2 3/ 2

3 e 1 e 1Y Y

XsC
σ σ= − + −  

Mode 
2

e YY ıµ

p ζx
−+=  

Median 
Yµζx e5.0 +=  

 The other two parameters of the distribution can be calculated from 

 2          /)/ln( 2

YXY ıφsµ −=
φ
s

xζ X−=  (6.17) 

 The maximum likelihood method is based on the following relationships (e.g. Kite, 1988, 

p. 74) 

 ( )
1

ln /
n

Y i

i

x c nµ
=

= −∑ ,  ( ) 22

1

ln /
n

Y i Y

i

x cσ
=

= − −⎡⎣∑ nµ ⎤⎦  (6.18) 

 ( ) ( )2

1 1

ln1n n
i

Y Y

i ii i

x c

x c x
µ σ

= = c

−
− =

− −∑ ∑  (6.19) 

that can be solved only numerically. 

 The estimation of confidence intervals for the three-parameter log-normal distribution is 

complicated. The reader can consult Kite (1988, p. 77). 
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5.2 The Gamma family and related distribution functions 

5.2.1 Exponential distribution 

A very simple yet useful distribution is the exponential. Its basic characteristics are 

summarized in Table 6.5. 

Table 6.5 Exponential distribution conspectus 

Probability density function ( ) e
x

Xf x

ζ
λ

λ

−
−

=
 

Distribution function ( ) 1 e
x

XF x
ζ

λ
−

−
= −

 

Variable range ζ < x < ∞ (continuous) 

Parameters ζ:  location parameter 
Ȝ > 0:  scale parameter  

Mean Xµ ζ λ= +  

Variance 
2 2

Xσ λ=  

Third central moment 
(3) 3

Xµ λ=  

Fourth central moment 
(4) 49Xµ λ=  

Coefficient of variation 
XvC

λ
ζ λ

=
+  

Coefficient of skewness  2
XsC =  

Coefficient of kurtosis  9
XkC =  

Mode px ζ=  

Median 0.5 ln 2x ζ λ= +  

Second L moment Ȝ(2)
X  = Ȝ/2 

Third L moment Ȝ(3)
X  = Ȝ/6 

Fourth L moment Ȝ(4)
X  = Ȝ/12 

L coefficient of variation Ĳ(2)
X  = 

Ȝ
2(Ȝ + ζ) 

L skewness Ĳ(3)
X  = 1/3 

L kurtosis Ĳ(4)
X  = 1/6 

 In its simplesr form, as we have already seen in section 2.5.5, the exponential distribution 

has only one parameter, the location parameter Ȝ (the second parameter ζ is 0). The 

probability density function of the exponential distribution is a monotonically decreasing 

function (it has an inverse J shape). 
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As we have already seen (section 2.5.5), the exponential distribution can be used to 

describe non-negative geophysical variables at a fine time scale (e.g. hourly or daily rainfall 

depths). In addition, a theorem in probability theory states that intervals between random 

points in time, have exponential distribution. Application of this theorem in geophysics 

suggests that, for instance, the time intervals between rainfall events have exponential 

distribution. This is verified only as a rough approximation. The starting times of rainfall 

events cannot be regarded as random points in time; rather, a clustering behaviour is evident, 

which is related to some dependence in time (Koutsoyiannis, 2006). Moreover, the duration of 

rainfall events and the total rainfall depth in an event have been frequently assumed to have 

exponential distribution. Again this is just a rough approximation (Koutsoyiannis, 2005). 

5.2.2 Two-parameter Gamma distribution 

The two-parameter Gamma distribution is one of the most commonly used in geophysics and 

engineering hydrology. Its basic characteristics are given in Table 6.6.  

Table 6.6 Two-parameter Gamma distribution conspectus. 

Probability density function
( ) Ȝxț

țX x
țΓȜ

xf /1e
)(

1 −−=
 

Distribution function ( )
0

( )
x

X XF x f s ds= ∫  

Range 0 < x < ∞ (continuous) 

Parameters Ȝ > 0:  scale parameter  

ț > 0: shape parameter 

Mean țȜµX =  

Variance 
22 țȜıX =  

Third central moment 
3)3( 2țȜµX =  

Fourth central moment 
4)4( )2(3 ȜțțµX +=  

Coefficient of variation  
1

XvC
κ

=  

Coefficient of skewness  
2

2
X Xs vC C

κ
= =  

Coefficient of kurtosis  26
3 3 6

X Xk vC C
κ

= + = +  

Mode xp = (κ – 1) λ (for ț ≥ 1) 

xp = 0 (for ț ≤ 1) 

 Similar to the two-parameter log-normal distribution, the Gamma distribution is positively 

skewed and is defined only for nonnegative values of the variable. These characteristics make 

the Gamma distribution compatible with several geophysical variables, including monthly and 

annual flows and precipitation depths. 
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 The Gamma distribution has two parameters, the scale parameter Ȝ and the shape 

parameter ț. For ț = 1 the distribution is identical with the exponential, which is a special 

case of Gamma. For ț > 1 the probability density function is bell-shaped, whereas for ț < 1 its 

shape becomes an inverse J, with an infinite ordinate at x = 0. For large ț values (above 15-

30) the Gamma distribution approaches the normal. 

The Gamma distribution, similar to the normal, is closed under addition, but only when the 

added variables are stochastically independent and have the same scale parameter. Thus, the 

sum of two independent variables that have Gamma distribution with common scale 

parameter Ȝ, has also a Gamma distribution.  

The Ȥ2
 distribution, which has been discussed in section 2.10.4, is a special case of the 

Gamma distribution.  

Typical calculations 

Similar to the normal distribution, the integral in the Gamma distribution function does not 

have an analytical expression thus causing difficulties in calculations. A simple solution is to 

tabulate the values of the standardized variable k = (x − µX) / ıX, where µX and ıX is the mean 

value and standard deviation of X, respectively. Such tabulations are very common in 

statistics books; one is provided in Table A4 in Appendix. Each column of this table 

corresponds to a certain value of ț (or, equivalently, to a certain skewness coefficient value 

CsX = 2 / ț  = 2ıX / x−). The u-quantile (xu) is then given by 

 u X ux k Xµ σ= +  (6.20) 

where ku is read from tables for the specified value of u = FK(ku). Conversely, for given xu, the 

ku value can be calculated from (6.1) and then u = FK(ku) is taken from tables (interpolation in 

a column or among adjacent columns may be necessary).  

 Several numerical approaches can be found in literature in order to avoid the use of tables 

(Press et al., 1987; Stedinger et al., 1993; Koutsoyiannis, 1997) whereas most common 

computer applications (e.g. spreadsheets*) include ready to use functions. 

Parameter estimation 

The implementation of the method of moments results in the following simple estimates of 

the two Gamma distribution parameters: 

 
2

2

Xs

xț = ,  
x

sȜ X

2

=  (6.21) 

 Parameter estimation based on the maximum likelihood method is more complicated. It is 

based in the solution of the equations (cf. e.g. Bobée and Ashkar, 1991) 

 ∑
=

−=−
n

i

ix
n

xțȥț
1

ln
1

ln)(ln ,  
ț
xȜ =  (6.22) 

                                                 
* In Excel, these functions are GammaDist and GammaInv.   
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where ȥ(ț) = d ln Γ(ț) / dț is the so-called Digamma function (derivative of the logarithm of 

Gamma function).  

Standard error and confidence intervals of quantiles 

A point estimate of the u-quantile of Gamma distribution is given by 

 ˆ
u u Xx x k s= +  (6.23) 

If the method of moments is used to estimate the parameters the square of standard error of 

the estimate is (Bobée and Ashkar, 1991, p. 50) 

 ( ) ( )
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++= 2

2

2
2

2 1
∂
∂

2
2

1
1

X

X

XX v

s

u
vuvu

X
u C

C

k
CkCk

n

sε  (6.24) 

In a first rough approximation, the term ∂ ku /∂ CsX can be omitted, leading to the 

simplification 

 ( )
2

2 1
1 2 1 3

2X

X
u v u v

s
C k C k

n
ε 2 2

X u

⎡ ⎤= + + +⎢ ⎥⎣ ⎦
 (6.25) 

Thus, an approximation of the confidence limits for confidence coefficient Ȗ is 

 ( )
1,2

2 2

(1 ) / 2

1
ˆ ( ) 1 2 1 3

2X

X
u u X v u v

s
X ux x k s z C k C k

n
γ+≈ + ± + + +  (6.26) 

 The maximum likelihood method results in more complicated calculations of the 

confidence intervals. The interested reader may consult Bobée and Ashkar (1991, p. 46). 

Gamma distribution probability plot 

It is not possible to construct a probability paper that depicts any Gamma distribution as 

straight line. It is feasible, though, to create a Gamma probability paper for a specified shape 

parameter ț. Clearly, this is not practical, and thus the depiction of Gamma distribution is 

usually done on normal probability paper or on Weibull probability paper (see below). In that 

case obviously the distribution is not depicted as a straight line but as a curve. 

Numerical example 

We wish to fit a two-parameter Gamma distribution to the sample of January runoff of the 

river Evinos upstream of the hydrometric station of Poros Riganiou and to determine the 50-

year runoff (sample in Table 6.3). 

 The sample mean value is 102.4 hm
3
 and the sample standard deviation is 70.4 hm

3
; using 

the method of moments we obtain the following parameter estimates:  

 ț = 102.4
2
 / 70.4

2
 = 2.11, Ȝ = 70.4

2
 / 102.4 = 48.4 hm

3
.  

