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Summary 

Assuming that a certain geophysical process on a particular time scale (typically annual) can 
be represented by a single random variable (rather than a stochastic process, in which time 
dependence cannot be neglected), we can use classical statistical analysis to carry out several 
statistical tasks, such as:  

1. Sample description by summary statistics. This is done either numerically, using some 
representative statistical indicators, or graphically, using box plots, histograms and 
empirical distribution plots.  

2. Fitting of a theoretical model. This comprises the selection of an appropriate model 
(distribution function), the estimation of its parameters and the statistical testing of the 
fitting. 

3. Statistical prediction. This aims to estimate the value of the variable (on a point or an 
interval basis) that corresponds to a certain return period. 

The first task belongs to the so-called descriptive statistics, whereas the other two tasks are 
part of the inferential statistics or statistical induction. Although such statistical analyses are 
applicable for any type of theoretical model, in the discourse of this chapter we merely use the 
normal distribution, which is simple and best for illustration purposes.  

5.1 Summary statistics 

Summary statistics or statistical characteristics are various statistical indicators that enable 
description of the most characteristic properties of an observed sample (or even of a 
population) using a few numbers. The most common statistical characteristics can be 
classified into two categories. The first comprises the sample moments and their derivative 
characteristics. In particular, it involves: (a) the average, which, as we have seen, is a location 
measure; (b) the sample variance and the derivative indicators of dispersion (standard 
deviation and coefficient of variation); (c) the third central moment and the coefficient of 
skewness. The second category includes simpler statistical indicators, whose computation 
requires the sorting of the sample in descending or ascending order. Here these are referred to 
as summary statistics of sorted sample and include the minimum and maximum value of the 
sample, the median (location parameter), the upper and lower quartiles and the interquartile 
range (dispersion parameter). 
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 The sample moments and their derivative characteristics are calculated by applying the 
related estimators that have been discussed in chapter 3 and are also summarized in Table 5.1, 
in a form convenient for calculations. Furthermore, Table 5.1 includes coefficients of bias 
correction (column 3), by which the simple estimates (column 2) must be multiplied to find 
unbiased estimates. Table 5.1 gives also instructions to find the summary statistics of the 
sorted sample. 

Table 5.1 Typical summary statistics and formulae for their calculation  
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2. Summary characteristics of sorted sample 
Minimum value ( )$ minminx x x n= , , ,1 2 K x  — 

Maximum value ( )$ maxmaxx x x n= , , ,1 2 K x  — 

Median $x0.5 : The middle term of the sorted sample or, for 
even number of observations, the mean of the 
two middle values.  

 
— 

Lower quartile $x0.25 : The median of the part of the sample 
containing the values xi ≤ x̂0.5. 

— 

Upper quartile 75.0x̂ : The median of the part of the sample 
containing the values xi ≥ x̂0.5. 

— 

Interquartile range 
25.075.0 ˆˆˆ xxδX −=  — 
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 The summary statistics of the sorted sample can be also visualized by means of a simple 
diagram, the so-called box plot (see an example in Fig. 5.1, p.6). This diagram contains a 
central orthogonal “box” and two vertical “whiskers”, up and down of it. All these elements 
are plotted in an appropriate scale. This is constructed according to the following guidelines 
(Hirsch et al., 1993, p. 17.10): 

1. The middle horizontal line of the box represents the median of the sample. 
2. The bottom line of the box represents the lower quartile of the sample. 
3.  The top line of the box represents the upper quartile of the sample. 
4. An auxiliary quantity, the step, is defined as 1.5 times the interquartile range. 
5. The lower whisker extends from the bottom line of the box to the smallest value of the 

sample that is one step away from this line.  
6. The upper whisker extends from the top line of the box to the largest value of the sample 

that is one step away from this line.  
7. Sample values lying 1-2 steps away of the box are called outside values and are marked 

with a ×. 
8. Sample values lying more that 2 steps away of the box are called far-outside values and are 

marked with a . 

According to the above, the minimum and the maximum values of the sample are indicated in 
the box plot either as the whiskers’ ends, if they are less than one step away from the box 
edges, or as the farthermost outside or far-outside values. The box plot provides thus a simple 
and general statistical depiction of the sample, illustrating simultaneously the characteristics 
of location (median), dispersion (interquartile range), and asymmetry. The symmetry or 
asymmetry of the sample is recognized from the position of the middle line in comparison to 
the bottom and top lines of the box, as well as from comparison of the lengths of the whiskers. 
Furthermore, the diagram informs us about how close to the normal distribution a sample is. 
For a normal distribution a symmetric picture of the diagram is expected and no outside or 
far-outside values are expected, except with frequencies 1 in 100 and 1 in 300 000 points, 
respectively. 

