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Summary 

This chapter aims to serve as a reminder of basic concepts of probability theory, rather than a 
systematic and complete presentation of the theory. The text follows Kolmogorov’s axiomatic 
foundation of probability and defines and discusses concepts such as random variables, 
distribution functions, independent and dependent events, conditional probability, expected 
values, moments and L moments, joint, marginal and conditional distributions, stochastic 
processes, stationarity, ergodicity, the central limit theorem, and the normal, χ2 and  Student 
distributions. Although the presentation is general and abstract, several examples with 
analytical and numerical calculations, as well as practical discussions are given, which focus 
on geophysical, and particularly hydrological, processes.  

2.1 Axiomatic foundation of probability theory  

For the understanding and the correct use of probability, it is very important to insist on the 
definitions and clarification of its fundamental concepts. Such concepts may differ from other, 
more familiar, arithmetic and mathematical concepts, and this may create confusion or even 
collapse of our cognitive construction, if we do not base it in concrete fundaments. For 
instance, in our everyday use of mathematics, we expect that all quantities are expressed by 
numbers and that the relationship between two quantities is expressed by the notion of a 
function, which to a numerical input quantity associates (maps) another numerical quantity, a 
unique output. Probability too does such a mapping, but the input quantity is not a number but 
an event, which mathematically can be represented as a set. Probability is then a quantified 
likelihood that the specific event will happen. This type of representation was proposed by 
Kolmogorov (1956)*. There are other probability systems different from Kolmogorov’s 
axiomatic system, according to which the input is not a set. Thus, in Jaynes (2003)† the input 
of the mapping is a logical proposition and probability is a quantification of the plausibility of 
the proposition. The two systems are conceptually different but the differences mainly rely on 

                                                 
* Here we cite the English translation, second edition, whilst the original publication was in German in 1933. 
† Jaynes’s book that we cite here was published after his death in 1998. 
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interpretation rather than on the mathematical results. Here we will follow Kolmogorov’s 
system. 
 Kolmogorov’s approach to probability theory is based on the notion of measure, which 
maps sets onto numbers. The objects of probability theory, the events, to which probability is 
assigned, are thought of as sets. For instance the outcome of a roulette spin, i.e. the pocket in 
which the ball eventually falls on to the wheel is one of 37 (in a European roulette – 38 in an 
American one) pockets numbered 0 to 36 and coloured black or red (except 0 which is 
coloured green). Thus all sets {0}, {1}, … {36} are events (also called elementary events). 
But they are not the only ones. All possible subsets of Ω, including the empty set Ø, are 
events. The set Ω := {0, 1, …, 36} is an event too. Because any possible outcome is contained 
in Ω, the event Ω occurs in any case and it is called the certain event. The sets ODD := {1, 3, 
5, …, 35}, EVEN := {2, 4, 6, …, 36}, RED := {1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 
30, 32, 34, 36}, and BLACK := Ω – RED – {0} are also events (in fact, betable). While 
events are represented as sets, in probability theory there are some differences from set theory 
in terminology and interpretation, which are shown in Table 2.1. 

Table 2.1 Terminology correspondence in set theory and probability theory (adapted from 
Kolmogorov, 1956) 

Set theory Events 
A = Ø Event A is impossible 
A = Ω Event A is certain 
AB = Ø (or A ∩ B = Ø; disjoint sets) Events A and B are incompatible (mutually 

exclusive) 
AB…N = Ø  Events A, B, …, N are incompatible 
X := AB…N Event X is defined as the simultaneous 

occurrence of A, B, …, N 
X := A + B + … + N (or X := A U B U … U N ) Event X is defined as the occurrence of at least 

one of the events A, B, …, N 
X := A – B Event X is defined as the occurrence of A and, 

at the same time, the non-occurrence of B 
A  (the complementary of A) The opposite event A  consisting of the non-

occurrence of A 
B ⊂ A (B is a subset of A) From the occurrence of event B follows the 

inevitable occurrence of event A 

 Based on Kolmogorov’s (1956) axiomatization, probability theory is based on three 
fundamental concepts and four axioms. The concepts are:  

1. A non-empty set Ω, sometimes called the basic set, sample space or the certain event 
whose elements ω are known as outcomes or states. 
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2. A set Σ known as σ-algebra or σ-field whose elements E are subsets of Ω, known as 
events. Ω and Ø are both members of Σ, and, in addition, (a) if E is in Σ then the 
complement Ω – E is in Σ; (b) the union of countably many sets in Σ is also in Σ.  

3. A function P called probability that maps events to real numbers, assigning each event 
E (member of Σ) a number between 0 and 1.  

The triplet (Ω, Σ, P) is called probability space. 
 The four axioms, which define properties of P, are  

Non-negativity: For any event A, P(A) ≥ 0 (2.1.I) 

Normalization: P(Ω) = 1  (2.1.II) 
   
Additivity: For any events A, B with AB = Ø, P(A + B) = P(A) + P(B) (2.1.III) 

IV. Continuity at zero: If A1 ⊃ A2 ⊃ … ⊃ An ⊃ … is a decreasing sequence of  
events, with A1A2…An… = Ø, then limn→∞P(An) = 0 (2.1.IV) 

 In the case that Σ is finite, axiom IV follows from axioms I-III; in the general case, 
however, it should be put as an independent axiom.  

2.2 Random variables 

A random variable X is a function that maps outcomes to numbers, i.e. quantifies the sample 
space Ω. More formally, a real single-valued function X(ω), defined on the basic set Ω, is 
called a random variable if for each choice of a real number a the set {X < a} for all ω for 
which the inequality X(ω) < α holds true, belongs to Σ.  
 With the notion of the random variable we can conveniently express events using basic 
mathematics. In most cases this is done almost automatically. For instance in the roulette case 
a random variable X that takes values 0 to 36 is intuitively assumed when we deal with a 
roulette experiment.  
 We must be attentive that a random variable is not a number but a function. Intuitively, we 
could think of a random variable as an object that represents simultaneously all possible states 
and only them. A particular value that a random variable may take in a random experiment, 
else known as a realization of the variable is a number. Usually we denote a random variable 
by an upper case letter, e.g. X, and its realization by a lower case letter, e.g. x. The two should 
not be confused. For example, if X represents the rainfall depth expressed in millimetres for a 
given rainfall episode (in this case Ω is the set of all possible rainfall depths) then {X ≤ 1} 
represents an event in the probability notion (a subset of Ω and a member of Σ – not to be 
confused with a physical event or episode) and has a probability P{X ≤ 1}.* If x is a 
realization of X then x ≤ 1 is not an event but a relationship between the two numbers x and 1, 

 
* The consistent notation here would be P({X ≤ 1}). However, we simplified it dropping the parentheses; we will 
follow this simplification throughout this text. Some texts follow another convention, i.e., they drop the curly 
brackets.  
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which can be either true or false. In this respect it has no meaning to write P{x ≤ 1}. 
Furthermore, if we consider the two variables X and Y it is meaningful to write P{X ≥ Y} (i.e. 
{X ≥ Y} represents an event) but there is no meaning in the expression P{x ≥ y}.  

2.3 Distribution function 

Distribution function is a function of the real variable x defined by 

 FX(x) := P{X ≤ x} (2.2) 

where X is a random variable*. Clearly, FX(x) maps numbers (x values) to numbers. The 
random variable to which this function refers (is associated) is not an argument of the 
function; it is usually denoted as a subscript of F (or even omitted if there is no risk of 
confusion). Typically FX(x) has some mathematical expression depending on some parameters 
βi. The domain of FX(x) is not identical to the range of the random variable X; rather it is 
always the set of real numbers. The distribution function is a non-decreasing function obeying 
the relationship 

 1)()()(0 =+∞≤≤−∞= XXX FxFF  (2.3) 

For its non-decreasing attitude, in the English literature the distribution function is also known 
as cumulative distribution function (cdf) – though cumulative is not necessary here. In 
hydrological applications the distribution function is also known as non-exceedence 
probability. Correspondingly, the quantity  

 ( ) { } )(1:* xFxXPxF XX −=>=  (2.4) 

is known as exceedence probability, is a non-increasing function and obeys 

  (2.5) 0)()()(1 *** =+∞≥≥−∞= XXX FxFF

 The distribution function is always continuous on the right; however, if the basic set Ω is 
finite or countable, FX(x) is discontinuous on the left at all points xi that correspond to 
outcomes ωi, and it is constant in between consecutive points. In other words, the distribution 
function in these cases is staircase-like and the random variable is called discrete. If FX(x) is 
continuous, then the random variable is called continuous. A mixed case with a continuous 
part and a discrete part is also possible. In this case the distribution function has some 
discontinuities on the left, without being staircase-like.  
 The derivative of the distribution function  