 For return period T = 50 or equivalently for probability of non-exceedence F = 0.98 = u we 

determine the quantile xu either by an appropriate computer function or from tabulated 

standardized quantile values (Table A4); we find k0.98 = 2.70 and  
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 xu = 102.4 + 2.70 × 70.4 = 292.5 hm

3
 

 Likewise, we can calculate a series of quantiles, thus enabling the depiction of the fitted 

Gamma distribution. This has been done in Fig. 6.1 (in normal probability plot) and in Fig. 

6.2 (in log-normal probability plot) in comparison with other distributions. We observe that in 

general the Gamma distribution fit is close to those of the log-normal distribution; in the 

region of small exceedence probabilities the log-normal distribution provides a better fit. 

 To determine the 95% confidence intervals for the 50-year discharge we use the 

approximate relationship (6.26), which for z(1+Ȗ)/2 = 1.96, ku = 2.70 and CvX = 0.69 results in 

 

( )

⎩
⎨
⎧

=±≈

××++××+××±≈

6.181

4.403
9.1105.292

70.269.031
2

1
70.269.021

21

4.70
96.15.292ˆ 22

2,1ux

 

5.2.3 Three-parameter Gamma distribution (Pearson III) 

The addition of a location parameter (ζ) to the two-parameter Gamma distribution, results in 

the three-parameter Gamma distribution or the so-called Pearson type III (Table 6.7). 

Table 6.7 Pearson type ǿǿǿ distribution conspectus. 

Probability density function ( ) Ȝζxț
țX ζx
țΓȜ

xf /)(1e)(
)(

1 −−−−=
 

Distribution function ( )( )
x

X X
c

F x f s= ∫ ds
 

Range ζ < x < ∞ (continuous) 

Parameters ζ:  location parameter  

Ȝ > 0:  scale parameter  

ț > 0: shape parameter 

Mean țȜcµX +=  

Variance 
22 țȜıX =  

Third central moment 
3)3( 2țȜµX =  

Fourth central moment 
4)4( )2(3 ȜțțµX +=  

Coefficient of skewness  
2

XsC
κ

=  

Coefficient of kurtosis  
6

3
XkC

κ
= +  

Mode xp = ζ + (κ – 1) λ (for ț ≥ 1) 

xp = ζ (for ț ≤ 1) 

 The location parameter ζ, which is the lower limit of the variable, enables a more flexible 

fit to the data. Thus, if we use the method of moments to fit the distribution, the third 

parameter permits the preservation of the coefficient of skewness.  
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 The basic characteristics are similar to those of the two-parameter Gamma distribution. 

Typical calculations are also based in equation (6.20). In contrast, the equations used for 

parameter estimation differ. Thus, the method of moments results in 

 
2ˆ

4

XsC
ț = ,  

ț
sȜ X= ,  țȜxζ −=  (6.27) 

The maximum likelihood method results in more complicated equations. The interested reader 

may consult Bobée and Ashkar (1991, p. 59) and Kite (1988, p. 117) who also provide 

formulae to estimate the standard error and confidence intervals of distribution quantiles.  

5.2.4 Log-Pearson III distribution 

The Log-Pearson III results from the Pearson type III distribution and the transformation 

 y = ln x ⇔ x = e
y
 (6.28) 

Thus, the random variable X has Log-Pearson III distribution if the variable Y has Pearson III. 

Table 6.8 summarizes the basic mathematical relationships for the Log-Pearson III 

distribution. 

Table 6.8 Log Pearson III distribution conspectus. 

Probability density function ( ) Ȝζxț
țX ζx
țΓȜx

xf /)(ln1e)(ln
)(

1 −−−−=
 

Distribution function ( )∫=
x

eζ XX dssfxF )(
 

Range e
ζ
 < x < ∞ (continuous) 

Parameters ζ:  scale parameter 

Ȝ > 0:  shape parameter 

ț > 0: shape parameter 

Mean 1,
1

1
e <⎟

⎠
⎞

⎜
⎝
⎛

−
= Ȝ

Ȝ
µ

ț
ζ

X
 

Variance 2/1,
1

1

21

1
e

2

22 <
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
−⎟

⎠
⎞

⎜
⎝
⎛

−
= Ȝ

ȜȜ
ı

țț
ζ

X  

Raw moments of order r rȜ
Ȝr

m

ț
ζrr

X /1,
1

1
e)( <⎟

⎠
⎞

⎜
⎝
⎛

−
=  

 The probability density function of the Log-Pearson III distribution can take several shapes 

like bell-, inverse-J-, U-shape and others. From Table 6.8 we can be conclude that the rth 

moment tends to infinity for Ȝ = 1/r and does not exist for greater Ȝ. This shows that the 

distribution has a long tail (see section 2.5.6), which has made it a popular choice in 

engineering hydrology. Thus, it has been extensively used to describe flood discharges; in the 

USA the Log-Pearson III has been recommended by national authorities as the distribution of 

choice for floods.  
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Typical calculations 

Typical calculations for the Log-Pearson III are based on those related to the Pearson III. 

Hence, a combination of the equations (6.20) and (6.28) gives 

 e Y u Yk

u Y u Y uy k x
µ σµ σ += + ⇔ =  (6.29) 

where the standard Gamma variate ku can be determined either from tables or numerically as 

described in section 5.2.2. 

Parameter estimation 

The parameter estimation by either the method of moments or the maximum likelihood is 

quite complicated (Bobée and Ashkar, 1991, p. 85. Kite, 1988, p. 138). Here we present a 

simpler method of moments of logarithms: According to this method we calculate the values 

yi = ln xi from the available sample and then we calculate the statistics of the values yi. 

Finally, we apply the equations resulted from the method of moments for the variable Y, thus 

we have 

 
2

4

ˆ
sYC

κ = ,  
ț

sȜ Y= ,  țȜyζ −=  (6.30) 

 As in the case of the Pearson III distribution, the estimation of the confidence intervals is 

pretty complicated.  

Log-Pearson  probability plot 

It is not possible to construct a probability paper that depicts any Log-Pearson ǿǿǿ distribution 

as a straight line. Of course it is possible to make a probability paper for a specified value of 

the shape parameter ț but this is impractical. Thus, the depiction of the Log-Pearson III 

distribution is usually done on Log-normal probability paper or on Gumbel probability paper 

(see below). In that case the distribution is not depicted as a straight line but as a curve. 

5.2.5 Two-parameter Beta distribution 

The Beta distribution is an important distribution of the probability theory and has been 

extensively used as a conditional distribution and in Bayesian statistics. Moreover, the two-

parameter Beta distribution is related to the Gamma distribution. Specifically, if X and Y are 

independent random variables with distributions Gamma(α, θ) and Gamma(ȕ, θ) respectively 

(where Gamma(α, θ) denotes a Gamma distribution with shape parameter α and scale 

parameter θ), then the random variable X / (X + Y) has Beta(α, ȕ) distribution. A basic 

property of the Beta distribution is that the variable ranges from 0 to 1, contrary to the other 

distributions examined that are unbounded from above. The Beta distribution is frequently 

used in geophysics for doubly bounded variables, e.g. relative humidity.  

 The Beta distribution has two shape parameters, α and ȕ whereas an additional scale 

parameter could be easily added. Depending on the parameter values, the probability density 

function of the Beta distribution can take a plethora of shapes. Specifically, for α = ȕ = 1 it 
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becomes identical to the uniform distribution, while for α = 1 and ȕ = 2 (or α = 2 and ȕ = 1) it 

is identical to the negatively (positively) skewed triangular distribution. If α < 1 (or ȕ < 1) the 

probability density function is infinite at point x = 0 (x = 1). If α > 1 and ȕ > 1 the Beta 

probability density function is bell shaped. Table 6.9 summarizes the basic properties of the 

Beta distribution.  

Table 6.9 Two-parameter Beta distribution conspectus. 

Probability density function
( ) 1 1( )

(1 )
( ) ( )

Xf x x xα βα β
α β

− −Γ +
= −

Γ Γ
 

Distribution function ( )
0

( )
x

X XF x f s ds= ∫  

Variable range 0 < x < 1 (continuous) 

Parameters α, ȕ > 0: shape parameters 

Mean 
X

αµ
α β

=
+  

Variance 2

2( ) (
X

1)

αβσ
α β α β

=
+ + +  

Third raw moment (3) ( 1)( 2)

( )( 1)(
Xm

2)

α α α
α β α β α β

+ +
=

+ + + + +  

Coefficient of variation  

( 1XvC
β

α α β
=

)+ +  

Mode 
2

1
p −+

−
=

ȕα
α

x  (for α, ȕ > 1) 

5.3 Generalized Pareto distribution 

The Pareto distribution was introduced by the Italian economist Vilfredo Pareto to describe 

the allocation of wealth among individuals since it seemed to describe well the fact that a 

larger portion of the wealth of a society is owned by a smaller percentage of the people. Its 

original form is expressed by the power-law equation 

 

ț

Ȝ
x

xXP

1

}{

−

⎟
⎠
⎞

⎜
⎝
⎛=>

 (6.31) 

where Ȝ is a (necessarily positive) minimum value of x (x > Ȝ) and ț is a (positive) shape 

parameter. A generalized form, the so-called generalized Pareto distribution, in which a 

location parameter ζ independent of the scale parameter Ȝ has been added, has been used in 

geophysics. Its basic characteristics are summarized in Table 6.10. Similar to the Log-Pearson 

III, the generalized Pareto distribution has a long tail. Indeed, as can be observed in Table 

6.10, its third, second and first moments diverge (become infinite) for ț ≥ 1/3, ț ≥ 1/2 and ț ≥ 

1, respectively. For its long tail the distribution recently tends to replace short-tail 

distributions such as the Gamma distribution in modelling fine-time-scale rainfall and river 
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discharge (Koutsoyiannis, 2004a,b, 2005). Since the analytical expression of the distribution 

function is very simple (Table 6.10) no tables or complicated numerical procedures are 

needed to handle it. Application of l'Hôpital's rule for ț = 0 results precisely in the 

exponential distribution, which thus can be derived as a special case of the Pareto distribution.  