5.1.1 Demonstration of summary statistics via a numerical example 
Table 5.2 lists the observations of annual runoff of the Evinos river basin, central-western 
Greece, upstream of the hydrometric gauge at Poros Reganiou.* We wish to extract the 
summary statistics of the sample and draw its box plot. 
a. Sample moments and derivative characteristics 
Nowadays the computation of moments is easily performed by computers tools.† For 
completeness we present here the manual computations. 
                                                 
* Evinos river is part of the hydrosystem for the water supply of Athens. Poros Reganiou is located at a 
considerable distance downstream of the Aghios Demetrios dam, which enables diversion of Evinos to Athens.  
† See for instance the Excel functions Average, Var, StDev, VarP, StDevP etc. 
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Table 5.2 Annual runoff volume (in hm3)* of river Evinos, at Poros Reganiou gauge. 
 

Hydrolo-
gical year 

Runoff 
volume 

 Hydrolo-
gical year

Runoff 
volume 

Hydrolo-
gical year

Runoff 
volume 

1970-71 807 1977-78 715 1984-85 588 
1971-72 695 1978-79 1064 1985-86 874 
1972-73 788 1979-80 942 1986-87 552 
1973-74 705 1980-81 1042 1987-88 529 
1974-75 462 1981-82 1037 1988-89 469 
1975-76 580 1982-83 674 1989-90 217 
1976-77 807 1983-84 906 1990-91 772 

 

Table 5.3 Traditional calculations of sample moments. 
 

i xi xi
2 xi

3 
1 807 651 249 525 557 943 
2 695 483 025 335 702 375 
3 788 620 944 489 303 872 
4 705 497 025 350 402 625 
5 462 213 444 98 611 128 
6 580 336 400 195 112 000 
7 807 651 249 525 557 943 
8 715 511 225 365 525 875 
9 1064 1 132 096 1 204 550 144 

10 942 887 364 835 896 888 
11 1042 1 085 764 1 131 366 088 
12 1037 1 075 369 1 115 157 653 
13 674 454 276 306 182 024 
14 906 820 836 743 677 416 
15 588 345 744 203 297 472 
16 874 763 876 667 627 624 
17 552 304 704 168 196 608 
18 529 279 841 148 035 889 
19 469 219 961 103 161 709 
20 217 47 089 10 218 313 
21 772 595 984 460 099 648 

Sum 15 225 11 977 465 9 983 241 237 
 

 The calculation of sums ∑ x, ∑ x2 and ∑ x3 is done in Table 5.3; their values are ∑ x = 
15 225, ∑ x2  = 11 977 465 and ∑x3 = 9 983 241 237. The average is  

 x− = ∑ x / n  = 15 225 / 21 = 725.0 hm3 

The sample variance is  

                                                 
* We remind that the unit hm3 represents cubic hectometers (1 hm3 = (100 m)3 = 1 000 000 m3). 
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 s2
X = ∑ x2 / n – x−2 = 11 977 465 / 21 −725.02 = 44 730.5 (hm3)2 

the sample standard deviation 

 sX = 44 730.5 = 211.5 hm3  

and the sample coefficient of variation  

 ĈvX = sX / x− = 211.5 / 725.0 = 0.29 

The third central moment is  

 µ̂(3)
X  = ∑ x3 / n − 3 x− s2

X − x−3 = 9 983 241 237 / 21 − 3 × 725.0 × 44 730.5 − 725.03  

  = −2 974 523 (hm3)3  

and the coefficient of skewness  

 ĈsX = µ̂(3)
X  / s3

X = −2 974 523 / 211.53 = −0.31 

Table 5.4 Statistical characteristics (moments and derivative characteristics) of annual runoff 
(in hm3) of the Evinos river basin at Poros Reganiou. 

Statistical 
indicator 

Simple estimation Coefficient of bias 
correction 

Unbiased 
estimation 

Mean x− = ∑ x / n  = 725.0 — x− = 725.0 
 
Variance s2

X = ∑ x2 / n − x−2  = 

44 730 

n
n − 1 = 1.05 s*2

X  = 46 967 

Standard 
deviation 

sX = 211.5 ≈
n

n−1 = 1.025 s*
X ≈ 216.7 

Coefficient 
of variation ĈvX

 = sX / x− = 0.29 ≈
n

n−1 = 1.025 Ĉ*
vX

 ≈ 0.29 

Third central 
moment µ̂(3)

X  = ∑ x3/n − 3x−s2
X

 − x−3 

= −2 974 523  

n2

(n−1)(n−2) =1.16 µ̂*(3)
X  = −3 542 012 

Coeficient of 
skewness ĈsX

 = µ̂(3)
X  / s3

X =  −0.31. ≈
n2

(n−1)(n−2)=1.16 Ĉ*
s

X
 ≈ −0.36 

 
 

 The coefficients for correction of bias are: (i) for the variance  

 n / (n − 1) = 21 / 20 = 1.05.  