 ( ) ( )
dx

xdFxf X =:  (2.6) 

                                                 
* In original Kolmogorov’s writing FX(x) is defined as P{X < x}; however replacing ‘<’ with ‘≤’ makes the 
handling of distribution function more convenient and has prevailed in later literature.  
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is called the probability density function (sometimes abbreviated as pdf). In continuous 
variables, this function is defined everywhere but this is not the case in discrete variables, 
unless we use Dirac’s δ functions. The basic properties of fX(x) are 

  (2.7) ( ) ( ) 1,0 =≥ ∫
∞

∞−

dxxfxf XX

Obviously, the probability density function does not represent a probability; therefore it can 
take values higher than 1. Its relationship with probability is described by the following 
equation:  

 ( ) { }
x∆

x∆xXxPxf
x∆X

+≤≤
=

→0
lim  (2.8) 

 The distribution function can be calculated from the density function by the following 
relationship, inverse of (2.6)  

  (2.9) ( ) ( ) ξdξfxF
x

XX ∫
∞−

=

 For continuous random variables, the inverse function  of 1−
XF ( )xFX  exists. Consequently, 

the equation u = FX(x) has a unique solution for x, that is ( )uFx Xu
1−= . The value xu, which 

corresponds to a specific value u of the distribution function, is called u-quantile of the 
ariable X. v 

2.3.1 An example of the basic concepts of probability 
For clarification of the basic concepts of probability theory, we give the following example 
from hydrology. We are interested on the mathematical description of the possibilities that a 
certain day in a specific place and time of the year is wet or dry. These are the outcomes or 
states of our problem, so the basic set or sample space is  

 Ω = {wet, dry} 

The field Σ contains all possible events, i.e.,  

 { } { }{ }ΩΣ ,dry,wet,∅=  

To fully define probability on Σ it suffices to define the probability of one of either states, say 
P(wet). In fact this is not easy – usually it is done by induction, and it needs a set of 
observations to be available and concepts of the statistics theory (see chapter 3) to be applied. 
For the time being let us arbitrarily assume that P{wet} = 0.2. The remaining probabilities are 
obtained by applying the axioms. Clearly, P(Ω) = 1 and P(∅) = 0. Since “wet” and “dry” are 
incompatible, P{wet} + P{dry} = P({wet} + {dry}) = P(Ω) = 1, so P{dry} = 0.8.  
 We define a random variable X based on the rule 

 ( ) ( ) 1wet,0dry == XX  

We can now easily determine the distribution function of X. For any x < 0,  
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 FX(x) = P{X ≤ x} = 0 

(because X, cannot take negative values). For 0 ≤ x < 1, 

 ( ) { } { } 8.00 ===≤= XPxXPxFX  

Finally, for x ≥ 1, 

 ( ) { } { } { } 110 ==+==≤= XPXPxXPxFX  

The graphical depiction of the distribution function is shown on Fig. 2.1. The staircase-like 
shape reflects the fact that random variable is discrete. 
 If this mathematical model is to represent a physical phenomenon, we must have in mind 
that all probabilities depend on a specific location and a specific time of the year. So the 
model cannot be a global representation of the wet and dry state of a day. The model as 
formulated here is extremely simplified, because it does not make any reference to the 
succession of dry or wet states in different days. This is not an error; it simply diminishes the 
predictive capacity of the model. A better model would describe separately the probability of 
a wet day following a wet day, a wet day following a dry day (we anticipate that the latter 
should be smaller than the former), etc. We will discuss this case in section 2.4.2. 
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Fig. 2.1 Distribution function of a random variable representing the dry or wet state of a given day at a certain 
area and time of the year. 

2.4 Independent and dependent events, conditional probability  

Two events A and B are called independent (or stochastically independent), if 

 ( ) ( ) ( )BPAPABP =  (2.10) 

Otherwise A and B are called (stochastically) dependent. The definition can be extended to 
many events. Thus, the events A1, A2, …, are independent if 

 ( ) ( ) ( ) ( )
nn iiiiii APAPAPAAAP LL

2121
=  (2.11) 
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for any finite set of distinct indices i1, i2, …, in.  
 The handling of probabilities of independent events is thus easy. However, this is a special 
case because usually natural events are dependent. In the handling of dependent events the 
notion of conditional probability is vital. By definition (Kolmogorov, 1956), conditional 
probability of the event A given B (i.e. under the condition that the event B has occurred) is 
the quotient  

 ( ) ( )
( )BP
ABPBAP =:|  (2.12) 

Obviously, if P(B) = 0, this conditional probability cannot be defined, while for independent 
A and B, P(A|B) = P (A). From (2.12) it follows that 

 ( ) ( ) ( ) ( ) ( )APABPBPBAPABP || ==  (2.13) 

and 

 ( ) ( )
( )AP

BAPBPABP |)(:| =  (2.14) 

The latter equation is known as the Bayes theorem. It is easy to prove that the generalization 
of (2.11) for dependent events takes the forms 

 ( ) ( ) ( ) ( )112111 || APAAPAAAPAAP nnn LLL −=  (2.15) 

 ( ) ( ) ( ) ( )BAPBAAPBAAAPBAAP nnn |||| 112111 LLL −=  (2.16) 

which are known as the chain rules. It is also easy to prove (homework) that if A and B are 
mutually exclusive, then 

 ( ) ( ) ( )CBPCAPCBAP ||| +=+  (2.17) 

 ( ) ( ) ( ) ( ) ( )
( ) ( )BPAP

BPBCPAPACPBACP
+
+

=+
|||  (2.18) 

2.4.1 Some examples on independent events 
a.  Based on the example of section 2.3.1, calculate the probability that two consecutive days 
are wet assuming that the events in the two days are independent. 

Let A := {wet} the event that a day is wet and A  = {dry} the complementary event that a day 
is dry. As in section 2.3.1 we assume that p := P(A) = 0.2 and q := P( A ) = 0.8. Since we are 
interested on two consecutive days, our basic set will be  

 { }21212121 ,,, AAAAAAAAΩ =  

where indices 1 and 2 correspond to the first and second day, respectively. By the 
independence assumption, the required probability will be 

 ( ) ( ) ( ) 04.0: 2
21211 ==== pAPAPAAP  
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For completeness we also calculate the probabilities of all other events, which are: 

 ( ) ( ) ( ) 64.0,16.0 2
212121 ===== qAAPpqAAPAAP  

As anticipated, the sum of probabilities of all events is 1. 

b. Calculate the probability that two consecutive days are wet if it is known that one day is 
wet. 
 Knowing that one day is wet means that the event 21AA  should be excluded (has not 
occurred) or that the composite event 212121 AAAAAA ++  has occurred. Thus, we seek the 
probability  

 P2 := )|( 21212121 AAAAAAAAP ++  

which according to the definition of conditional probability is  

 

( )( )
( )212121

21212121
2 AAAAAAP

AAAAAAAAPP
++
++

=
 

Considering that all combinations of events are mutually exclusive, we obtain  

 ( )
( ) ( ) ( ) K111.0

222

2

212121

21
2 =

+
=

+
=

++
=

qp
p

pqp
p

AAPAAPAAP
AAP

P  

c. Calculate the probability that two consecutive days are wet if it is known that the first day 
is wet 
 Even though it may seem that this question is identical to the previous one, in fact it is not. 
In the previous question we knew that one day is wet, without knowing which one exactly. 
Here we have additional information, that the wet day is the first one. This information alters 
the probabilities as we will verify immediately.  
 Now we know that the composite event 2121 AAAA +  has occurred (events 21 AA  and 21 AA  
should be excluded). Consequently, the probability sought is  

 )|(: 2121213 AAAAAAPP +=  

which according to the definition of conditional probability is  

 ( )( )
( )2121

212121
3 AAAAP

AAAAAAPP
+
+

=  

or 

 ( )
( ) ( ) 2.02

2

2121

21
3 ==

+
=

+
=

+
= p

qp
p

pqp
p

AAPAAP
AAP

P  

It is not a surprise that this is precisely the probability that one day is wet, as in section 2.3.1. 
 With these examples we demonstrated two important thinks: (a) that the prior information 
we have in a problem may introduce dependences in events that are initially assumed 
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independent, and, more generally, (b) that the probability is not an objective and invariant 
quantity, characteristic of physical reality, but a quantity that depends on our knowledge or 
information on the examined phenomenon. This should not seem strange as it is always the 
case in science. For instance the location and velocity of a moving particle are not absolute 
objective quantities; they depend on the observer’s coordinate system. The dependence of 
probability on given information, or its “subjectivity” should not be taken as ambiguity; there 
was nothing ambiguous in calculating the above probabilities, based on the information given 
each time. 