Table 6.10 Generalized Pareto distribution conspectus. 

Probability density function ( )
1

1

1
1

−−

⎟
⎠
⎞

⎜
⎝
⎛ −

+=
ț

X Ȝ
ζxț

Ȝ
xf

 

Distribution function ț

X Ȝ
ζxțxF

1

11)(

−

⎟
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⎜
⎝
⎛ −

+−=
 

Range For ț > 0, ζ ≤ x < ∞  

For ț < 0, ζ ≤ x < ζ – Ȝ / ț (continuous) 

Parameters ζ: location parameter  

Ȝ > 0: scale parameter 

ț: shape parameter 

Mean 
ț
ȜζµX −

+=
1  

Variance 

 
( ) ( )țț

ȜıX
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2
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( )
( ) ( )( )țțț

țȜ
µX

31211

12
3

3
)3(

−−−
+

=  

Skewness coefficient ( )
ț

țț
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+
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Fourth L moment 
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=
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L skewness 
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+
=

3
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5.4 Extreme value distributions 

It can be easily shown that, given a number n of independent identically distributed random 

variables Y1,…,Yn, the largest (in the sense of a specific realization) of them (more precisely, 

the largest order statistic), i.e.: 

 Xn = max(Y1, …, Yn) (6.32) 

has probability distribution function:  

 Hn(x) = [F(x)]
n 

(6.33) 

where F(x) := P{Yi ≤ x} is the common probability distribution function (referred to as the 

parent distribution) of each Yi. 

The evaluation of the exact distribution (6.33) requires the parent distribution to be known. 

For n tending to infinity, the limiting distribution H(x) := H∞(x) becomes independent of F(x). 

This has been utilised in several geophysical applications, thus trying to fit (justifiably or not) 

limiting extreme value distributions, or asymptotes, to extremes of various phenomena, and 

bypassing the study of the parent distribution. According to Gumbel (1958), as n tends to 

infinity, Hn(x) converges to one of three possible asymptotes, depending on the mathematical 

form of F(x). However, all three asymptotes can be described by a single mathematical 

expression, known as the generalized extreme value (GEV) distribution of maxima. 

 The logic behind the use of the extreme value distributions is this. Let us assume that the 

variable Yi denotes the daily average discharge of a river of the day i. From (6.33), X365 will 

be then the maximum daily average discharge within a year. In practical problems of flood 

protection designs we are interested on the distribution of the variable X365 instead of that of 

Yi. It is usually assumed that the distribution of X365 (the maximum of 365 variables) is well 

approximated by one of the asymptotes. Nevertheless, the strict conditions that make the 

theoretical extreme value distributions valid are rarely satisfied in real world processes. In the 

previous example the variables Yi can neither be considered independent nor identically 

distributed. Moreover, the convergence to the asymptotic distribution in general is very slow, 

so that a good approximation may require that the maximum is taken over millions of 

variables (Koutsoyiannis, 2004a). For these reasons, the use of the asymptotic distributions 

should be done with attentiveness.  

 If are interested about minima, rather than maxima, i.e.: 

 Xn = min(Y1, …, Yn) (6.34) 

then the probability distribution function of Xn is:  

 Gn(x) = 1 – [1 – F(x)]
n 

(6.35) 

As n tends to infinity we obtain the generalized extreme value distribution of minima, a 

distribution symmetric to the generalized extreme value distribution of maxima. 
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 These two generalized distributions and their special cases are analysed below. 

Nevertheless, several other distributions have been used in geophysics to describe extremes, 

e.g. the log-normal, the two and three-parameter Gamma and the log-Pearson III distributions. 

5.4.1 Generalized extreme value distribution of maxima 

The mathematical expression that comprises all three asymptotes is known as the generalized 

extreme value (GEV) distribution. Its basic characteristics are summarized in Table 6.11.  

Table 6.11 Generalized extreme value distribution of maxima conspectus. 

Probability density function fX(x) = 
1 

Ȝ  ⎝⎜
⎛

⎠⎟
⎞

1 + ț 
 x– ζ 

Ȝ  
–1 / ț – 1

 exp⎣⎢
⎡

⎦⎥
⎤

– ⎝⎜
⎛

⎠⎟
⎞

1 + ț  
 x – ζ
Ȝ  

–1 / ț

 

Distribution function FX(x) = exp⎣⎢
⎡

⎦⎥
⎤

– ⎝⎜
⎛

⎠⎟
⎞

1 + ț 
 x – ζ
Ȝ  

–1 / ț

 

Range In general: ț x ≥ ț ζ – Ȝ 
For ț > 0 (Extreme value of maxima type II):  ζ – Ȝ / ț ≤ x < ∞ 

For ț < 0 (Extreme value of maxima type III): –∞ < x ≤ ζ – Ȝ / ț

Parameters ζ:  location parameter 

Ȝ > 0: scale parameter 

ț:  shape parameter 

Mean µX = ζ – 
 Ȝ 
ț  [1 – Γ (1 – ț)] 

Variance ı2
X = ⎝⎜

⎛
⎠⎟
⎞ Ȝ 
ț

2

[Γ(1 – 2
 ț) – Γ 2

(1 – ț)] 

Third central moment µ
(3)
X  = ⎝⎜

⎛
⎠⎟
⎞ Ȝ 
ț

3

[Γ (1 – 3
 ț) – 3 Γ (1 – 2

 ț) Γ (1 – ț) + 2Γ 3
(1 –ț)] 

Coefficient of skewness  CsX
 = sgn(ț) 

Γ (1
 
–

 
3

 ț) – 3 Γ (1
 
–

 
2

 ț) Γ (1
 
–

 ț) + 2 Γ 
 
3
(1

 
–

 ț)
[Γ (1

 
–

 
2

 ț) – Γ 
 
2
(1

 
–

 ț)]3/2   

Second L moment Ȝ(2)
X  = –Γ(–ț) (2ț – 1) Ȝ 

Third L moment Ȝ(3)
X  = –Γ(–ț) [2(3

ț
 – 1) – 3(2

ț
 – 1)] Ȝ  

Fourth L moment Ȝ(4)
X  = –Γ(–ț) [5(4

ț
 – 1) – 10(3

ț
 – 1) + 6(2

ț
 – 1)] Ȝ 

L Coefficient of variation Ĳ(2)
X  = 

Γ(1 – ț) (2ț – 1) Ȝ
 Ȝ Γ(1 – ț) + ζ ț –  Ȝ 

L Skewness Ĳ(3)
X  = 2 

3
ț
 – 1

2
ț
 – 1

 – 3 

L Kurtosis Ĳ(4)
X  = 6 + 

5(4
ț
 – 1) – 10(3

ț
 – 1)

2
ț
 – 1

 

 The shape parameter ț determines the general behaviour of the GEV distribution. For ț > 0 

the distribution is bounded from below, has long right tail, and is known as the type II 

extreme value distribution of maxima or the Fréchet distribution. For ț < 0 it is bounded from 

above and is known as the type III extreme value distribution of maxima; this is not of 
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practical interest in most real world problems because a bound from above is unrealistic. The 

limiting case where ț = 0, derived by application of l'Hôpital's rule, corresponds to the so-

called extreme value distribution of type I or the Gumbel distribution (see section 5.4.2), 

which is unbounded both from above and below. 

Typical calculations 

The simplicity of the mathematical expression of the distribution function, permits typical 

calculations to be made directly without the need of tables or numerical approximations. The 

value of the distribution function can be calculated if the variable value is known. Also, the 

inverse distribution function has an analytical expression, namely the u-quantile of the 

distribution is  

 
[ ]

ț
uȜζx

ț

u

1)ln( −−
+=

−

 (6.36) 

Parameter estimation 

As shown in Table 6.11, both coefficients of skewness and L skewness are functions of the 

shape parameter ț only, which enables the estimation of ț from either of the two expressions 

using the samples estimates of these coefficients. However the expressions are complicated 

and need to be solved numerically. Instead, the following explicit equations (Koutsoyiannis, 

2004b) can be used, which are approximations of the exact (but implicit) equations of Table 

6.11:  

 ț = 
1

3
 – 

1

0.31 + 0.91ĈsX
 + (0.91 ĈsX

)
2
 + 1.8

 (6.37) 

 ț = 8c – 3c
2
,  c := 

ln2

ln3
 – 

2

3 + Ĳ̂(3)
X

  (6.38) 

The former corresponds to the method of moments and the resulting error is smaller than 

±0.01 for –1 < ț < 1/3 (–2 < CsX
 < ∞). The latter corresponds to the method of L moments and 

the resulting error is smaller than ±0.008 for –1 < ț < 1 (–1/3 < Ĳ(3)
X  < 1). 

 Once the shape parameter is calculated, the estimation of the remaining two parameters 

becomes very simple. The scale parameter can be estimated by the method of moments from: 

 Ȝ = c1sX,  c1 = |ț| / Γ(1 – 2ț) – Γ2
(1 – ț) (6.39) 

or by the method of L moments from: 

 Ȝ = c2 l
(2)
X ,  c2 = ț/[Γ(1 – ț)(2ț – 1)] (6.40) 

The estimate of the location parameter for both the method of moments and L moments is: 

 ζ = x– – c3 Ȝ,  c3 = [Γ(1 – ț) – 1]/ț (6.41) 
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5.4.2  Extreme value distribution of maxima of type I (Gumbel) 

As we have explained in the previous section, the type I or the Gumbel distribution is a 

special case of the generalized extreme value distribution of maxima for ț = 0. Its basic 

characteristics are summarized in Table 6.12, where the constant ȖE that appears in some 

equations is the Euler* constant.  