(ii) for the standard deviation and the coefficient of variation (approximately)  

 n / (n − 1) = 1.05 = 1.025 

and (iii) for the third central moment (and, approximately, for the coefficient of skewness) 

 n2 / [(n−1) (n−2)] = 212 / (20 × 19) = 1.16 
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Table 5.5 Sorted (is descending order) sample of annual runoff (in hm3) of the Evinos river 
basin at Poros Reganiou. 

 

Rank Runoff 
volume 

 Rank Runoff 
volume Rank Runoff 

volume 
1 1064  8 807 15 588 
2 1042  9 788 16 580 
3 1037  10 772 17 552 
4 942  11 715 18 529 
5 906  12 705 19 469 
6 874  13 695 20 462 
7 807  14 674 21 217   

Table 5.6 Summary characteristics of the sorted sample of annual runoff (in hm3) of the 
Evinos river basin at Poros Reganiou 

Statistical indicator Estimate 
Minimum value x̂max = min(x1, …, xn) = 217  
Maximum value x̂max = max(x1, …, xn) = 1064  
Median x̂0.5 =  x(11) = 715  
Lower quartile x̂0.25 =  x(16) =580 
Upper quartile x̂0.75 =  x(6) = 874 
Interquartile range d̂X = x̂0.75 - x̂0.25 = 294    
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Fig. 5.1 Box plot of the annual runoff of the Evinos river basin at Poros Reganiou. 

The results are summarized in Table 5.4. 
b. Summary characteristics of the sorted sample 
The observed sample, sorted in descending order*, is shown in Table 5.5. From this table we 
have calculated directly the summary characteristics of the sorted sample shown in Table 5.6. 

                                                 
* This sorting can be done in Excel using the function Large.  
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The median is the rank 11 (middle) value of the sorted sample, whereas the lower and upper 
quartiles are the rank 16 and 6 values, respectively. 
c. Box plot 
Following the procedure in section 5.1 and using the summary statistical characteristics of the 
sorted sample in Table 5.6, we easily construct the diagram of Fig. 5.1. The step size is 1.5 × 
294 = 441 hm3 and therefore the maximum ordinate of the upper whisker is 874 + 441 = 1315 
hm3. Given, however, that the maximum value of the sample is 1064 hm3, the upper whisker 
should end up in this value. Likewise, the minimum ordinate of the lower whisker is 580 − 
441 = 139 hm3. Given, however, that the minimum value of the sample is 217 hm3, the lower 
whisker should end up in this value. 

5.2 Histograms 

Histograms provide another graphical display of a sample, whose construction requires 
counting the sample values lying in k intervals, each of length ∆.* If the ith interval is 
ci ≤ x < ci+1 (where ci+1 = ci + ∆) and the number of the sample values lying within it is ni, then 
the histogram is the function 

 ( ) kicxc
∆n

nx ii
i ,,1,, 1 K=<≤= +  (5.1) 

An example is depicted in Fig. 5.2. Often, the histogram is defined in a simpler manner, such 
as φ(x) = ni/n, or φ(x) = ni. For these two forms we use the terms relative frequency histogram 
and (absolute) frequency histogram, respectively. To avoid confusion, the histogram defined 
by (5.1) can be termed frequency density histogram.  
 To construct the histogram, we first select the number of intervals k. As a rule, we take k = 
ln n / ln 2 and the resulting value is rounded up. The length ∆ is taken equal for all intervals 
(although for the density frequency histogram irregular intervals are also allowed).  

5.2.1 Demonstration of histogram 
We will construct a histogram for the sample of section 5.1.1. The number of intervals should 
be taken k = ln 21 / ln 2 = 4.4. By rounding up, we choose 5 intervals. The range of the 
sample values is [217, 1064]. After rounding, we get the range [200, 1100] with ∆ = (1100 − 
200) / 5 = 180. The rest of calculations are given in tabular form in Table 5.7 and the 
histogram is illustrated in Fig. 5.2. For comparison, we also plot the theoretical probability 
density function of the normal distribution (see section 5.4). 

                                                 
* In Excel this can be done by the function CountIf. 
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Table 5.7 Calculations for the histogram of the sample of Table 5.2. 
 

Class 
rank

Class 
limits 

Absolute 
frequency ni

Relative 
frequency 

ni / n

Frequency 
density φ = 

ni / (n ∆) 
200  

1  1 0.048 0.
380  

2  4 0.190 0.
560  

3  6 0.286 0.
740  

4  6 0.286 0.
920  

5  4 0.190 0.
1100  

00026 
00106 
00159 
00159 
00106 
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Fig. 5.2 Histogram of the sample of Table 5.2. For comparison the probability density function of the 

normal distribution N(725, 211.5) is plotted (dotted line). 