2.4.2 An example on dependent events 
The independence assumption in problem 2.4.1a is obviously a poor representation of the 
physical reality. To make a more realistic model, let us assume that the probability of today 
being wet (A2) or dry 2A  depend on the state yesterday (A1 or 1A ). It is reasonable to assume 

that the following inequalities hold: 

 ( ) ( ) pAPAAP => 212 | , ( ) ( ) qAPAAP => 212 |  

  ( ) ( ) pAPAAP =< 212 | , ( ) ( ) qAPAAP =< 212 |  

The problem now is more complicated than before. Let us arbitrarily assume that  

  = 0.40,   ( 12 | AAP ) ( )12 | AAP  = 0.15  

Since 

  + ( )12 | AAP ( )12 | AAP  = 1  

we can calculate 

 ( )12 | AAP  = 1 – ( )12 | AAP  = 0.60  

Similarly,  

 ( )12 | AAP  = 1 – ( )12 | AAP  = 0.85  

 As the event 11 AA +  is certain (i.e. ( ) 111 =+ AAP ) we can write  

 ( ) ( )1122 | AAAPAP +=   

and using (2.18) we obtain 

 ( ) ( ) ( ) ( ) ( )1121122 || APAAPAPAAPAP +=  (2.19) 

It is reasonable to assume that the unconditional probabilities do not change after one day, i.e. 
that  and ( ) ( ) pAPAP == 12 ( ) ( ) pqAPAP −=== 112 . Thus, (2.19) becomes 

 p = 0.40 p + 0.15 (1 – p)   

from which we find p = 0.20 and q = 0.80. (Here we have deliberately chosen the values of 
 and ( )12 | AAP ( )12 | AAP  such as to find the same p and q as in 2.4.1a).  
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 Now we can proceed to the calculation of the probability that both days are wet: 

 ( ) ( ) ( ) 04.008.02.04.0| 2
11212 =>=×== pAPAAPAAP  

For completeness we also calculate the probabilities of all other events, which are: 

 ( ) ( ) ( ) 12.080.015.0| 11212 =×== APAAPAAP , ( ) ( ) ( ) 12.020.060.0| 11212 =×== APAAPAAP  

  ( ) ( ) ( ) 64.068.080.085.0| 2
11212 =>=×== qAPAAPAAP  

Thus, the dependence resulted in higher probabilities of consecutive events that are alike. This 
corresponds to a general natural behaviour that is known as persistence (see also chapter 4). 

2.5 Expected values and moments 

If X is a continuous random variable and g(X) is an arbitrary function of X, then we define as 
the expected value or mean of g(X) the quantity 

  (2.20) ( )[ ] ( ) ( )∫
∞

∞−

= dxxfxgXgE X:

Correspondingly, for a discrete random variable X, taking on the values x1, x2, …,  

  (2.21) ( )[ ] ( ) ( )∑
∞

=

==
1

:
i

ii xXPxgXgE

For certain types of functions g(X) we take very commonly used statistical parameters, as 
specified below: 

1. For g(X) = X r, where r = 0, 1, 2, …, the quantity  

 [ ]rr
X XEm =:)(  (2.22) 

  is called the rth moment (or the rth moment about the origin) of X. For r = 0, obviously the 
moment is 1.  

2. For g(X) = X, the quantity 

 [ ]XEmX =:  (2.23) 

  (that is the first moment) is called the mean of X. An alternative, commonly used, symbol 
for E[X] is µX. 

3. For , where r = 0, 1, 2, …, the quantity ( ) ( )r
XmXXg −=

 ( )[ ]r
X

r
X mXEµ −=:)(  (2.24) 

 is called the rth central moment of X. For r = 0 and 1 the central moments are respectively 
1 and 0. The central moments are related to the moments about the origin by 

  (2.25) ( ) ( ) r
XX

rj
X

jr
X

j
X

r
X

r
X

r
X mmmm

j
r

mm
r

mµ )0()()1()()( 11
1

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= −− LL
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 These take the following forms for small r 

  2)2()2(
XXX mmµ −=

  (2.26) 3)2()3()3( 23 XXXXX mmmmµ +−=

   42)2()3()4()4( 364 XXXXXXX mmmmmmµ −+−=

 and can be inverted to read: 

  22)2(
XXX mσm +=

  (2.27) 32)3()3( 3 XXXXX mmσµm ++=

  422)3()4()4( 64 XXXXXXX mmσmµµm +++=

4. For , the quantity ( ) ( )2
XmXXg −=

 ( )[ ]  ][ : 222)2(2
XXXX mXEmXEµσ −=−==  (2.28) 

 (that is the second central moment) is called the variance of X. The variance is also 
denoted as . Its square root, denoted as σX or StD[X] is called the standard deviation 

of X.  

[ ]XVar

 The above families of moments are the classical ones having been used for more than a 
century. More recently, other types of moments have been introduced and some of them have 
been already in wide use in hydrology. We will discuss two families.  

5. For g(X) = X [F(X)]r, where r = 0, 1, 2, …, the quantity  

 := E{X [F(X)] r}= x [F(x)] r f(x) dx = x(u) ur du (2.29) )(r
Xβ ∫

∞

∞−
∫
1

0

 is called the rth probability weighted moment of X (Greenwood et al., 1979). All 
probability weighted moments have dimensions identical to those of X (this is not the case 
in the other moments described earlier).  

6. For g(X) = X (F(X)), where r = 1, 2, …, (u) is the rth shifted Legendre polynomial, 

i.e., 

*
1−rP *

rP

 (u) := ∑ with  := *
rP

=

r

k

k
kr up

0

*
,

*
,krp

)!()!(
)!()1()1( 2 krk

kr
k

kr
k
r kr

kr

−
+−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−  

 the quantity  

 := E[X (F(X))] = x(u) (u) du (2.30) )(r
Xλ

*
1−rP ∫

1

0

*
1−rP
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 is called the rth L moment of X (Hosking, 1990). Similar to the probability weighted 

moments, the L moments have dimensions identical to those of X. The L moments are 
related to the probability weighted moments by  

 : =  (2.31) )(r
Xλ ∑

−

=

1

0

*
,

r

k
krp )(r

Xβ

 which for the most commonly used r takes the specific forms 

  =  (= mX) )1(
Xλ

)0(
Xβ

  = 2  –   )2(
Xλ

)1(
Xβ

)0(
Xβ

  = 6  – 6  +  (2.32) )3(
Xλ

)2(
Xβ

)1(
Xβ

)0(
Xβ

  = 20  – 30  + 12  –  )4(
Xλ

)3(
Xβ

)2(
Xβ

)1(
Xβ

)0(
Xβ

 In all above quantities the index X may be omitted if there is no risk of confusion. The first 
four moments, central moments and L moments are widely used in hydrological statistics as 
they have a conceptual or geometrical meaning easily comprehensible. Specifically, they 
describe the location, dispersion, skewness and kurtosis of the distribution as it is explained 
below. Alternatively, other statistical parameters with similar meaning are also used, which 
are also explained below. 

2.5.1 Location parameters 
Essentially, the mean describes the location of the centre of gravity of the shape defined by 
the probability density function and the horizontal axis (Fig. 2.2a). It is also equivalent with 
the static moment of this shape about the vertical axis (given that the area of the shape equals 
1). Often, the following types of location parameters are also used:  

1. The mode, or most probable value, xp, is the value of x for which the density fX(x) becomes 
maximum, if the random variable is continuous, or, for discrete variables, the probability 
becomes maximum. If fX(x) has one, two or many maxima, we say that the distribution is 
unimodal, bi-modal or multi-modal, respectively.  

2. The median, x0.5, is the value for which P{X ≤ x0.5} = P{X ≥ x0.5} = 1/2, if the random 
variable is continuous (analogously we can define it for a discrete variable). Thus, a 
vertical line at the median separates the shape of the density function in two equivalent 
parts each having an area of 1/2. 