Table 6.12 Type I or Gumbel distribution of maxima conspectus. 

Probability density function 
fX(x) =

1

Ȝ exp ⎝⎜
⎛

⎠⎟
⎞

–
x – ζ
Ȝ  exp⎣⎢

⎡
⎦⎥
⎤

– exp ⎝⎜
⎛

⎠⎟
⎞

–
x – ζ
Ȝ   

Distribution function FX(x) = exp⎣⎢
⎡

⎦⎥
⎤

–exp ⎝⎜
⎛

⎠⎟
⎞

–
x – ζ
Ȝ   

Range -∞ < x < ∞ (continuous) 

Parameters ζ:  location parameter 

Ȝ > 0: scale parameter 

Mean ȜζȜȖζµX 5772.0Ε +=+=  

Variance 
2

2 2 1.645
6

X

π 2σ λ λ= =  

Third central moment 
(3) 32.404Xµ λ=  

Fourth central moment 
(4) 414.6Xµ λ=  

Coefficient of skewness  1.1396
XsC =  

Coefficient of kurtosis  5.4
XkC =  

Mode xp = ζ 

Median 
0.5 ln( ln 0.5) 0.3665x ζ λ ζ λ= − − = +  

Second L moment Ȝ(2)
X  = Ȝ ln2 

Third L moment Ȝ(3)
X  = (2 ln3 – 3 ln2) Ȝ 

Fourth L moment Ȝ(4)
X  = 2(8 ln2 – 5 ln3) Ȝ 

L coefficient of variation Ĳ(2)
X  = 

ln2 Ȝ
ζ + ȖE Ȝ 

L skewness Ĳ(3)
X  = 2 

ln3

ln2
 – 3 ≈ 0.1699 

L kurtosis Ĳ(4)
X  = 16 – 10 

ln3

ln2
 ≈ 0.1504 

                                                 
* The Euler constant is defined as the limit 

 KL 5772156649.0ln
1
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1
1lim:E ≈⎟
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Typical calculations 

Due to the simplicity of the mathematical expression of the distribution function, typical 

calculations can be done explicitly without the need of tables or numerical approximations. 

The value of the distribution function can be calculated easily if the value of the variable is 

known. Moreover, the inverse distribution function has an analytical expression, namely the 

u-quantile of the distribution is  

 ln( ln )ux uζ λ= − −  (6.42) 

Parameter estimation 

Since the Gumbel distribution is a special case of the GEV distribution, the parameter 

estimation procedures of the latter can be applied also in this case (except for the estimation 

of ț which by definition is zero). Specifically equations (6.39)-(6.41) for the method of 

moments and L moments still hold, and the constants ci have the following values: c1 = 6/π 
= 0.78, c2 = 1/ln2 = 1.443 and c3 = ȖE = 0.577.  

 Another method that results in similar expressions is the Gumbel method (Gumbel, 1958, 

p. 227). The method is based in the least square fit of the theoretical distribution function to 

the empirical distribution. For the empirical distribution function the Weibull plotting position 

must be used. The expressions of this method depend on the sample size n. The original 

Gumbel method is based on tabulated constants. To avoid the use of tables we give the 

following expressions that are good approximations of the original method: 

 

( )0.65

1 1.57

0.78 1

Xs

n

λ =
−

+

,  
( )0.74

0.53
0.577

2.5
x

n
ζ λ

⎡ ⎤
= − −⎢ ⎥

+⎢ ⎥⎣ ⎦
 (6.43) 

The approximation error is smaller than 0.25% for the former equation and smaller than 

0.10% for the latter (for n ≥ 10). For small exceedence probabilities, the Gumbel method 

results in safer predictions in comparison to the method of moments. The maximum 

likelihood method is more complicated; the interested reader may consult Kite (1988, p. 96). 

Standard error and confidence intervals of quantiles 

If the method of moments is used to estimate the parameters, then the point estimate of the u-

quantile can be written in the following form that is equivalent to (6.42): 

 ˆ 0.5772 ln( ln )u u Xx x u x k sλ λ= − − − = +  (6.44) 

where, 

 
0.5772 ln( ln )

0.45 0.78ln( ln )u

X

u
k u

s
λ − − −

= = − − −  (6.45) 

In this case it can be shown (Gumbel, 1958, p. 228. Kite, 1988, p. 103) that the square of the 

standard error of the estimate is 
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 (
2

2 ˆ=Var( ) 1 1.1396 1.1X
X u u

s )2

uX k k
n

ε = + +  (6.46) 

Consequently, the confidence intervals of the u-quantile for confidence coefficient Ȗ is 

approximately  

 ( )1,2

2

(1 )/ 2
ˆ 1 1.1396 1.1X

u u X u

s
ux x k s z k k

n
γ+= + ± + +  (6.47) 

Gumbel probability plot 

The Gumbel distribution can be depicted as a straight line on a Gumbel probability plot. This 

plot can be easily constructed with horizontal probability axis h = −ln(−ln F) (sometimes 

called Gumbel reduced variate) and vertical axis the variable of interest. Clearly, equation 

(6.42) is a straight line in this probability plot. 

Numerical example 

Table 6.13 lists a sample of the annual maximum daily discharge of the Evinos river upstream 

of the hydrometric station of Poros Reganiou. We wish to fit the Gumbel distribution of 

maxima and to determine the 100-year maximum discharge. 

Table 6.13 Sample of annual maximum daily discharge (in m
3
/s) of the river Evinos upstream 

of the hydrometric station of Poros Reganiou. 
 

Hydrolo-

gical year

Maximum 

discharge 

 Hydrolo-

gical year

Maximum

discharge

Hydrolo-

gical year

Maximum 

discharge 

1970-71 884  1977-78 365 1984-85 317 

1971-72 305  1978-79 502 1985-86 374 

1972-73 215  1979-80 381 1986-87 188 

1973-74 378  1980-81 387 1987-88 192 

1974-75 176  1981-82 525 1988-89 448 

1975-76 430  1982-83 412 1989-90 70 

1976-77 713  1983-84 439   
  

The sample average is 

 x− = ∑ x / n  = 385.1 m
3
/s 

The standard deviation is 

 s
 
X = ∑ x

2
 / n − x−2

 = 181.5 m
3
/s  

and the coefficient of variation is 

 ĈvX
 = sX / x− = 181.5 / 385.1 = 0.47 

The skewness coefficient is 

 ĈsX
  = 0.94 
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a value close to the theoretical value of the Gumbel distribution (1.14). 

 The method of moments results in  

 Ȝ = 0.78 × 181.5 = 141.57 m
3
/s, ζ = 385.1 − 0.577 × 141.57 = 303.4 m

3
/s 

The maximum daily discharge for T = 100, or equivalently for u = 1 − 1/100 = 0.99, is 

 x0.99 = 303.4 − 141.57 × ln[−ln(0.99)] = 955.0 m
3
/s 

Based on (6.47), for 

 ku = (955.0 − 385.1) / 181.5 = 3.16, z(1+Ȗ)/2 = 1.96  

we determine the 95% confidence intervals of the 100-year maximum daily discharge: 

⎩
⎨
⎧

=±≈

×+×+×±≈

/sm9.641

/sm1.1268
1.3130.955

16.31.116.31396.11
20

5.181
96.10.955ˆ

3

3

2

2,1ux

 

 The Gumbel method using the equations (6.43), for n = 20, gives  

 Ȝ = 170.36 m
3
/s, ζ = 295.7 m

3
/s 

and the 100-year maximum discharge estimation is 

 x0.99 = 295.7 − 170.36 × ln[−ln(0.99)] = 1079.4 m
3
/s 
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Fig. 6.3 Empirical and theoretical distribution of the daily maximum discharge of the river 

Evinos at station of Poros Riganiou plotted in Gumbel of maxima probability paper. 

 Fig. 6.3 depicts a comparison of the empirical distribution function and the theoretical 

Gumbel distribution of maxima on a Gumbel probability plot. For the empirical distribution 

function we have used the Weibull and the Gringorten plotting positions. For comparison we 
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have also plotted the normal and log-Pearson III distributions. Clearly, the normal distribution 

is inappropriate (as expected) but even the Gumbel distribution does not fit well in the area of 

small exceedence probabilities that are of more interest, and seems to underestimate the 

highest discharges. The log-Person III distribution seems to be the most appropriate for the 

highest values of discharge. This seems to be a general problem for the Gumbel distribution. 

For more than have a century it has been the prevailing model for quantifying risk associated 

with extreme geophysical events. Newer evidence and theoretical studies (Koutsoyiannis, 

2004a,b, 2005) have shown that the Gumbel distribution is quite unlikely to apply to 

hydrological extremes and its application may misjudge the risk, as it underestimates 

seriously the largest extremes. Besides, it has been shown that observed samples of typical 

length (like the one of this example) may display a distorted picture of the actual distribution, 

suggesting that the Gumbel distribution is an appropriate model for geophysical extremes 

while it is not. Therefore, it can be recommended to avoid the Gumbel distribution for the 

description of extreme rainfall and river discharge and use long-tail distributions such as the 

extreme value distribution of type II or log-Pearson III.  