5.3 Empirical distribution function 

The histogram is the empirical equivalent of the probability density function; likewise the 
empirical equivalent of the distribution function is the empirical distribution function. In 
principle, such an empirical function may be constructed from the histogram, by integrating 
with respect to x, hence getting an increasing broken line that corresponds to some type of a 
distribution function. However, the introduction of the empirical distribution function may be 
done in a more direct and objective manner, bypassing histogram, which has some degree of 
subjectivity, due to the arbitrary selection of the intervals and their limits. 

5.3.1 Order statistics 
Let X be a random variable with distribution function F(x) and X1, X2, …, Xn a sample of it. 
From realizations x1, x2, …, xn of the variables X1, X2, …, Xn, we take the maximum value x(1) 
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:= max(x1, x2, …, xn).* This can be thought of as a realization of a variable X(1). Likewise, we 
can construct the variables X(2) (corresponding to x(2), the second largest value), X(3), …, X(n). 
The random variables X(1), X(2), …, X(n) are called order statistics. Obviously, for each 
realization the values x(1) ≥ x(2) ≥ … ≥ x(n) represent the observed sample sorted in decreasing 
order.  

5.3.2 Classical empirical distribution function 
The classical empirical distribution function is a staircase-like function defined by  

 
n
n

xF x=)(ˆ  (5.2) 

where nx is the number of sample values that do not exceed the value x.  is a point 

estimate of the unknown distribution function of the population F(x). 

)(ˆ xF

5.3.3 Plotting position 
Plotting position qi of the value x(i) of the sorted sample is the empirical exceedence 
probability of this value. Based on the classical definition of the empirical distribution, for 
x = x(1) we will have nx = n, and generally for x = x(i) we will have nx = n + 1 − i. Therefore, 
the empirical distribution function is 

 ( ) ni
n

inxF i ,,1,1ˆ
)( K=

−+
=  (5.3) 

Thus the plotting position, i.e. the empirical exceedance probability is 

 ( ) ( ) ni
n

ixFxFq iii ,,1,1ˆ1ˆ
)()(

* K=
−

=−==  (5.4) 

We observe that for n = 1 the above equation assumes zero exceedance probability. Thus, for 
example from an annual rainfall sample with maximum value x(1) = 1800 mm, we would 
conclude that the probability of an annual rainfall more than 1800 mm is zero. Evidently, this 
is a wrong conclusion; rainfall depths more than those observed are always possible. 
 To avoid the above problem we use the random variable 

 ( ) ( ))()(
* 1 iii XFXFU −==  (5.5) 

A point estimate† of this variable is, simultaneously, an estimate of qi. From first glance, it 
seems impossible to calculate values of Ui from the sample, given that F(x) is an unknown 
function. However, it can be shown‡ that (for random samples) the distribution of Ui is 
independent of F(x) and has mean§  

                                                 
* Notice the difference in notation: x1 is the value first in time and x(1) is the (first) largest of all xi.  
† More precisely, and according to the terminology of chapter 3, this is a prediction of the variable, since Ui is a 
random variable and not a parameter. 
‡ This results from the distribution function of the order statistics (see e.g. Papoulis, 1990, p. 207-208) after 
appropriate substitution of variables. 
§ More precisely, Ui has beta distribution function (see chapter 6), with parameters i and n − i + 1. 
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 [ ]
1+

=
n

iUE i  (5.6) 

and variance 

 [ ] ( )
( ) ( )21

1Var 2 ++
+−

=
nn

iniUi  (5.7) 

 The simplest estimate of Ui is its mean, namely 

 
1+

=
n

iqi  (5.8) 

which is known in literature as Weibull plotting position. This is an unbiased estimate of the 
exceedance probability, because qi = E[Ui] = E[F*(X(i))]. We observe that with this estimation 
method we have eliminated the problem of a zero qi for i = 1. Indeed, for i = 1 we obtain 
qi = 1 / (n + 1) and for i = n, qi = n / (n + 1).  

Table 5.8 Alternative formulae for empirical exceedance probabilities (plotting positions)*  

 

Name 

Formula 
qi = 

Constant  
a = 

Return period of 
maximum value T1 =

Applicability 

Weibull 
i

n + 1  0 n + 1 All distributions, unbiased 
estimation of exceedance probability

Blom 
i − 0.375
n + 0.25  0.375 1.6 n + 0.4 Normal distribution, unbiased 

estimation of quantiles 

Cunnane 
i − 0.4
n + 0.2 0.4 1.667 n + 0.33 Broad range of distributions, approx. 

unbiased estimation of quantiles 

Gringorten 
i − 0.44
n + 0.12 0.44 1.786 n + 0.21 Gumbel distribution

†
  

Hazen 
i − 0. 5

n  0.5 2 n The oldest proposed estimate; today 
it tends to be abandoned  

 Equation (5.8) is the most popular for the estimation of exceedance probabilities in 
engineering applications, but not the only one. Other similar equations have been developed 
in order to provide unbiased estimations of quantiles, namely to satisfy (approximately) the 
condition 