 Generally, the mean, the mode and the median are not identical unless the density is has a 
symmetrical and unimodal shape.  
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2.5.2 Dispersion parameters 
The variance of a random variable and its square root, the standard deviation, which has same 
dimensions as the random variable, describe a measure of the scatter or dispersion of the 
probability density around the mean. Thus, a small variance shows a concentrated distribution 
(Fig. 2.2b). The variance cannot be negative. The lowest possible value is zero and this 
corresponds to a variable that takes one value only (the mean) with absolute certainty. 
Geometrically it is equivalent with the moment of inertia about the vertical axis passing from 
the centre of gravity of the shape defined by the probability density function and the 
horizontal axis.  
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Fig. 2.2 Demonstration of the shape characteristics of the probability density function in relation to various 
parameters of the distribution function: (a) Effect of the mean. Curves (0) and (1) have means 4 and 2, 
respectively, whereas they both have standard deviation 1, coefficient of skewness 1 and coefficient of kurtosis 
4.5. (b) Effect of the standard deviation. Curves (0) and (1) have standard deviation 1 and 2 respectively, 
whereas they both have mean 4, coefficient of skewness 1 and coefficient of kurtosis 4.5. (c) Effect of the 
coefficient of skewness. Curves (0), (1) and (2) have coefficients of skewness 0, +1.33 and -1.33, respectively, 
but they all have mean 4 and standard deviation 1; their coefficients of kurtosis are 3, 5.67 and 5.67, 
respectively. (d) Effect of the coefficient of kurtosis. Curves (0), (1) and (2) have coefficients of kurtosis 3, 5 and 
2, respectively, whereas they all have mean 4, standard deviation 1 and coefficient of skewness 0.  

 Alternative measures of dispersion are provided by the so-called interquartile range, 
defined as the difference x0.75 − x0.25, i.e. the difference of the 0.75 and 0.25 quantiles (or 
upper and lower quartiles) of the random variable (they define an area in the density function 
equal to 0.5), as well as the second L moment. This is well justified as it can be shown that 
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the second L moment is the expected value of the difference between any two random 
realizations of the random variable.  
 If the random variable is positive, as happens with most hydrological variables, two 
dimensionless parameters are also used as measures of dispersion. These are called the 
coefficient of variation and the L coefficient of variation, and are defined, respectively, by: 

 
X

X

m
σC

X
=:v ,  

X

X
X m

λτ
)2(

)2( :=  (2.33) 

2.5.3 Skewness parameters  
The third central moment and the third L moment are used as measures of skewness. A zero 
value indicates that the density is symmetric. This can be easily verified from the definition of 
the third central moment. Furthermore, the third L moment indicates the expected value of the 
difference between the middle of three random realizations of a random variable from the 
average of the other two values (the smallest and the largest); more precisely the third central 
moment is the 2/3 of this expected value. Clearly then, in a symmetric distribution the 
distances of the middle value to the smallest and largest ones will be equal to each other and 
thus the third L moment will be zero. If the third central or L moment is positive or negative, 
we say that the distribution is positively or negatively skewed respectively (Fig. 2.2c). In a 
positively skewed unimodal distribution the following inequality holds: ; the 

reverse holds for a negatively skewed distribution. More convenient measures of skewness are 
the following dimensionless parameters, named the coefficient of skewness and the L 
coefficient of skewness, respectively: 

Xmxx ≤≤ 5.0p

 3

)3(

s :
X

X

σ
µC

X
= ,  )2(

)3(
)3( :

X

X
X λ

λτ =  (2.34) 

2.5.4 Kurtosis parameters  
The term kurtosis describes the “peakedness” of the probability density function around its 
mode. Quantification of this property provide the following dimensionless coefficients, based 
on the fourth central moment and the fourth L moment, respectively:  

 4

)4(

k :
X

X

σ
µC

X
= ,  )2(

)4(
)4( :

X

X
X λ

λτ =  (2.35) 

These are called the coefficient of kurtosis  and the L coefficient of kurtosis. Reference values 
for kurtosis are provided by the normal distribution (see section 2.10.2), which has  = 3 

and  = 0.1226. Distributions with kurtosis greater than the reference values are called 

leptokurtic (acute, sharp) and have typically fat tails, so that more of the variance is due to 
infrequent extreme deviations, as opposed to frequent modestly-sized deviations. 
Distributions with kurtosis less than the reference values are called platykurtic (flat; Fig. 
.2d). 

X
Ck

)4(
Xτ

2 
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2.5.5 A simple example of a distribution function and its moments 
We assume that the daily rainfall depth during the rain days, X, expressed in mm, for a certain 
location and time period, can be modelled by the exponential distribution, i.e., 

 ( ) 0,1 / ≥−= − xexF λx
X  

where λ = 20 mm. We will calculate the location, dispersion, skewness and kurtosis 
parameters of the distribution.  
 Taking the derivative of the distribution function we calculate the probability density 
function:  

 ( ) 0,)/1( / ≥= − xeλxf λx
X  

Both the distribution and the density functions are plotted in Fig. 2.3. To calculate the mean, 
we apply (2.20) for g(X) = X: 

  [ ] ∫∫
∞

−
∞

∞−

===
0

/)/1()( dxxeλdxxxfXEm λx
XX

After algebraic manipulations: 

 mm 20== λmX  

In a similar manner we find that for any r ≥ 0 
 [ ] rrr

X λrXEm !)( ==  

and finally, applying (2.26) 

  33)3(222 mm 000162,mm 400 ==== λµλσ XX

  44)4( mm 00044019 == λµX
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Fig. 2.3 Probability density function and probability distribution function of the exponential distribution, 
modelling the daily rainfall depth at a hypothetical site and time period.  

  The mode is apparently zero (see Fig. 2.3). The inverse of the distribution function is 
calculated as follows: 
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  ( ) )1ln(1 / uλxueuxF u

λx
uX

u −−=→=−→= −

Thus, the median is mm. 9.135.0ln205.0 =×−=x  We verify that the inequality 
, which characterizes positively skewed distributions, holds. Xp mxx ≤≤ 5.0

 The standard deviation is σX = 20 mm and the coefficient of variation 
X

Cv  = 1. This is a 

very high value indicating high dispersion.  
 The coefficient of skewness is calculated for (2.34):  

  2/2 33 == λλC
Xs

This verifies the positive skewness of the distribution, as also shown in Fig. 2.3. More 
specifically, we observe that the density function has an inverse-J shape, in contrast to other, 
more familiar densities (e.g. in Fig. 2.2) that have a bell-shape. 
 The coefficient of kurtosis is calculated from (2.35): 

  9/9 44 == λλC
Xk

Its high value shows that the distribution is leptokurtic, as also depicted in Fig. 2.3. 
 We proceed now in the calculations of probability weighted and L moments as well as 
other parameters based on these. From (2.29) we find  
 

  = x(u) ur du = –λ ln(1 – u) ur du = )(r
Xβ ∫

1

0
∫
1

0 1+r
λ ∑

+

=

1

1

1r

i i
 (2.36) 

(This was somewhat tricky to calculate). This results in  

  = λ,   = )0(
Xβ

)1(
Xβ 4

3λ ,   = )2(
Xβ 18

11λ ,   = )3(
Xβ 48

25λ  (2.37) 

Then, from (2.32) we find the first four L moments and the three L moment dimensionless 
coefficients as follows: 

  = λ = 20 mm (= mX) )1(
Xλ

  = 2)2(
Xλ 4

3λ  – λ = 
2
λ  = 10 mm  

  = 6)3(
Xλ 18

11λ  – 6
4

3λ  + λ = 
6
λ  = 3.33 mm  

  = 20)4(
Xλ 48

25λ  – 30
18
11λ  + 12

4
3λ   – λ = 

12
λ  = 1.67 mm 

 )1(

)2(
)2(

X

X
X λ

λτ =  = 
2
1  = 0.5,  )2(

)3(
)3(

X

X
X λ

λτ =  = 
3
1  = 0.333,  )2(

)4(
)4(

X

X
X λ

λτ =  = 
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Despite the very dissimilar values in comparison to those of classical moments, the results 
indicate the same behaviour, i.e., that the distribution is positively skewed and leptokurtic. In 
the following chapters we will utilize both classical and L moments in several hydrological 
problems. 
 

2.5.6 Time scale and distribution shape  
In the above example we saw that the distribution of a natural quantity such as rainfall, which 
is very random and simultaneously takes only nonnegative values, at a fine timescale, such as 
daily, exhibits high variation, strongly positive skewness and inverted-J shape of probability 
density function, which means that the most probable value (mode) is zero. Clearly, rainfall 
cannot be negative, so its distribution cannot be symmetric. It happens that the main body of 
rainfall values are close to zero, but a few values are extremely high (with low probability), 
which creates the distribution tail to the right. As we will see in other chapters, the 
distribution tails are even longer (or fatter, stronger, heavier) than described by this simple 
exponential distribution. In the exponential distribution, as demonstrated above, all moments 
(for any arbitrarily high but finite value of r) exist, i.e. take finite values. This is not, however, 
the case in long-tail distributions, whose moments above a certain rank r* diverge, i.e. are 
infinite. 
 As we proceed from fine to coarser scales, e.g. from the daily toward the annual scale, 
aggregating more and more daily values, all moments increase but the standard deviation  
increases at a smaller rate in comparison to the mean, so the coefficient of variation decreases. 
In a similar manner, the coefficients of skewness and kurtosis decrease. Thus, the 
distributions tend to become more symmetric and the density functions take a more bell-
shaped pattern. As we will se below, there are theoretical reasons for this behaviour for coarse 
timescales, which are related to the central limit theorem (see section 2.10.1). A more general 
theoretical explanation of the observed natural behaviours both in fine and coarse timescales 
is offered by the principle of maximum entropy (Koutsoyiannis, 2005a, b). 