5.4.3 Generalized extreme value distribution of minima 

If H(x) is the generalized extreme value distribution of maxima then the distribution function 

G(x) = 1 – H(–x)  is the generalized extreme value distribution of minima. Its general 

characteristics are summarized in Table 6.14, where we have changed the sign convention in 

the parameter ț so that the distribution be unbounded from above for ț > 0 (bounded from 

below). This is similar to the generalized extreme value distribution of maxima where again ț 
> 0 corresponds to a distribution be unbounded from above. However, they are termed, 

respectively, type II extreme value distribution of maxima and type III extreme value 

distribution of minima (or the Weibull distribution). For ț < 0 the distribution of minima 

(similar to that of maxima) is bounded from above and is known as the type II extreme value 

distribution of minima; this is not of practical interest as in most real world problems a bound 

from above is unrealistic. The limiting case where ț = 0, derived by application of l'Hôpital's 

rule, corresponds to the so-called type I extreme value distribution of minima or the Gumbel 

distribution of minima, which is unbounded both from above and below. 

Typical calculations 

The mathematical expression of the generalized extreme value distribution of minima is 

similar to that of maxima. Thus, typical calculations can be done explicitly. The value of the 

distribution function can be calculated directly from the value of the variable. Also, the 

inverse distribution function has an analytical expression, namely the u-quantile of the 

distribution is given by 

 xu = ζ + 
 Ȝ 
ț {

 
[–ln (1 – u)]

ț
 – 1}   (6.48) 
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Table 6.14 Generalized extreme value distribution of minima conspectus. 

Probability density function fX(x) = 
1 

Ȝ  ⎣⎢
⎡

⎦⎥
⎤

1 + ț ⎝⎜
⎛

⎠⎟
⎞

 
 x– ζ 

Ȝ  
1 / ț – 1

 exp
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– ⎣⎢
⎡

⎦⎥
⎤

1 + ț ⎝⎜
⎛

⎠⎟
⎞

 
 x – ζ
Ȝ  

1 / ț

 

Distribution function FX(x) = 1 – exp⎣⎢
⎡

⎦⎥
⎤

– ⎝⎜
⎛

⎠⎟
⎞

1 + ț 
 x – ζ
Ȝ  

1 / ț

 

Range In general: ț x ≥ ț ζ – Ȝ 
For ț > 0 (Extreme value of minima type III):  ζ – Ȝ / ț ≤ x < ∞ 

For ț < 0 (Extreme value of minima type II): –∞ < x ≤ ζ – Ȝ / ț 

Parameters ζ:  location parameter 

Ȝ > 0: scale parameter 

ț:  shape parameter 

Mean µX = ζ + 
 Ȝ 
ț [Γ (1 + ț) – 1]  

Variance ı2
X = ⎝⎜

⎛
⎠⎟
⎞ Ȝ 
ț

2

[Γ(1 + 2
 ț) – Γ 2

(1 + ț)] 

Third central moment µ
(3)
X  = ⎝⎜

⎛
⎠⎟
⎞ Ȝ 
ț

3

[Γ (1 + 3
 ț) – 3 Γ (1 + 2

 ț) Γ (1 + ț) + 2Γ 3
(1 + ț)] 

Coefficient of skewness  CsX
 = sgn(ț) 

Γ (1
 
+

 
3

 ț) – 3 Γ (1
 
+

 
2

 ț) Γ (1
 
+

 ț) + 2 Γ 
 
3
(1

 
+

 ț)
[Γ (1

 
+

 
2

 ț) – Γ 
 
2
(1

 
+

 ț)]3/2   

Second L moment Ȝ(2)
X  = Γ(ț) (1 – 2

–ț
) Ȝ 

Third L moment Ȝ(3)
X  = Γ(ț) [3(1 – 2

–ț
) – 2(1 – 3

–ț
)] Ȝ  

Fourth L moment Ȝ(4)
X  = Γ(ț) [5(1 – 4

–ț
) – 10(1 – 3

–ț
) + 6(1 – 2

–ț
)] Ȝ 

L coefficient of variation Ĳ(2)
X  = 

Γ(1 + ț) (1 – 2
–ț

) Ȝ
 Ȝ Γ(1 + ț) + ζ ț –  Ȝ 

L skewness Ĳ(3)
X  = 3 – 2 

1 – 3
–ț

 1 – 2
–ț 

L kurtosis Ĳ(4)
X  = 6 + 

5(1 – 4
–ț

) – 10(1 – 3
–ț

)

 1 – 2
–ț  

Parameter estimation 

As shown in Table 6.14, both coefficients of skewness and L skewness are functions of the 

shape parameter ț only, which enables the estimation of ț from either of the two expressions 

using the sample estimates of these coefficients. However the expressions are complicated 

and need to be solved numerically. Instead, the following explicit equations (Koutsoyiannis, 

2004b) can be used, which are approximations of the exact (but implicit) equations of Table 

6.11:  

 ț = 
1

0.28 – 0.9ĈsX
 + 0.998 (0.9 ĈsX

)
2
 + 1.93

 – 
1

3
 (6.49) 



28 6. Typical distribution functions in geophysics, hydrology and water resources 

 
 ț = 7.8c + 4.71 c

2
,  c := 

2

3 – Ĳ̂(3)
X

 – 
ln2

ln3
  (6.50) 

The former corresponds to the method of moments and the resulting error is smaller than 

±0.01 for –1/3 < ț < 3 (–∞ < Cs < 20). The latter corresponds to the method of L moments and 

the resulting error is even smaller. 

 Once the shape parameter is known, the scale parameter can be estimated by the method of 

moments from: 

 Ȝ = c1sX,  c1 = |ț| / Γ(1 + 2ț) – Γ2
(1 + ț) (6.51) 

or by the method of L moments from: 

 Ȝ = c2 l
(2)
X ,  c2 = ț/[Γ(1 – ț)(2ț – 1)] (6.52) 

The estimate of the location parameter for both the method of moments and L moments is: 

 ζ = x– + c3 Ȝ,  c3 = [1 – Γ(1 + ț)]/ț (6.53) 

5.4.4 Extreme value distribution minima of type I (Gumbel) 

As shown in Table 6.15, the type I distribution of minima resembles the type I distribution of 

maxima. The typical calculations are also similar. The inverse distribution function has an 

analytical expression and thus the u-quantile is given by: 

 xu = ζ + Ȝ ln [–ln(1 – u)] (6.54) 

 Since the Gumbel distribution is a special case of the GEV distribution, the parameter 

estimation procedures of the latter is based on equations (6.51)-(6.53) but with constants ci as 

follows: c1 = 6/π = 0.78, c2 = 1/ln2 = 1.443 and c3 = ȖE = 0.577.  

 We can plot the Gumbel distribution of minima on a Gumbel-of-maxima probability paper 

if we replace the probability of exceedence with the probability of non-exceedence. Further, 

we can construct a Gumbel-of-minima probability plot if we use as horizontal axis the variate 

h = ln[−ln (1−F)]. 

5.4.5 Two-parameter Weibull distribution 

If in the generalized extreme value distribution of minima we assume that the lower bound 

(ζ – Ȝ/ț) is zero, we obtain the special case known as the two two-parameter Weibull 

distribution. Its main characteristics are shown in Table 6.15, where for convenience we have 

performed a change of the scale parameter replacing Ȝ/ț with α.  

Typical calculations 

The related calculations are simple as in all previous cases and the inverse distribution 

function, from which quantiles are estimated, is 

 xu = α{
 
[–ln (1 – u)]

 ț
} (6.55) 
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Table 6.15 Type I or Gumbel distribution of minima conspectus. 

Probability density function fX(x) =
1

Ȝ exp ⎝⎜
⎛

⎠⎟
⎞x – ζ

Ȝ  exp⎣⎢
⎡

⎦⎥
⎤

– exp ⎝⎜
⎛

⎠⎟
⎞x – ζ

Ȝ   

Distribution function FX(x) = 1 – exp⎣⎢
⎡

⎦⎥
⎤

–exp ⎝⎜
⎛

⎠⎟
⎞x – ζ

Ȝ   

Variable range -∞ < x < ∞ (continuous) 

Parameters ζ:  location parameter 

Ȝ > 0: scale parameter 

Mean ȜζȜȖζµX 5772.0Ε −=−=  

Variance 
2

2 2 1.645
6

X

π 2σ λ λ= =  

Third central moment 
(3) 32.404Xµ λ= −  

Fourth central moment 
(4) 414.6Xµ λ=  

Skewness coefficient 1.1396
XsC = −  

Kurtosis coefficient 5.4
XkC =  

Mode xp = ζ 

Median 0.5 ln( ln 0.5) 0.3665x ζ λ ζ λ= + − = −  

Second L moment Ȝ(2)
X  = Ȝ ln2 

Third L moment Ȝ(3)
X  = – (2 ln3 – 3 ln2) Ȝ 

Fourth L moment Ȝ(4)
X  = 2(8 ln2 – 5 ln3) Ȝ 

L coefficient of variation Ĳ(2)
X  = 

ln2 Ȝ
ζ – ȖE Ȝ 

L skewness Ĳ(3)
X  = –2 

ln3

ln2
 + 3 ≈ –0.1699 

L kurtosis Ĳ(4)
X  = 16 – 10 

ln3

ln2
 ≈ 0.1504 

Parameter estimation 

From the expressions of Table 6.14, the estimate of ț by the method of moments can be done 

from: 

 
Γ(1 + 2 ț)
Γ 2

(1 + ț)  = Ĉ
2

v
X
 + 1 (6.56) 

This is implicit for ț and can be solved only numerically. An approximate solution with 

accuracy ±0.01 για 0 < ț < 3.2 or 0 < CvX
 < 5) is 

 ț = 2.56 {exp{0.41 [ln(C
2

v + 1)]
0.58

} –1} (6.57) 

The L moment estimate is much simpler: 
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 ț = 

–ln(1 – Ĳ(2)
X )

 ln 2
  (6.58) 

Once ț has been estimated, the scale parameter for both the method of moments and L 

moments is 

 ( )țΓ
xα
+

=
1

 (6.59) 

Table 6.16 Two-parameter Weibull distribution (type III of minima) conspectus. 