 ( ) [ ] ( )[ ]iii UFEXEqF 1
)(

1 −− ==  (5.9) 

In that case, this estimation, as opposed to (5.8), does depend on the distribution function 
F(x). The various equations that have been developed are expressed by the general formula 

 
an

aiqi 21−+
−

=  (5.10) 

                                                 
* See also Stedinger et al. (1993) where additional formulae are also given. 
† See chapter 6. 
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where a is a constant (< 1). This equation is antisymmetric, since qi = 1 − qn+1−i and also 
incorporates (5.8) as a special case (a = 0). Table 5.8 lists the most frequently used formulae 
for calculating the plotting position along with the corresponding values of constant a. 
Application of the different formulae results in very similar values, except for very low values 
of i and mainly for i = 1, where the differences are appreciable (see col. 4 in Table 5.8). The 
value for i = 1 is of great importance in engineering applications, because it gives the 
empirical exceedance probability of the maximum observed value, i.e. T1 = 1 / q1.  

5.3.4 Probability plots 
Estimating the plotting position for each value of the sample using one of the above formulae, 
we construct a set of n points (x(i), qi) or (x(i), 1 − qi), which can be presented graphically to 
provide an overview of the distribution function. Initially, this could be done on a regular 
decimal plot, thus resulting in a graph similar to Fig. 2.1 or Fig. 2.3b, except that, instead of a 
staircase-like or a continuous line, we will get just a set of points. However, in engineering 
applications, since the information obtained by such a graph is very essential, we wish to be 
more systematic in plotting. In particular, we wish to obtain a linear arrangement of the points 
through appropriate transformations of the axes. This facilitates several purposes, such as 
easier drawing, more precise comparison of theoretical and empirical distribution, easier 
graphical extrapolation beyond sample limits etc. Plots on which the axes are designed via 
appropriate transformations, to represent the graphs of specific distribution functions as 
straight lines, are called probability plots. There exist commercial papers (like the logarithmic 
paper) constructed so as to incorporate the appropriate transformation for a specific 
distribution (e.g. the normal distribution) which can be readily used to make a probability 
plot. However, it is easy to construct such plots using computer tools.  
 Let us take, for instance, the normal distribution N(µ, σ). If we represent graphically the 
function F(x) with horizontal axis h = F and vertical v = x, we will obtain a shape like . On 
the other hand, we know that Fzσµx += , where zF the F-quartile of the standard normal 

distribution N(0, 1). Hence, if we set the horizontal axis as h = zF, then the equation to plot 
will be v = µ + σ h, which is a straight line. This is equivalent to transforming the horizontal 
axis as , where  is the inverse of the standard normal distribution. 

Through appropriate transformations of the horizontal or/and the vertical axis, we may 
achieve linearization of other distribution functions, as we will see in more detail in chapter 6. 

)(1
0 FFzh F
−== )(1

0
−F

 Since there is one-to-one correspondence between the quantities F and zF, the marking of 
the horizontal axis may be done is units of F instead of zF, which facilitates the interpretation 
of the graph. Moreover, the marking of the horizontal axis may be done in terms of the 
exceedence probability F* = 1 − F or versus the return period T = 1 / F*. An example of a 
normal distribution plot is shown in Fig. 5.3, where two different markings of the horizontal 
axis (zF and F*) are simultaneously illustrated. 
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  The graphical representation of the set of points (x(i), qi) in a normal distribution plot 
(namely ) will give an almost linear arrangement of points, provided that the 

distribution of X is normal. Hence, this plot provides a graphical way for checking the 
normality of the distribution of a sample. The above are clarified via the following example. 

)(1 , iq xvzh
i

== −

5.3.5 Demonstration of numerical probability plot 
We will construct a normal probability plot of the sample of section 5.1.1. For the calculation 
of the empirical exceedence probabilities we use the formulae of Weibull (unbiased 
estimation of exceedence probability) and Blom (unbiased estimation of the normal 
distribution quantiles, see Table 5.8). The calculations are very simple, given that the sample 
has been put already in descending order (Table 5.5) and are shown in Table 5.9. For a 
manual plot on normal probability paper, the last two columns are not necessary. Otherwise, 
they are necessary because the normal probability plot (shown in Fig. 5.3) is a plot of 
observed values xi against values z1−qi of the standard normal distribution. The latter either are 
taken from the normal distribution table (Table A1, Appendix), or are calculated using 
numerical methods*. The empirical exceedence probabilities for this sample are shown in Fig. 
5.3, where for comparison, the theoretical normal distribution function it is also plotted (see 
section 5.5.4). 
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Fig. 5.3 Example of normal probability plot of the empirical distribution function using 
Weibull (diamonds) and Blom (symbols ×) plotting positions. For comparison, the theoretical 
normal distribution function N(725, 211.5) (see section 5.4.2) is also plotted (continuous line) 
along the corresponding 95% confidence curves (dashed curves, see section 5.6.1). 
                                                 
* In Excel the function to calculate z1−q from 1 – q is NormSInv. 