2.6 Change of variable  

In hydrology we often prefer to use in our analyses, instead of the variable X that naturally 
describes a physical phenomenon (such as the rainfall depth in the example above), another 
variable Y which is a one-to-one mathematical transformation of X, e.g. Y = g(X). If X is 
modelled as a random variable, then Y should be a random variable, too. The event { } is 
identical with the event 

yY ≤
( ){ }ygX 1−≤  where g−1 is the inverse function of g. Consequently, the 

distribution functions of X and Y are related by 

 ( ) { } ( ){ } ( )( )ygFygXPyYPyF XY
11 −− =≤=≤=  (2.38) 

 In the case that the variables are continuous and the function g differentiable, it can be 
shown that the density function of Y is given from that of X by  
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 ( ) ( )( )

( )( )ygg
ygf

yf X
Y 1

1

−

−

′
=  (2.39) 

where g΄ is the derivative of g. The application of (2.39) is elucidated in the following 
xamples.  e 

2.6.1 Example 1: the standardized variable 
Very often the following transformation of a natural variable X is used: 

 XX σmXZ /)( −=  

This is called the standardized variable, is dimensionless and, as we will prove below, it has 
(a) zero mean, (b) unit standard deviation, and (c) third and fourth central moments equal to 
the coefficients of skewness and kurtosis of X, respectively. 
 From (2.38), setting X = g−1(Z) = σXZ + mX, we directly obtain 
 ( ) ( )( ) ( )XXXXZ mzσFzgFzF +== −1  

Given that g΄(x) = 1 / σX, from (2.39) we obtain 

 ( ) ( )( )
( )( ) ( )XXXX

X
Z mzσfσ

zgg
zgf

zf +=
′

=
−

−

1

1

 

 Besides, from (2.20) we get 

 [ ] ( )[ ] ( ) ( ) ( ) =
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=== ∫∫
∞
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∞−
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∞
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and finally 

 [ ] 0== ZEmZ  

This entails that the moments about the origin and the central moments of Z are identical. 
Thus, the rth moment is 

 [ ] ( )( )[ ] ( ) =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
== ∫

∞

∞−
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∞
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2.6.2 Example 2: The exponential transformation and the Pareto distribution 
Assuming that the variable X has exponential distribution as in the example of section 2.5.5, 
we will study the distribution of the transformed variable Y = eX. The density and distribution 
of X are  

 ( ) ( ) λx
X

λx
X exFeλxf // 1,)/1( −− −==  

and our transformation has the properties 

 ( ) ( ) ( ) XX eXgYYgeXgY =′=== − ,ln, 1  

where X ≥ 0 and Y ≥ 1. From (2.38) we obtain 
 ( ) ( )( ) ( ) λλy

XYY yeyFygFyF /1/ln1 11ln −−− −=−===  

and from (2.39)  

 ( ) ( )( )
( )( )

)1/1(
ln

/ln

1

1

)/1()/1( +−
−−

−

−

===
′

= λ
λ

y

λy
X

Y yλ
y
yλ

e
eλ

ygg
ygfyf  

The latter can be more easily derived by taking the derivative of FY(y).  
 This specific distribution is known as the Pareto distribution. The rth moment of this 
distribution is  
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==== ∫∫
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This clearly shows that only a finite number of moments (r < 1/λ) exist for this distribution, 
which means that the Pareto distribution has a long-tail. 

2.7 Joint, marginal and conditional distributions 

In the above sections, concepts of probability pertaining to the analysis of a single variable X 
have been described. Often, however, the simultaneous modelling of two (or more) variables 
is necessary. Let the couple of random variables (X, Y) represent two sample spaces (ΩX, ΩY), 
respectively. The intersection of the two events { }xX ≤  and { }yY ≤ , denoted as 

 is an event of the sample space ΩXY = ΩX × ΩY. Based on 

the latter event, we can define the joint probability distribution function of (X, Y) as a function 
of the real variables (x, y): 

{ } { } { yYxXyYxX ≤≤≡≤∩≤ , }

 ( ) { }yYxXPyxFXY ≤≤= ,:,  (2.40) 

The subscripts X, Y can be omitted if there is no risk of ambiguity. If FXY is differentiable, 
then the function 

 ( ) ( )
yx

yxFyxf XY
XY ∂∂

,∂:,
2

=  (2.41) 
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is the joint probability density function of the two variables. Obviously, the following 
equation holds:  

  (2.42) ( ) ( ) ξdωdωξfyxF
x y

XYXY ∫ ∫
∞− ∞−

= ,,

 The functions 

 
( ) ( ) ( )yxFxXPxF XYyX ,lim:

∞→
=≤=

 (2.43) 

 ( ) ( ) ( )yxFyYPyF XYxY ,lim:
∞→

=≤=  

are called the marginal probability distribution functions of X and Y, respectively. Also, the 
marginal probability density functions can be defined, from 

  (2.44) ( ) ( ) ( ) ( )∫∫
∞

∞−

∞

∞−

== dxyxfyfdyyxfxf XYYXYX ,,,

 Of particular interest are the so-called conditional probability distribution function and 
conditional probability density function of X for a specified value of Y = y; these are given by 

 ( )
( )

( ) ( ) ( )
( )yf

yxfyxf
yf

ξdyξf
yxF

Y

XY
YX

Y

x

XY

YX
,|,

,
| || ==

∫
∞−  (2.45) 

respectively. Switching X and Y we obtain the conditional functions of Y. 

2.7.1 Expected values - moments 
The expected value of any given function g(X, Y) of the random variables (X, Y) is defined by  

  (2.46) ( )[ ] ( )∫ ∫
∞

∞−

∞

∞−

= dxdyyxfyxgYXgE XY ,),(:,

 The quantity  is called p + q moment of X and Y. Likewise, the quantity 
 is called the p + q central moment of X and Y. The most common of 

the latter case is the 1+1 moment, i.e., 

][ qpYXE
])()[( q

Y
p

X mYmXE −−

 ( )( )[ ] [ ] YXYXXY mmXYEmYmXEσ −=−−=:  (2.47) 

known as covariance of X and Y and also denoted as [ ]YX ,Cov . Dividing this by the standard 

deviations σX and σY we define the correlation coefficient  

 [ ]
YX

XY
XY σσ

σ
YX

YXρ ≡=
][Var][Var

,Cov:  (2.48) 

which is dimensionless with values 11 ≤≤− XYρ . As we will see later, this is an important 

parameter for the study of the correlation of two variables.  
 The conditional expected value of a function g(X) for a specified value y of Y is defined by  
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  (2.49) [ ] [ ] ( )∫

∞

∞−

==≡ dxyxfxgyYXgEyXgE YX |)(:|)(|)( |

An important quantity of this type is the conditional expected value of X: 

  (2.50) [ ] [ ] ( )∫
∞

∞−

==≡ dxyxxfyYXEyXE YX |:|| |

Likewise, the conditional expected value of Y is defined. The conditional variance of X for a 
given Y = y is defined as  

[ ]( )[ ] [ ]( ) (∫
∞

∞−

=−===−== dxyxfyYXExyYyYXEXEyYX YX ||||:]|Var[ |
22 )  (2.51)  

or  

 [ ] [ ]( )22 ||:]|Var[]|Var[ yYXEyYXEyYXyX =−===≡  (2.52)  

Both  ≡  =: η(y) and [ ]yYXE =| [ yXE | ] ]|Var[ yYX =  ≡ ] =: υ(y) are functions 

of the real variable y, rather than constants. If we do not specify in the condition the value y of 
the random variable Y, then the quantities 

|Var[ yX

[ ]YXE |  = η(Y) and  = υ(Y) become 

functions of the random variable Y. Hence, they are random variables themselves and they 
have their own expected values, i.e., 

]|Var[ YX

   (2.53) [ ] [ ] ( )∫
∞

∞−

= dyyfyXEYXEE Y|]|[ , [ ] ( )∫
∞

∞−

= dyyfyXYXE Y]|Var[]|Var[

It is easily shown that . [ ] ][]|[ XEYXEE =

2.7.2 Independent variables 
The random variables (X, Y) are called independent if for any couple of values (x, y) the 
following equation holds: 

 ( ) ( ) ( )yFxFyxF YXXY =,  (2.54) 

The following equation also holds: 

 ( ) ( ) ( )yfxfyxf YXXY =,  (2.55) 

and is equivalent with (2.54). The additional equations  

 [ ] [ ] [ ]YEXEXYEρσ XYXY =↔=↔= 00  (2.56) 

 [ ] [ ] [ ] [ ]YExXYEXExYXE ==== |,|  (2.57) 

are simple consequences of (2.54) but not sufficient conditions for the variable (X, Y) to be 
independent. Two variables (X, Y) for which (2.56) holds are called uncorrelated.  