Probability density function 
f(x) = 

1 

ț α ⎝⎜
⎛

⎠⎟
⎞ x 

α  
1 / ț – 1

 exp⎣⎢
⎡

⎦⎥
⎤

– ⎝⎜
⎛

⎠⎟
⎞ x 

α
1 / ț

 

Distribution function F(x) = 1 – exp⎣⎢
⎡

⎦⎥
⎤

– ⎝⎜
⎛

⎠⎟
⎞

 
 x 

α  
1 / ț

 

Range 0 < x < ∞ (continuous) 

Parameters α > 0:  scale parameter  

ț > 0: shape parameter 

Mean ( )țΓαµX += 1  

Variance ı2
X = α2

[Γ (1 + 2
 ț) – Γ 2

(1 + ț)] 

Third central moment µ
(3)
X  = α3

[Γ(1 + 3
 ț) – 3Γ(1 + 2

 ț) Γ(1 + ț) + 2Γ 3
(1 + ț)] 

Coefficient of variation CvX
 = 

[Γ (1
 
+

 
2

 ț) – Γ 
 
2
(1

 
+

 ț)]1/2

Γ (1 + ț)   

Coefficient of skewness  CsX 
= 
Γ(1

 
+

 
3

 ț) – 3 Γ(1
 
+

 
2

 ț) Γ(1
 
+

 ț) + 2 Γ 
3
(1

 
+

 ț)
[Γ(1

 
+

 
2

 ț) – Γ 
2
(1

 
+

 ț)]3/2   

Mode 
țțαx )1(p −=  (for ț > 1) 

Median ( )țαx 2ln5.0 =  

Second L moment Ȝ(2)
X  = Γ(1 + ț) (1 – 2

–ț
) α 

Third L moment Ȝ(3)
X  = Γ(1 + ț) [3(1 – 2

–ț
) – 2(1 – 3

–ț
)] α 

Fourth L moment Ȝ(4)
X  = Γ(1 + ț) [5(1 – 4

–ț
) – 10(1 – 3

–ț
) + 6(1 – 2

–ț
)] α 

L coefficient of variation Ĳ(2)
X  = 1 – 2

–ț
 

L skewness Ĳ(3)
X  = 3 – 2 

1 – 3
–ț

 1 – 2
–ț 

L kurtosis Ĳ(4)
X  = 6 + 

5(1 – 4
–ț

) – 10(1 – 3
–ț

)

 1 – 2
–ț  

 We observe that the transformation Z = ln X results in 

 ]  (6.60) eexp[1)( /)ln( țαz

z zF −−−=
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which is a Gumbel distribution of minima with location parameter ln α and scale parameter ț. 
Thus, we can also use the parameter estimation methods of the Gumbel distribution applied 

on the logarithms of the observed sample values.  

Weibull probability plot 

A probability plot where the two-parameter Weibull distribution is depicted as a straight line 

is possible. The horizontal axis is h = ln[−ln (1−F)] (similar to the plot of Gumbel of minima) 

and the vertical axis is v = ln x (logarithmic scale).  

Numerical example 

Table 6.17 lists a sample of annual minimum (average) daily discharge of the Evinos river 

upstream of the hydrometric station of Poros Reganiou. We wish to fit the Gumbel 

distribution of minima and the Weibull distribution and to determine the minimum 20-year 

discharge. 

Table 6.17 Sample of annual minimum daily discharges (in m
3
/s) of the river Evinos at the 

station of Poros Riganiou. 
 

Hydrolo-

gical year 

Minimum. 

discharge 

 Hydrolo-

gical year

Minimum 

discharge

Hydrolo-

gical year

Minimum. 

discharge 

1970-71 0.00  1977-78 2.14 1984-85 0.54 

1971-72 2.19  1978-79 2.00 1985-86 0.54 

1972-73 2.66  1979-80 1.93 1986-87 1.70 

1973-74 2.13  1980-81 2.29 1987-88 1.70 

1974-75 1.28  1981-82 2.66 1988-89 0.32 

1975-76 0.56  1982-83 2.87 1989-90 1.37 

1976-77 0.13  1983-84 1.88   
 

 

The sample mean is 

 x− = ∑ x / n  = 1.545 m
3
/s 

The standard deviation is 

 s
 
X = ∑ x

2
 / n − x−2

 = 0.878 m
3
/s  

and the coefficient of variation is 

 ĈvX
 = sX / x− = 0.878/1.545 = 0.568 

The skewness coefficient is 

 ĈsX
  = −0.40 

The negative value of the skewness coefficient is expected for a sample of minimum 

discharges. 

 For the Gumbel distribution, the method of moments yields  
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 Ȝ = 0.78 × 0.878 = 0.685 m

3
/s, ζ = 1.545 + 0.577 × 0.685 = 1.940 m

3
/s  

The minimum discharge for T = 20 years, or equivalently for u = 1/20 = 0.05, is  

 x0.05 = 1.940 + 0.685 × ln[−ln(1 − 0.05)] = −0.09 m
3
/s 

Apparently, a negative value of discharge is meaningless; we can consider that the minimum 

20-year discharge is zero. 

 For the two-parameter Weibull distribution, application of (6.57) for the method of 

moments gives  

 ț = 2.56 {exp{0.41 [ln(0.568
2
 + 1)]

0.58
} –1}= 0.55 

Hence 

 ( )55.01

1.545

+
=
Γ

α  = 1.740 m
3
/s  

and the 20-year mminimum daily discharge is estimated at  

 x0.05 = 1.740 {[−ln(1−0.05)]
0.55

}= 0.340 m
3
/s 
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Fig. 6.4 Empirical and theoretical distribution function of the minimum daily discharge of the 

river Evinos at the station Poros Riganiou in Gumbel of minima probability paper. 

 Fig. 6.4 compares graphically the empirical distribution function with the two fitted 

theoretical distributions. For the empirical distribution we have used the Weibull plotting 

position. None the two theoretical distributions fits very well to the sample, but clearly the 

Gumbel distribution performs better, especially in the area of small exceedence probabilities. 
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The two-parameter Weibull distribution is defined for x > 0, which seems to be a theoretical 

advantage due to the consistency with nature. However, in practice it turns to be a 

disadvantage due to the departure of the empirical distribution for the lowest discharges. On 

the other hand, the Gumbel distribution of minima is theoretically inconsistent as it predicts 

negative values of discharge for high return periods. An ad hoc solution is to truncate the 

Gumbel distribution at zero, as we have done above. For comparison the normal distribution 

has been also plotted in Fig. 6.4 but we do not expect to be appropriate for this problem.  
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Appendix 



Table A1  Numerical values of the standard normal distribution.

z F (z ) F
*
(z ) z F (z ) F

*
(z ) z F (z ) F

*
(z )

0 0.5 0.5 1.35 0.91149 0.08851 2.70 0.99653 0.00347

0.05 0.51994 0.48006 1.40 0.91924 0.08076 2.75 0.99702 0.00298

0.10 0.53983 0.46017 1.45 0.92647 0.07353 2.80 0.99744 0.00256

0.15 0.55962 0.44038 1.50 0.93319 0.06681 2.85 0.99781 0.00219

0.20 0.57926 0.42074 1.55 0.93943 0.06057 2.8782 0.998 0.002

0.25 0.59871 0.40129 1.60 0.94520 0.05480 2.90 0.99813 0.00187

0.2533 0.6 0.4 1.6449 0.95 0.05 2.95 0.99841 0.00159

0.30 0.61791 0.38209 1.65 0.95053 0.04947 3.00 0.99865 0.00135

0.35 0.63683 0.36317 1.70 0.95543 0.04457 3.05 0.99841 0.00159

0.40 0.65542 0.34458 1.75 0.95994 0.04006 3.0902 0.999 0.001

0.45 0.67364 0.32636 1.80 0.96407 0.03593 3.10 0.99886 0.00114

0.50 0.69146 0.30854 1.85 0.96784 0.03216 3.15 0.99900 0.00100

0.5244 0.7 0.3 1.90 0.97128 0.02872 3.20 0.99903 0.00097

0.55 0.70884 0.29116 1.95 0.97441 0.02559 3.25 0.99918 0.00082

0.60 0.72575 0.27425 2.00 0.97725 0.02275 3.2905 0.9995 0.0005

0.65 0.74215 0.25785 2.05 0.97982 0.02018 3.30 0.99942 0.00058

0.70 0.75804 0.24196 2.0537 0.98 0.02 3.35 0.99950 0.00050

0.75 0.77337 0.22663 2.10 0.98214 0.01786 3.40 0.99952 0.00048

0.80 0.78814 0.21186 2.15 0.98422 0.01578 3.45 0.99960 0.00040

0.8416 0.8 0.2 2.20 0.98610 0.01390 3.50 0.99966 0.00034

0.85 0.80234 0.19766 2.25 0.98778 0.01222 3.5402 0.9998 0.0002

0.90 0.81594 0.18406 2.30 0.98928 0.01072 3.55 0.99977 0.00023

0.95 0.82894 0.17106 2.3263 0.99 0.01 3.60 0.99980 0.00020

1.00 0.84134 0.15866 2.35 0.99061 0.00939 3.65 0.99981 0.00019

1.05 0.85314 0.14686 2.40 0.99180 0.00820 3.70 0.99984 0.00016

1.10 0.86433 0.13567 2.45 0.99286 0.00714 3.7195 0.9999 10
-4

1.15 0.87493 0.12507 2.50 0.99379 0.00621 4.27 1 - 10
-5

10
-5

1.20 0.88493 0.11507 2.55 0.99461 0.00539 4.75 1 - 10
-6

10
-6

1.25 0.89435 0.10565 2.5758 0.995 0.005 5.20 1 - 10
-7

10
-7

1.2816 0.9 0.1 2.60 0.99534 0.00466 5.61 1 - 10
-8

10
-8

1.30 0.90320 0.09680 2.65 0.99598 0.00402 6.00 1 - 10
-9

10
-9

-z F
*

(-z ) F (-z ) -z F
*

(-z ) F (-z ) -z F
*
(-z ) F (-z )