5.5.4 Selection and fitting of the theoretical distribution function 13 

Table 5.9 Demonstration of calculation of empirical exceedence probabilities. 
 

Rank Value Empirical exceedence 
probability 

Value of standardized 
normal variable 

 

i 

 

xi 

Weibull

qi = 
i

n+1

Blom  

qi = 
i−0.375
n+0.25

Weibull 

z1−qi
  

Blom 

z1−qi
  

1 1064 0.045 0.029 1.691 1.890 
2 1042 0.091 0.076 1.335 1.429 
3 1037 0.136 0.124 1.097 1.158 
4 942 0.182 0.171 0.908 0.952 
5 906 0.227 0.218 0.748 0.780 
6 874 0.273 0.265 0.605 0.629 
7 807 0.318 0.312 0.473 0.491 
8 807 0.364 0.359 0.349 0.362 
9 788 0.409 0.406 0.230 0.238 

10 772 0.455 0.453 0.114 0.118 
11 715 0.500 0.500 0.000 0.000 
12 705 0.545 0.547 -0.114 -0.118 
13 695 0.591 0.594 -0.230 -0.238 
14 674 0.636 0.641 -0.349 -0.362 
15 588 0.682 0.688 -0.473 -0.491 
16 580 0.727 0.735 -0.605 -0.629 
17 552 0.773 0.782 -0.748 -0.780 
18 529 0.818 0.829 -0.908 -0.952 
19 469 0.864 0.876 -1.097 -1.158 
20 462 0.909 0.924 -1.335 -1.429 

n = 21 217 0.955 0.971 -1.691 -1.890   

5.4 Selection and fitting of the theoretical distribution function 

In sections 5.1 and 5.2 the aim was to summarize a sample, which is part of descriptive 
statistics. Section 5.3, in addition to summarizing a sample, dealt also with statistical 
estimation of population properties, specifically the distribution function. However, we were 
able to make such estimations for a few values of the random variable only, those that were 
values of the sample. This could be combined with some empirical techniques, for instance 
interpolation, to make inferences for other values of the random variable. Thus, we could 
make an empirical interpolation of any value provided that it lies within the range defined by 
the minimum and maximum values in the observed sample. The range of such estimations 
would be limited. In engineering design, we usually have to deal with values far beyond the 
observed range (e.g. to estimate design quantities for return periods 100, 1000 or 10 000 years 
based on a sample of, say, 20-50 years), i.e. to make extrapolations. To this aim, we should 
follow a different path, which should be also able to provide interval estimates of the 
quantities of interest.  
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 This would be easy if we knew the distribution function of the population. Generally, the 
distribution of the population could be any function with the properties described in section 
2.4. Its precise knowledge would require to have measured the entire population, or, at least, 
to have a sample much longer than the return period for which an estimation is sought. 
Apparently, this is infeasible and thus the remaining solution is to hypothesize a probability 
model for the population. The term probability model refers to one of the typical distribution 
functions of the probability theory that have a specific, relatively simple, mathematical 
expression. The most typical case is the normal distribution discussed in section 2.10.2. Other 
examples will be provided in chapter 6. Certainly, the use of a probability model is always an 
approximation of the reality. The distributions of geophysical variables are not identical to the 
simple models of the probability theory. 
 The selection of an appropriate model is guided by the following: 

1. The probability theory. In some cases, there are theoretical reasons because of which a 
particular hydrological or geophysical variable is expected to have a particular distribution 
type. For instance, according to the central limit theorem, the annual rainfall in a wet area 
is expected to follow a normal distribution (see section 2.10.1). Another principle that can 
provide theoretical justification of a probability model is the principle of maximum entropy 
(Koutsoyiannis, 2005). 

2. The general empirical experience. In many cases, accumulated hydrological or geophysical 
experience indicates that specific variables tend to follow particular distribution types, 
even if there are not apparent theoretical reasons pointing to the latter. For instance, the 
monthly runoff has been very often modelled using gamma or log-normal distributions (see 
chapter 6). 

3. The properties of the specific sample. The statistical characteristics of the observed sample 
help us to choose or exclude a particular distribution type. For instance, if the sample 
coefficient of skewness has a value close to zero, then we can choose the normal (or 
another symmetric) distribution. Conversely, if the coefficient of skewness differs 
substantially from zero, we should exclude the normal distribution. 