2.7.3 Sums of variables 
A consequence of the definition of the expected value (equation (2.46)) is the relationship 
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  ( ) ( )[ ] ( )[ ] ( )[ ]YXgEcYXgEcYXgcYXgcE ,,,, 22112211 +=+  (2.58) 

where c1 and c2 are any constant values whereas g1 and g2 are any functions. Apparently, this 
property can be extended to any number of functions gi. Applying (2.58) for the sum of two 
variables we obtain  

 [ ] [ ] [ ]YEXEYXE +=+  (2.59) 

Likewise, 

 ( )[ ] ( )[ ] ( )[ ] ( )( )[ ]YXYXYX mYmXEmYEmXEmYmXE −−+−+−=−+− 2222  (2.60) 

which results in 

 [ ] [ ] [ ] [ ]YXYXYX ,Cov2VarVarVar ++=+  (2.61) 

 The probability distribution function of the sum Z = X + Y is generally difficult to 
calculate. However, if X and Y are independent then it can be shown that  

  (2.62) dwwfwzfzf YXZ )()()( ∫
∞

∞−

−=

he latter integral is known as the convolution integral of fX(x) and fY(y). T 

2.7.4 An example of correlation of two variables 
We study a lake with an area of 10 km2 lying on an impermeable subsurface. The inflow to 
the lake during the month of April, composed of rainfall and catchment runoff, is modelled as 
a random variable with mean 4.0 × 106 m3 and standard deviation 1.5 × 106 m3. The 
evaporation from the surface of the lake, which is the only outflow, is also modelled as a 
random variable with mean 90.0 mm and standard deviation 20.0 mm. Assuming that inflow 
and outflow are stochastically independent, we seek to find the statistical properties of the 
water level change in April as well as the correlation of this quantity with inflow and outflow.
 Initially, we express the inflow in the same units as the outflow. To this aim we divide the 
inflow volume by the lake area, thus calculating the corresponding change in water level. The 
mean is 4.0 × 106 / 10.0 × 106 = 0.4 m = 400.0 mm and the standard deviation 1.5 × 106 / 
10.0 × 106 = 0.15 m = 150.0 mm. 
 We denote by X and Y the inflow and outflow in April, respectively and by Z the water 
level change in the same month. Apparently,  

 Z = X − Y (2.63) 

We are given the quantities 

 [ ] [ ] mm 0.150,mm 0.400 ==== XVarσXEm XX  

 [ ] [ ] mm 0.20,mm 0.90 ==== YVarσYEm YY  
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and we have assumed that the two quantities are independent, so that their covariance 
Cov[X, Y] = 0 (see 2.56) and their correlation ρXY = 0. 
 Combining (2.63) and (2.58) we obtain 

 [ ] [ ] [ ] [ ] YXZ mmmYEXEYXEZE −=→−=−=  (2.64) 

or mZ = 310.0 mm. Subtracting (2.63) and (2.64) side by side we obtain 

 ( ) ( )YXz mYmXmZ −−−=−  (2.65) 

and squaring both sides we find  

 ( ) ( ) ( ) ( )( )YXYXz mYmXmYmXmZ −−−−+−=− 2222  

which, by taking expected values in both sides, results in the following equation (similar to 
(2.61) except in the sign of the last term) 

 [ ] [ ] [ ] [ ] [ ]YXYXYXZ ,Cov2VarVarVarVar −+=−=  (2.66) 

Since Cov[X, Y] = 0, (2.66) gives 

   2222 mm 0.900220.200.150 =+=Zσ

and σZ = 151.3 mm. 
 Multiplying both sides of (2.65) by (X − mX) and then taking expected values we find 
 ( )( )[ ] ( )[ ] ( )( )[ ]YXXXz mYmXEmXEmXmZE −−−−=−− 2  

or 

 [ ] [ ] [ ]YXXXZ ,CovVar,Cov −=  (2.67) 

in which the last term is zero. Thus, 

   222 mm 0.500220.150 === XZY σσ

Consequently, the correlation coefficient of X and Z is  

  =ZXρ ( ) ( ) 991.00.1503.151/0.50022/ =×=XZZX σσσ  

 Likewise, 

 [ ] [ ] [ ]YYXYZ Var,Cov,Cov −=  (2.68) 

The first term of the right hand side is zero and thus  

   222 mm 0.4000.20 −=−=−= YZY σσ

Consequently, the correlation coefficient of Y and Z is  

 ( ) ( ) 132.00.203.151/0.400/ −=×−== YZZYZY σσσρ  

 The positive value of ρZX manifests the fact that the water level increases with the increase 
of inflow (positive correlation of X and Z). Conversely, the negative correlation of Y and Z 
(ρZY < 0) corresponds to the fact that the water level decreases with the increase of outflow. 
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The large, close to one, value of ρZX in comparison to the much lower (in absolute value) 
value of ρZY reflects the fact that in April the change of water level depends primarily on the 
inflow and secondarily on the outflow, given that the former is greater than the latter and also 
has greater variability (standard deviation). 

2.7.5 An example of dependent discrete variables 
Further to the example of section 2.4.2, we introduce the random variables X and Y to quantify 
the events (wet or dry day) of today and yesterday, respectively. Values of X or Y equal to 0 
and 1 correspond to a day being dry and wet, respectively. We use the values of conditional 
probabilities (also called transition probabilities) of section 2.4.2, which with the current 
notation are: 

 π1|1 := P{X = 1|Y = 1} = 0.40, π0|1 := P{X = 0|Y = 1} = 0.60 

 π1|0 := P{X = 1|Y = 0} = 0.15, π0|1 := P{X = 0|Y = 1} = 0.85 

The unconditional or marginal probabilities, as found in section 2.4.2, are  

 p1 := P{X = 1} = 0.20, p0 := P{X = 0} = 0.80 

and the joint probabilities, again as found in section 2.4.2, are  

 p11 := P{X = 1, Y = 1} = 0.08, p01 := P{X = 0, Y = 1} = 0.12 

 p10 := P{X = 1, Y = 0} = 0.12, p00 := P{X = 0, Y = 0} = 0.68 

It is reminded that the marginal probabilities of Y were assumed equal to those of X, which 
resulted in time symmetry (p01 = p10). It can be easily shown (homework) that the conditional 
quantities πi|j can be determined from the joint pij and vice versa, and the marginal quantities 
pi can be determined for either of the two series. Thus, from the set of the ten above quantities 
only two are independent (e.g. π1|1 and π1|0) and all others can be calculated from these two.  
 The marginal moments of X and Y are  

 E[X] = E[Y] = 0 p0 + 1 p1 = p1 = 0.20,  E[X 2] = E[Y2] = 02 p0 + 12 p1 = p1 = 0.20 

 Var[X] = E[X 2] – E[X]2 = 0.2 – 0.22 = 0.16 = Var[Y] 

and the 1+1 joint moment is  

 E[XY] = 0 × 0 p00 + 0 × 1 p01 + 1 × 0 p10 + 1 × 1 p11= p11 = 0.08 

so that the covariance is  

 σXY ≡ Cov[X, Y] = E[XY] – E[X] E[Y] = 0.08 – 0.22 = 0.04  

and the correlation coefficient 
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 If we know that yesterday was a dry day, the moments for today are calculated from 
(2.49)-(2.52), replacing the integrals with sums and the conditional density fX|Y with the 
conditional probabilities πi|j: 

 E[X|Y = 0] = 0 π0|0 + 1 π1|0 = π1|0 = 0.15,  E[X 2|Y = 0] = 02 π0|0 + 12 π1|0 = π1|0 = 0.15 

 Var[X|Y = 0] = 0.15 – 0.152 = 0.128 

Likewise, 

 E[X|Y = 1] = 0 π0|1 + 1 π1|1 = π1|1 = 0.40,  E[X 2|Y = 1] = 02 π0|1 + 12 π1|1 = π1|1 = 0.40 