Examples: F (0.80) = 0.78814 F (-3.30) = 0.00058

z 0.8 = 0.8416 z 0.01 = -2.3263



u  = 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995

n =1 0.00 0.00 0.00 0.00 0.02 2.71 3.84 5.02 6.63 7.88

2 0.01 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21 10.60

3 0.07 0.11 0.22 0.35 0.58 6.25 7.81 9.35 11.34 12.84

4 0.21 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28 14.86

5 0.41 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09 16.75

6 0.68 0.87 1.24 1.64 2.20 10.64 12.59 14.45 16.81 18.55

7 0.99 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48 20.28

8 1.34 1.65 2.18 2.73 3.49 13.36 15.51 17.53 20.09 21.95

9 1.73 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 5.58 17.28 19.68 21.92 24.72 26.76

12 3.07 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22 28.30

13 3.57 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69 29.82

14 4.07 4.66 5.63 6.57 7.79 21.06 23.68 26.12 29.14 31.32

15 4.60 5.23 6.26 7.26 8.55 22.31 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00 34.27

17 5.70 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41 35.72

18 6.26 7.01 8.23 9.39 10.86 25.99 28.87 31.53 34.81 37.16

19 6.84 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19 38.58

20 7.43 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57 40.00

22 8.64 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29 42.80

24 9.89 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98 45.56

26 11.16 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64 48.29

28 12.46 13.56 15.31 16.93 18.94 37.92 41.34 44.46 48.28 50.99

30 13.79 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89 53.67

35 17.19 18.51 20.57 22.47 24.80 46.06 49.80 53.20 57.34 60.27

40 20.71 22.16 24.43 26.51 29.05 51.81 55.76 59.34 63.69 66.77

45 24.31 25.90 28.37 30.61 33.35 57.51 61.66 65.41 69.96 73.17

50 27.99 29.71 32.36 34.76 37.69 63.17 67.50 71.42 76.15 79.49

Examples: χ 2
0.05(5) = 1.15 χ 2

0.99(10) = 23.21

where z u  is the u -quantile of the standard normal distribution.

Table A2  Quantiles χ 2
u (n ) of the χ 2

 distribution for characteristic values of 

u  and for n  degrees of freedom.

( )n n z n
u u

≥ = + −50 2 12 1

2

2

: ( )χFor



u  = 0.9 0.95 0.975 0.99 0.995

n =1 3.08 6.31 12.71 31.82 63.66

2 1.89 2.92 4.30 6.96 9.92

3 1.64 2.35 3.18 4.54 5.84

4 1.53 2.13 2.78 3.75 4.60

5 1.48 2.02 2.57 3.36 4.03

6 1.44 1.94 2.45 3.14 3.71

7 1.41 1.89 2.36 3.00 3.50

8 1.40 1.86 2.31 2.90 3.36

9 1.38 1.83 2.26 2.82 3.25

10 1.37 1.81 2.23 2.76 3.17

11 1.36 1.80 2.20 2.72 3.11

12 1.36 1.78 2.18 2.68 3.05

13 1.35 1.77 2.16 2.65 3.01

14 1.35 1.76 2.14 2.62 2.98

15 1.34 1.75 2.13 2.60 2.95

16 1.34 1.75 2.12 2.58 2.92

17 1.33 1.74 2.11 2.57 2.90

18 1.33 1.73 2.10 2.55 2.88

19 1.33 1.73 2.09 2.54 2.86

20 1.33 1.72 2.09 2.53 2.85

22 1.32 1.72 2.07 2.51 2.82

24 1.32 1.71 2.06 2.49 2.80

26 1.31 1.71 2.06 2.48 2.78

28 1.31 1.70 2.05 2.47 2.76

30 1.31 1.70 2.04 2.46 2.75

35 1.31 1.69 2.03 2.44 2.72

40 1.30 1.68 2.02 2.42 2.70

45 1.30 1.68 2.01 2.41 2.69

50 1.30 1.68 2.01 2.40 2.68

∞ 1.28 1.64 1.96 2.33 2.58

Example: t 0.95(5) = 2.02

where z u  is the u -quantile of the standard normal distribution.

Table A3  Quantiles t u (n ) of the t  distribution for characteristic values of 

u  and for n  degrees of freedom.

n t n z
n

n
u u

≥ ≈
−

50
2

: ( )For



C s =0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
u =F 1-u =F *

κ  = ∞ 400 100 44.44 25.00 16.00 11.11 8.163 6.250 4.938 4.000 3.306 2.778 2.367 2.041 1.778 1.563 1.384 1.235 1.108 1.000

0.0001 0.9999 -3.72 -3.51 -3.30 -3.10 -2.90 -2.71 -2.53 -2.35 -2.18 -2.03 -1.88 -1.75 -1.63 -1.52 -1.42 -1.33 -1.25 -1.18 -1.11 -1.05 -1.00

0.0002 0.9998 -3.54 -3.35 -3.16 -2.98 -2.80 -2.63 -2.46 -2.30 -2.14 -2.00 -1.86 -1.73 -1.62 -1.51 -1.41 -1.33 -1.25 -1.17 -1.11 -1.05 -1.00

0.0005 0.9995 -3.29 -3.13 -2.97 -2.81 -2.65 -2.50 -2.36 -2.21 -2.08 -1.95 -1.82 -1.71 -1.60 -1.50 -1.40 -1.32 -1.24 -1.17 -1.11 -1.05 -1.00

0.001 0.999 -3.09 -2.95 -2.81 -2.67 -2.53 -2.40 -2.27 -2.14 -2.02 -1.90 -1.79 -1.68 -1.58 -1.48 -1.39 -1.31 -1.24 -1.17 -1.11 -1.05 -1.00

0.002 0.998 -2.88 -2.76 -2.64 -2.52 -2.40 -2.28 -2.17 -2.06 -1.95 -1.84 -1.74 -1.64 -1.55 -1.46 -1.38 -1.30 -1.23 -1.17 -1.10 -1.05 -1.00

0.005 0.995 -2.58 -2.48 -2.39 -2.29 -2.20 -2.11 -2.02 -1.93 -1.84 -1.75 -1.66 -1.58 -1.50 -1.42 -1.35 -1.28 -1.22 -1.15 -1.10 -1.04 -0.99

0.01 0.99 -2.33 -2.25 -2.18 -2.10 -2.03 -1.95 -1.88 -1.81 -1.73 -1.66 -1.59 -1.52 -1.45 -1.38 -1.32 -1.26 -1.20 -1.14 -1.09 -1.04 -0.99

0.02 0.98 -2.05 -2.00 -1.94 -1.89 -1.83 -1.78 -1.72 -1.66 -1.61 -1.55 -1.49 -1.44 -1.38 -1.32 -1.27 -1.22 -1.17 -1.12 -1.07 -1.02 -0.98

0.05 0.95 -1.64 -1.62 -1.59 -1.56 -1.52 -1.49 -1.46 -1.42 -1.39 -1.35 -1.32 -1.28 -1.24 -1.21 -1.17 -1.13 -1.09 -1.06 -1.02 -0.98 -0.95

0.1 0.9 -1.28 -1.27 -1.26 -1.25 -1.23 -1.22 -1.20 -1.18 -1.17 -1.15 -1.13 -1.11 -1.09 -1.06 -1.04 -1.02 -0.99 -0.97 -0.94 -0.92 -0.89

0.2 0.8 -0.84 -0.85 -0.85 -0.85 -0.86 -0.86 -0.86 -0.86 -0.86 -0.85 -0.85 -0.85 -0.84 -0.84 -0.83 -0.83 -0.82 -0.81 -0.80 -0.79 -0.78

0.3 0.7 -0.52 -0.54 -0.55 -0.56 -0.57 -0.58 -0.59 -0.60 -0.60 -0.61 -0.62 -0.62 -0.63 -0.63 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64

0.4 0.6 -0.25 -0.27 -0.28 -0.30 -0.31 -0.33 -0.34 -0.36 -0.37 -0.38 -0.39 -0.41 -0.42 -0.43 -0.44 -0.45 -0.46 -0.47 -0.48 -0.48 -0.49

0.5 0.5 0.00 -0.02 -0.03 -0.05 -0.07 -0.08 -0.10 -0.12 -0.13 -0.15 -0.16 -0.18 -0.20 -0.21 -0.23 -0.24 -0.25 -0.27 -0.28 -0.29 -0.31

0.6 0.4 0.25 0.24 0.22 0.21 0.19 0.17 0.16 0.14 0.12 0.10 0.09 0.07 0.05 0.04 0.02 0.00 -0.02 -0.03 -0.05 -0.07 -0.08

0.7 0.3 0.52 0.51 0.50 0.49 0.47 0.46 0.44 0.43 0.41 0.40 0.38 0.36 0.35 0.33 0.31 0.30 0.28 0.26 0.24 0.22 0.20

0.8 0.2 0.84 0.84 0.83 0.82 0.82 0.81 0.80 0.79 0.78 0.77 0.76 0.75 0.73 0.72 0.71 0.69 0.68 0.66 0.64 0.63 0.61

0.9 0.1 1.28 1.29 1.30 1.31 1.32 1.32 1.33 1.33 1.34 1.34 1.34 1.34 1.34 1.34 1.34 1.33 1.33 1.32 1.32 1.31 1.30