Certainly, the suitability of a specific distribution type is not ensured by the above criteria, 
which are just indications of suitability. The testing of the suitability of the distribution is 
done a posteriori. After estimating its parameters, we examine the goodness of its fit to the 
empirical distribution function. Initially, this may be done empirically, on the basis of the 
graphical representation of the empirical and the theoretical distribution functions on an 
suitable probability paper. More objective results are achieved by means of formal statistical 
tests, as described in section 5.5. 

5.4.1 Indications of suitability of the normal distribution for geophysical variables 
So far, we have referred many times to indications of the suitability of the normal distribution 
for describing geophysical variables. Next, we list all these indications of suitability. 
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1. Theoretical criterion based on the central limit theorem. We examine whether the variable 
under study is a sum of various natural components, which should obey (even 
approximately) the assumptions of the central limit theorem. This criterion is theoretical 
and does not require numerical calculations. A similar theoretical criterion is provided by 
the principle of maximum entropy, independently of the central limit theorem 
(Koutsoyiannis, 2005).  

2. Numerical criterion based on the coefficient of skewness. A sample coefficient of skewness 
that is almost zero is a strong indication of the suitability for the normal distribution. 

3. Numerical criterion based on the coefficient of variation. Let X be random variable 
representing a physical quantity. In most cases, X can take only positive or zero values, 
whereas negative ones have no physical meaning. However, the normal distribution allows 
negative values of X. Thus, in theory, the normal distribution cannot represent physically 
nonnegative variables, except approximately. To ensure a satisfactory approximation, the 
probability P{X < 0} must be very low, so to be ignored, namely P{X < 0} ≤ ε where ε an 
acceptably low probability, e.g. ε < 0.02. If Z = (X − µX) / σX is the corresponding standard 
normal variable, then P{Z < −µX / σX} ≤ ε. If zε is the ε-quantile of the standard normal 
distribution, then, equivalently, CvX = σX/µX ≤ −1/zε. For ε = 0.02 we get zε ≈ −2, so CvX ≤ 
0.5. Likewise, for ε = 0.00005 we get zε ≈ −4, so CvX ≤ 0.25. Hence, we conclude that if CvX 
≤ 0.25 we have a very strong indication of suitability of the normal distribution. If CvX > 
0.5, the use of the normal distribution should be excluded. For intermediate values of the 
coefficient, the normal distribution may be acceptable but with lower degree of 
approximation. 

4. Graphical criterion based on the synoptic depiction of the sample. As referred in section 
5.1 a symmetric box plot of the sample, without unjustifiably large number of outside 
points, is an indication of the suitability of the normal distribution. 

5. Graphical criterion based on the empirical distribution function. The linear arrangement of 
the series of points of the empirical distribution function, in a normal probability plot, is a 
strong indication of the suitability of the normal distribution. 

 The above criteria are simple indications and cannot be thought of as statistical proofs of 
the suitability of the normal distribution. 

5.4.2 Demonstration of fitting the normal distribution  
The fitting of the normal distribution on the sample of section 5.1.1 is very simple. The 

parameters of the distribution are µ = x− = 725.0 hm3, σ = sX = 211.5 hm3 (the value σ = s*
X = 

216.7 hm3 is also acceptable). The normal distribution function with these parameters has 
been plotted in Fig. 5.3 and the corresponding probability density function in Fig. 5.2. The 
reader can confirm that in the example under study all indications of suitability of the normal 
distribution listed in section 5.4.1 are validated. In section 5.5.2 we will provide a statistical 
test of suitability of the normal distribution. 



16 5. Typical univariate statistical analysis in geophysical processes 

5.5 Testing the goodness of fit of a probability model 

After adopting a certain distribution function to model a physical variable and estimating its 
parameters, the next step is to test the fitting of this distribution to the observed sample. The 
test is based on the statistical theory of hypothesis testing that was summarized in section 3.6. 
Various statistical tests have been developed, which can be applied for testing the goodness of 
fit of a distribution function. We present the most classical of them, the χ2 (chi-square) test. 
Other statistical tests often used in engineering applications are the Kolmogorov-Smirnov test 
(see e.g. Benjamin and Cornell, 1970, p. 466; Kottegoda, 1980, p. 89) and the more recent 
probability plot correlation coefficient test (see e.g. Stedinger et al., 1993, p. 18.27). 