 Var[X|Y = 1] = 0.40 – 0.402 = 0.24 

We observe that in the first case, Var[X|Y = 0] < Var[X]. This can be interpreted as a decrease 
of uncertainty for the event of today, caused by the information that we have for yesterday. 
However, in the second case Var[X|Y = 1] > Var[X]. Thus, the information that yesterday was 
wet, increases uncertainty for today. However, on the average the information about yesterday 
results in reduction of uncertainty. This can be expressed mathematically by E[Var[X|Y]] 
defined in (2.53), which is a weighted average of the two Var[X|Y = j]: 

 E{Var[X|Y]} := Var[X|Y = 0] p0 + Var[X|Y = 1] p1 

This yields 

 E{Var[X|Y} := 0.128 × 0.8 + 0.24 × 0.2 = 0.15 < 0.16 = Var[X] 

2.8 Many variables 

All above theoretical analyses can be easily extended to more than two random variables. For 
instance, the distribution function of the n random variables X1, X2, …, Xn is 

 ( ) { }nnnXX xXxXPxxF
n

≤≤= ,,:,, 111,,1
KKL  (2.69) 

and is related to the n-dimensional probability density function by 

  (2.70) ( ) ( )∫ ∫
∞− ∞−

=
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The variables X1, X2, …, Xn are independent if for any x1, x2, …, xn the following holds true:  

 ( ) ( ) ( )nXXnXX xFxFxxF
nn

KLL 11,, 11
,, =  (2.71) 

 The expected values and moments are defined in a similar manner as in the case of two 
variables, and the property (2.58) is generalized for functions gi of many variables. 
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2.9 The concept of a stochastic process 

An arbitrarily (usually infinitely) large family of random variables X(t) is called a stochastic 
process (Papoulis, 1991). To each one of them there corresponds an index t, which takes 
values from an index set T. Most often, the index set refers to time. The time t can be either 
discrete (when T is the set of integers) or continuous (when T is the set of real numbers); thus 
we have respectively a discrete-time or a continuous-time stochastic process. Each of the 
random variables X(t) can be either discrete (e.g. the wet or dry state of a day) or continuous 
(e.g. the rainfall depth); thus we have respectively a discrete-state or a continuous-state 
stochastic process. Alternatively, a stochastic process may be denoted as Xt instead of X(t); the 
notation Xt is more frequent for discrete-time processes. The index set can also be a vector 
space, rather than the real line or the set of integers; this is the case for instance when we 
assign a random variable (e.g. rainfall depth) to each geographical location (a two 
dimensional vector space) or to each location and time instance (a three-dimensional vector 
space). Stochastic processes with multidimensional index set are also known as random fields.  
 A realization x(t) of a stochastic process X(t), which is a regular (numerical) function of the 
time t, is known as a sample function. Typically, a realization is observed at countable time 
instances (not in continuous time, even in a continuous-time process). This sequence of 
observations is also called a time series. Clearly then, a time series is a sequence of numbers, 
whereas a stochastic process is a family of random variables. Unfortunately, a large literature 
body does not make this distinction and confuses stochastic processes with time series.  

2.9.1 Distribution function 
The distribution function of the random variable Xt, i.e.,  

 ( ) ( ){ }xtXPtxF ≤=:;  (2.72) 

is called first order distribution function of the process. Likewise, the second order 
distribution function is 

 ( ) ( ) ( ){ }22112121 ,:,;, xtXxtXPttxxF ≤≤=  (2.73) 

and the nth order distribution function 

 ( ) ( ) ( ){ }nnnn xtXxtXPttxxF ≤≤= ,,:,,;,, 1111 KKK  (2.74) 

A stochastic process is completely determined if we know the nth order distribution function 
for any n. The nth order probability density function of the process is derived by taking the 
derivatives of the distribution function with respect to all xi.  

2.9.2 Moments 
The moments are defined in the same manner as in sections 2.5 and 2.7.1. Of particular 
interest are the following:  

1. The process mean, i.e. the expected value of the variable X(t): 
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2. The process autocovariance, i.e. the covariance of the random variables X(t1) and X(t2): 

 ( ) ( ) ( )[ ] ( ) ( )( ) ( ) ( )( )[ ]22112121 ,Cov:, tmtXtmtXEtXtXttC −−==  (2.76) 

 The process variance (the variance of the variable X(t)), is Var[X(t)] = C(t, t). 
Consequently, the process autocorrelation (the correlation coefficient of the random variables 
X(t1) and X(t2)) is 
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2.9.3 Stationarity  
As implied by the above notation, in the general setting, the statistics of a stochastic process, 
such as the mean and autocovariance, depend on time and thus vary with time. However, the 
case where these statistical properties remain constant in time is most interesting. A process 
with this property is called stationary process. More precisely, a process is called strict-sense 
stationary if all its statistical properties are invariant to a shift of time origin. That is, the 
distribution function of any order of X(t + τ) is identical to that of X(t). A process is called 
wide-sense stationary if its mean is constant and its autocovariance depends only on time 
differences, i.e.  

 E[X(t)] = µ,    Ε[(X(τ) – µ) (X(t + τ) – µ)] = C(τ) (2.78) 

A strict-sense stationary process is also wide-sense stationary but the inverse is not true. 
 A process that is not stationary is called nonstationary. In a nonstationary process one or 
more statistical properties depend on time. A typical case of a nonstationary process is a 
cumulative process whose mean is proportional to time. For instance, let us assume that the 
rainfall intensity Ξ(t) at a geographical location and time of the year is a stationary process, 
with a mean µ. Let us further denote X(t) the rainfall depth collected in a large container (a 
cumulative raingauge) at time t and assume that at the time origin, t = 0, the container is 
empty. It is easy then to understand that E[X(t)] = µ t. Thus X(t) is a nonstationary process.  
 We should stress that stationarity and nonstationarity are properties of a process, not of a 
sample function or time series. There is some confusion in the literature about this, as a lot of 
studies assume that a time series is stationary or not, or can reveal whether the process is 
stationary or not. As a general rule, to characterise a process nonstationary, it suffices to show 
that some statistical property is a deterministic function of time (as in the above example of 
the raingauge), but this cannot be straightforwardly inferred merely from a time series.  
 Stochastic processes describing periodic phenomena, such as those affected by the annual 
cycle of Earth, are clearly nonstationary. For instance, the daily temperature at a mid-latitude 
location could not be regarded as a stationary process. It is a special kind of a nonstationary 
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process, as its properties depend on time on a periodical manner (are periodic functions of 
time). Such processes are called cyclostationary processes.  

2.9.4 Ergodicity 
The concept of ergodicity (from the Greek words ergon – work – and odos – path) is central 
for the problem of the determination of the distribution function of a process from a single 
sample function (time series) of the process. A stationary stochastic process is ergodic if any 
statistical property can be determined from a sample function. Given that in practice, the 
statistical properties are determined as time averages of time series, the above definition can 
be stated alternatively as: a stationary stochastic process is ergodic if time averages equal 
ensemble averages (i.e. expected values). For example, a stationary stochastic process is mean 
ergodic if  

 [ ] ( )∑
=

∞→
=
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tX
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1lim)(  (for a discrete time process) 
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 The left-hand side in the above equations represents the ensemble average whereas the 
right-hand side represents the time average, for the limiting case of infinite time. Whilst the 
left-hand side is a parameter, rather than a random variable, the right-hand side is a random 
variable (as a sum or integral of random variables). The equating of a parameter with a 
random variable implies that the random variable has zero variance. This is precisely the 
condition that makes a process ergodic, a condition that does not hold true for every stochastic 
process. 

2.10 The central limit theorem and some common distribution functions 

The central limit theorem is one of the most important in probability theory. It concerns the 
limit distribution function of a sum of random variables – components, which, under some 
conditions but irrespectively of the distribution functions of the components, is always the 
same, the celebrated normal distribution. This is the most commonly used distribution in 
probability theory as well as in all scientific disciplines and can be derived not only as a 
consequence of the central limit theorem but also from the principle of maximum entropy, a 
very powerful physical and mathematical principle (Papoulis, 1990, p. 422-430). 
 In this section we will present the central limit theorem, the normal distribution, and some 
other distributions closely connected to the normal (χ2 and Student). All these distributions are 
fundamental in statistics (chapter 3) and are commonly used for statistical estimation and 
prediction. Besides, the normal distribution has several applications in hydrological statistics, 
which will be discussed in chapters 5 and 6.  
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2.10.1 The central limit theorem and its importance 
Let Xi (i = 1, …, n) be random variables and let Z := X1 + X2 + … + Xn be its sum with E[Z] = 
mZ and Var[Z] = sZ

2. The central limit theorem says that the distribution of Z, under some 
general conditions (see below) has a specific limit as n tends to infinity, i.e., 
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and in addition, if Xi are continuous variables, the density function of Z has also a limit, 
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The distribution function in the right-hand side of (2.80) is called the normal (or Gauss) 
distribution and, likewise, the function in the right-hand side of (2.81) is called the normal 
probability density function.  
 In practice, the convergence for n → ∞ can be regarded as an approximation if n is 
sufficiently large. How large should n be so that the approximation be satisfactory, depends 
on the (joint) distribution of the components Xi. In most practical application, a value n = 30 is 
regarded to be satisfactory (with the condition that Xi are independent and identically 
distributed). Fig. 2.4 gives a graphical demonstration of the central limit theorem based on an 
example. Starting from independent random variables Xi with exponential distribution, which 
is positively skewed, we have calculated (using (2.62)) and depicted the distribution of the 
sum of 2, 4, 8, 16 and 32 variables. If the distribution of Xi were symmetric, the convergence 
would be much faster.  