0.95 0.05 1.64 1.67 1.70 1.73 1.75 1.77 1.80 1.82 1.84 1.86 1.88 1.89 1.91 1.92 1.94 1.95 1.96 1.97 1.98 1.99 2.00

0.98 0.02 2.05 2.11 2.16 2.21 2.26 2.31 2.36 2.41 2.45 2.50 2.54 2.58 2.63 2.67 2.71 2.74 2.78 2.81 2.85 2.88 2.91

0.99 0.01 2.33 2.40 2.47 2.54 2.62 2.69 2.76 2.82 2.89 2.96 3.02 3.09 3.15 3.21 3.27 3.33 3.39 3.44 3.50 3.55 3.61

0.995 0.005 2.58 2.67 2.76 2.86 2.95 3.04 3.13 3.22 3.31 3.40 3.49 3.58 3.66 3.74 3.83 3.91 3.99 4.07 4.15 4.22 4.30

0.998 0.002 2.88 3.00 3.12 3.24 3.37 3.49 3.61 3.73 3.85 3.97 4.09 4.21 4.32 4.44 4.55 4.67 4.78 4.89 5.00 5.11 5.21

0.999 0.001 3.09 3.23 3.38 3.52 3.67 3.81 3.96 4.10 4.24 4.39 4.53 4.67 4.81 4.96 5.10 5.23 5.37 5.51 5.64 5.78 5.91

0.9995 0.0005 3.29 3.46 3.62 3.79 3.96 4.12 4.29 4.46 4.63 4.80 4.97 5.13 5.30 5.47 5.63 5.80 5.96 6.12 6.28 6.44 6.60

0.9998 0.0002 3.54 3.73 3.93 4.13 4.33 4.53 4.73 4.93 5.13 5.33 5.53 5.74 5.94 6.14 6.34 6.54 6.73 6.93 7.13 7.32 7.52
0.9999 0.0001 3.72 3.93 4.15 4.37 4.60 4.82 5.05 5.27 5.50 5.73 5.96 6.18 6.41 6.64 6.87 7.09 7.32 7.54 7.77 7.99 8.21

Note: k u  = (x  - µ X ) / σ X   ↔  x  = µ X  + σ X  k u Example: For C s  = 0.5 (κ  = 16): k 0.98 = 2.31

C s =2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0
u =F 1-u =F *

k  =1 0.907 0.826 0.76 0.69 0.64 0.59 0.549 0.510 0.476 0.444 0.416 0.391 0.367 0.346 0.327 0.309 0.292 0.277 0.263 0.250

0.0001 0.9999 -1.00 -0.95 -0.91 -0.87 -0.83 -0.80 -0.77 -0.74 -0.71 -0.69 -0.67 -0.65 -0.62 -0.61 -0.59 -0.57 -0.56 -0.54 -0.53 -0.51 -0.50

0.0002 0.9998 -1.00 -0.95 -0.91 -0.87 -0.83 -0.80 -0.77 -0.74 -0.71 -0.69 -0.67 -0.65 -0.62 -0.61 -0.59 -0.57 -0.56 -0.54 -0.53 -0.51 -0.50

0.0005 0.9995 -1.00 -0.95 -0.91 -0.87 -0.83 -0.80 -0.77 -0.74 -0.71 -0.69 -0.67 -0.65 -0.62 -0.61 -0.59 -0.57 -0.56 -0.54 -0.53 -0.51 -0.50

0.001 0.999 -1.00 -0.95 -0.91 -0.87 -0.83 -0.80 -0.77 -0.74 -0.71 -0.69 -0.67 -0.65 -0.62 -0.61 -0.59 -0.57 -0.56 -0.54 -0.53 -0.51 -0.50

0.002 0.998 -1.00 -0.95 -0.91 -0.87 -0.83 -0.80 -0.77 -0.74 -0.71 -0.69 -0.67 -0.65 -0.62 -0.61 -0.59 -0.57 -0.56 -0.54 -0.53 -0.51 -0.50

0.005 0.995 -0.99 -0.95 -0.91 -0.87 -0.83 -0.80 -0.77 -0.74 -0.71 -0.69 -0.67 -0.65 -0.62 -0.61 -0.59 -0.57 -0.56 -0.54 -0.53 -0.51 -0.50

0.01 0.99 -0.99 -0.95 -0.91 -0.87 -0.83 -0.80 -0.77 -0.74 -0.71 -0.69 -0.67 -0.65 -0.62 -0.61 -0.59 -0.57 -0.56 -0.54 -0.53 -0.51 -0.50

0.02 0.98 -0.98 -0.94 -0.90 -0.86 -0.83 -0.80 -0.77 -0.74 -0.71 -0.69 -0.67 -0.65 -0.62 -0.61 -0.59 -0.57 -0.56 -0.54 -0.53 -0.51 -0.50

0.05 0.95 -0.95 -0.91 -0.88 -0.85 -0.82 -0.79 -0.76 -0.74 -0.71 -0.69 -0.67 -0.64 -0.62 -0.61 -0.59 -0.57 -0.56 -0.54 -0.53 -0.51 -0.50

0.1 0.9 -0.89 -0.87 -0.84 -0.82 -0.79 -0.77 -0.75 -0.72 -0.70 -0.68 -0.66 -0.64 -0.62 -0.60 -0.59 -0.57 -0.55 -0.54 -0.53 -0.51 -0.50

0.2 0.8 -0.78 -0.76 -0.75 -0.74 -0.72 -0.71 -0.70 -0.68 -0.67 -0.65 -0.64 -0.62 -0.61 -0.59 -0.58 -0.56 -0.55 -0.54 -0.52 -0.51 -0.50

0.3 0.7 -0.64 -0.64 -0.64 -0.63 -0.63 -0.62 -0.62 -0.61 -0.60 -0.60 -0.59 -0.58 -0.57 -0.56 -0.55 -0.54 -0.53 -0.52 -0.51 -0.50 -0.49

0.4 0.6 -0.49 -0.49 -0.50 -0.50 -0.51 -0.51 -0.51 -0.51 -0.51 -0.51 -0.51 -0.51 -0.51 -0.50 -0.50 -0.49 -0.49 -0.48 -0.48 -0.47 -0.46

0.5 0.5 -0.31 -0.32 -0.33 -0.34 -0.35 -0.36 -0.37 -0.38 -0.38 -0.39 -0.40 -0.40 -0.40 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41

0.6 0.4 -0.08 -0.10 -0.12 -0.13 -0.15 -0.16 -0.18 -0.19 -0.20 -0.22 -0.23 -0.24 -0.25 -0.26 -0.27 -0.28 -0.29 -0.29 -0.30 -0.31 -0.31

0.7 0.3 0.20 0.19 0.17 0.15 0.13 0.11 0.09 0.08 0.06 0.04 0.02 0.01 -0.01 -0.03 -0.04 -0.06 -0.07 -0.09 -0.10 -0.11 -0.13

0.8 0.2 0.61 0.59 0.57 0.56 0.54 0.52 0.50 0.48 0.46 0.44 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24 0.23

0.9 0.1 1.30 1.29 1.28 1.27 1.26 1.25 1.24 1.22 1.21 1.20 1.18 1.16 1.15 1.13 1.11 1.10 1.08 1.06 1.04 1.02 1.00

0.95 0.05 2.00 2.00 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.01 2.00 2.00 1.99 1.99 1.98 1.97 1.96 1.95 1.94 1.93 1.92

0.98 0.02 2.91 2.94 2.97 3.00 3.02 3.05 3.07 3.09 3.11 3.13 3.15 3.17 3.19 3.20 3.21 3.23 3.24 3.25 3.26 3.27 3.27

0.99 0.01 3.61 3.66 3.71 3.75 3.80 3.85 3.89 3.93 3.97 4.01 4.05 4.09 4.12 4.16 4.19 4.22 4.26 4.29 4.31 4.34 4.37

0.995 0.005 4.30 4.37 4.44 4.51 4.58 4.65 4.72 4.78 4.85 4.91 4.97 5.03 5.09 5.14 5.20 5.25 5.31 5.36 5.41 5.46 5.50

0.998 0.002 5.21 5.32 5.42 5.53 5.63 5.73 5.83 5.92 6.02 6.11 6.21 6.30 6.39 6.47 6.56 6.65 6.73 6.81 6.89 6.97 7.05

0.999 0.001 5.91 6.04 6.17 6.30 6.42 6.55 6.67 6.79 6.92 7.03 7.15 7.27 7.38 7.50 7.61 7.72 7.83 7.94 8.04 8.15 8.25

0.9995 0.0005 6.60 6.76 6.91 7.07 7.22 7.37 7.52 7.67 7.82 7.96 8.11 8.25 8.39 8.53 8.67 8.81 8.94 9.08 9.21 9.34 9.47

0.9998 0.0002 7.52 7.71 7.90 8.09 8.28 8.47 8.65 8.84 9.02 9.20 9.38 9.56 9.74 9.92 10.09 10.26 10.43 10.60 10.77 10.94 11.11

0.9999 0.0001 8.21 8.43 8.65 8.87 9.08 9.30 9.51 9.73 9.94 10.15 10.35 10.56 10.77 10.97 11.17 11.37 11.57 11.77 11.97 12.16 12.36

Note: k u  = (x  - µ X ) / σ X   ↔  x  = µ X  + σ X  k u Example: For C s  = 2.5 (κ  = 0.64): k 0.98 = 3.05

Table A4b Quantiles (k u ) of the standardized gamma distribution for characteristic values of the coefficient of skewness C s  (≥ 2) or the shape parameter κ 
(≤ 1).

Table A4a Quantiles (k u ) of the standardized gamma distribution for characteristic values of the coefficient of skewness C s  (≤ 2) or the shape parameter κ 
(≥ 1).
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