0

0.2

0.4

0.6

0.8

1

-2.5 -1.5 -0.5 0.5 1.5 2.5
x, z n

f X (x ), f Zn (z n )

 
Fig. 2.4 Convergence of the sum of exponentially distributed random variables to the normal distribution (thick 
line). The dashed line with peak at x = −1 represents the probability density of the initial variables Xi, which is 
fX(x) = e−(x−1) (mean 0, standard deviation 1). The dotted lines (going from the more peaked to the less peaked) 
represent the densities of the sums Zn = (X1 + … + Xn) / n for n = 2, 4, 8, 16 and 32. (The division of the sum by 
n helps for a better presentation of the curves, as all Zi have the same mean and variance, 0 and 1, respectively, 
and does not affect the essentials of the central limit theorem.)  

 The conditions for the validity of the central limit theorem are general enough, so that they 
are met in many practical situations. Some sets of conditions (e.g. Papoulis, 1990, p. 215) 
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with particular interest are the following: (a) the variables Xi are independent identically 
distributed with finite third moment; (b) the variables Xi are bounded from above and below 
with variance greater than zero; (c) the variables Xi are independent with finite third moment 
and the variance of Z tends to infinity as n tends to infinity. The theorem has been extended 
for variables Xi that are interdependent, but each one is effectively dependent on a finite 
number of other variables. Practically speaking, the central limit theorem gives satisfactory 
approximations for sums of variables unless the tail of the density functions of Xi are over-
exponential (long, like in the Pareto example; see section 2.6.2) or the dependence of the 
variables is very strong and spans the entire sequence of Xi (long range dependence; see 
chapter 4). Note that the normal density function has an exponential tail (it can be 
approximated by an exponential decay for large x) and all its moments exist (are finite), 
whereas in over-exponential densities all moments beyond a certain order diverge. Since in 
hydrological processes the over-exponential tails, as well as the long-range dependence, are 
not uncommon, we must be attentive in the application of the theorem. 
 We observe in (2.80) and (2.81) that the limits of the functions FZ(z) and fZ(z) do not 
depend on the distribution functions of Xi, that is, the result is the same irrespectively of the 
distribution functions of Xi. Thus, provided that the conditions for the applicability of the 
theorem hold, (a) we can know the distribution function of the sum without knowing the 
distribution of the components, and (b) precisely the same distribution describes any variable 
that is a sum of a large number of components. Here lies the great importance of the normal 
distribution in all sciences (mathematical, physical, social, economical, etc.). Particularly, in 
statistics, as we will see in chapter 3, the central limit theorem implies that the sample average 
for any type of variables will have normal distribution (for a sample large enough). 
 In hydrological statistics, as we will see in chapters 5 and 6 in more detail, the normal 
distribution describes with satisfactory accuracy variables that refer to long time scales such 
as annual. Thus, the annual rainfall depth in a wet area is the sum of many (e.g. more than 30) 
independent rainfall events during the year (this, however, is not valid for rainfall in dry 
areas). Likewise, the annual runoff volume passing through a river section can be regarded as 
the sum of 365 daily volumes. These are not independent, but as an approximation, the central 
limit theorem can be applicable again.  

2.10.2 The normal distribution 
The random variable X is normally distributed or (Gauss distributed) with parameters µ and σ 
(symbolically N(µ, σ) if its probability density is  
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The corresponding distribution function is 
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 The mean and standard deviation of X are µ and σ, respectively. The distribution is 
symmetric (Fig. 2.5) and thus its third central moment and its third L moment are zero. The 
fourth central moment is 3σ4 (hence Ck = 3) and the fourth L moment is   (hence 

). 
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 The integral in the right-hand side of (2.83) is not calculated analytically. Thus, the typical 
calculations (x → FX(x) or FX(x) → x) are done either numerically or using tabulated values of 
the so-called standard normal variate Z, that is obtained from X with the transformation 
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=  (2.84) 

and its distribution is N(0,1). It is easy to obtain (see section 2.6.1) that  
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Such tables are included in all textbooks of probability and statistics, as well as in the 
Appendix of this text. However, nowadays all common numerical computer packages 
(including spreadsheet applications etc.) include functions for the direct calculation of the 
integral.*  
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Fig. 2.5 Two examples of normal probability density function (a) N(0,1) and (b) N(2, 2). 

2.10.3 A numerical example of the application of the normal distribution 
We assume that in an area with wet climate the annual rainfall depth is normally distributed 
with µ = 1750 mm and σ = 410 mm. To find the exceedence probability of the value 2500 mm 
we proceed with the following steps, using the traditional procedure with tabulated z values: z 
= (2500 − 1750) / 410 = 1.83. From normal distribution tables, FZ(z) = 0.9664 (= FX(x)). 
Hence,  = 1 − 0.9664 = 0.0336. ( )xFX

*

                                                 
* For instance, in Excel, the x → FX(x) and FX(x) → x calculations are done through the functions NormDist and 
NormInv, respectively (the functions NormSDist and NormSInv can be used for the calculations z → FZ(z) and 
FZ(z) → z, respectively). 
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 To find the rainfall value that corresponds to exceedence probability 2%, we we proceed 
with the following steps: FX(x) = FZ(z) = 1 – 0.02 = 0.98; from the table, z = 2.05 hence x = 
1750 + 410 × 2.05 = 2590.5 mm. The calculations are straightforward. 

2.10.4 The χ2 distribution 
The chi-squared density with n degrees of freedom (symbolically χ2(n)) is  
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where Γ ( ) is the gamma function (not to be confused with the gamma distribution function 
whose special case is the χ2 distribution), defined from 
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 The χ2 distribution is a positively skewed distribution (Fig. 2.7) with a single parameter 
(n). Its mean and variance are n and 2n, respectively. The coefficients of skewness and 
kurtosis are nCs /22=  and nCk /123+= , respectively. 
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Fig. 2.6 Examples of the χ2(n) density for several values of n.  

 The integral in (2.86) is not calculated analytically, so the typical calculations are based 
either on tabulated values (see Appendix) or on numerical packages.*  
 The χ2 distribution is not directly used to represent hydrological variables; instead the more 
general gamma distribution (see chapter 6) is used. However, the χ2 distribution has great 
importance in statistics (see chapter 3), because of the following theorem: If the random 
variables Xi (i = 1, …, n) are distributed as N(0, 1) , then the sum of their squares,  

                                                 
* E.g. in Excel, the relative functions are ChiDist and ChiInv. 
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is distributed as χ2(n). Combining this theorem with the central limit theorem we find that for 
large n the χ2(n) distribution tends to the normal distribution. 

2.10.5 The Student (t) distribution 
We shall say that the random variable X has a Student (or t) distribution with n degrees of 
freedom (symbolically t(n)) if its density is 
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 This is a symmetric distribution (Fig. 2.7) with a single parameter (n), mean zero and 
variance n / (n − 2). In contrast to the normal distribution, it has an over-exponential tail but 
for large n (≥ 30) practically coincides with the normal distribution. 
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Fig. 2.7 Examples of the t(n) probability density function for n = 1, 2, 4 and 8 (continuous thin lines from down 
to up), in comparison to the standard normal density N(0, 1) (thick line). 

 The integral in (2.90) is not calculated analytically, so the typical calculations are based 
either on tabulated values (see Appendix) or on numerical packages.*  
 The t distribution is not directly used to represent hydrological variables but it has great 
importance in statistics (see chapter 3), because of the following theorem: If the random 
variables Z and W are independent and have N(0, 1) and χ2(n) distributions, respectively, then 
the ratio 

 
nW

ZT
/

=  (2.91) 

has t(n) distribution. 

                                                 
* E.g. in Excel, the relative functions are TDist and TInv. 
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