5.5.1 The χ2 test 
The χ2 test is based on comparing the theoretical distribution function to the empirical one. 
The comparison is made on a finite set of selected points xj of the domain of the random 
variable, and not on the observed values xi of the sample. The null hypothesis H0 and its 
alternative Η1 are 

 H0: F(xj) = F0(xj) for all j,    H1: F(xj) ≠ F0(xj) for some j  (5.11) 

where F(x) the unknown true distribution function and F0(x) the hypothesized distribution. 
F0(x) may be completely known, in terms of its mathematical expression as well as its 
parameters values, prior to the examination of the specific sample. In this case, the null 
hypothesis is named perfect. However, the parameters values are most usually calculated from 
the sample and so we speak about an imperfect null hypothesis.  
 The control points xj, j = 0, …, k partition the domain of the random variable in k classes, 
namely intervals of the form (x0, x1], (x1, x2], …, (xk−1, xk]. For the hypothesized distribution 
function F0(x), the probability of finding a randomly selected point in (xj−1, xj] is obviously  

 pj = F0(xj) − F0(xj−1) (5.12) 

and therefore the expected number of sample points that would be located within this class is 
lj = n pj, where n is the sample size. Apparently, a small departure between nj and lj, namely a 
small |nj − n pj|, is in favour of the suitability of the distribution F0(xj) and hence of the non-
rejection of the null hypothesis. The Pearson’s test statistic defined by 

 Q := ∑
j = 1

k

 (Nj − n pj)2

n pj
  (5.13) 

where Nj is the random variable whose realization is nj, is an aggregated measure of the 
differences between the actual and the theoretical number of points in all classes. If the null 
hypothesis is perfect, the distribution of Q is χ2 with k − 1 degrees of freedom. In the most 
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usual case of imperfect null hypothesis, the number of degrees of freedom is k − r − 1, where 
r is the number of parameters that are estimated from the sample.*  
 In the most common version of the χ2 test the classes are chosen so that the probabilities pj 
are equal for all classes j. In this case, equation (5.13) simplifies to  

 Q:= 
 k 
 n  ∑

j = 1

k
 N2

j  − n  (5.14) 

The advantage of this version is that it specifies the class limits for a given number of classes 
k and thus it is more objective For choosing the number of classes k, the following two 
conflicting rules are followed: 

• Necessarily, it must be k ≥ r + 2, where r is the number of parameters of the distribution 
that are estimated from the sample. 

• Generally, it is suggested (see e.g. Benjamin and Cornell, 1970, p. 465; Kottegoda, 1980, 
p. 88) that the theoretical number of points in each class must be grater than 5, which 
results in k ≤ n / 5.  

For small samples, these two rules may be not satisfied simultaneously, hence we satisfy the 
first one only.  
 The algorithm for applying the χ2 test is described in the following steps: 

1. We choose the number of classes k, according to the above rules.† 
2. We divide the probability interval [0, 1] in k equal sub-intervals with limits uj = j / k (j = 0, 

…, k). 
3. We calculate the class limits xj (the value xj is the uj-quantile of the variable). 
4. We count the number of points nj in each class (this step is simplified if the sample is 

already sorted in descending or ascending order). 
5. From (5.14) (or (5.13)), we calculate the value q of the Pearson statistic. 
6. For a chosen significance level α, we calculate the critical value of the test statistic qc = 

q1−α. For this purpose, we use the χ2 distribution with k − r − 1 degrees of freedom, where r 
is the number of distributional parameters estimated from the sample (see Table A2 in 
Appendix). 

7. We reject the null hypothesis if q > qc. 

The algorithm is clarified in the following example. 

                                                 
* Theoretical consistency demands that the maximum likelihood method is used for parameter estimation; 
however, this is often neglected in applications. 
† The choice of the number of classes can be made using the formula (see Kottegoda, 1980, p. 88): 

k = 21.2 [(n – 1) / z1 – α)]0.4 
where z1 – α the (1 – α)-quantile of the normal distribution and α the significance level of the test. Kendall and 
Stuart (1973, p. 455) provide a more analytical method for choosing the number of classes, which however is for 
large samples that are rarely available in practice.  
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5.5.2 Demonstration of testing the goodness of fit 
Continuing the numerical example started in section 5.1.1, we will test the suitability of the 

normal distribution that has been already fitted (section 5.4.2), with parameters µ = x− = 725.0 
hm3, σ = sX = 211.5 hm3. 
 The number of the parameters of the distribution is r = 2 and the sample size is n = 21. 
According to the above discussion, the number of classes k must satisfy the relationships  

 k ≥ 2 + 2 = 4,   k ≤ 21 / 5 = 4.2 

that hold for k = 4. Therefore, we take k = 4. 
  The calculations for steps 2-4 of the above algorithm are summarized in Table 5.10. The 
calculation of the limits of the variable is done as usual; for instance, the upper limit of the 
first class is 

 x1 = 725.0 − 0.675 × 211.5 = 528.3 

Table 5.10 Elementary calculations demonstrating the χ2 test. 
 
Class  1  2  3  4  
Probability limits 0 0.25  0.5 0.75  1.0 
Variable limits -∞ 582.3  725.0 867.7  +∞ 
Actual number of points  6  5  4  6   
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Fig. 5.4 Explanatory sketch for the numerical example of section 5.5.2.  

 For the sake of demonstration (as it is not part of the test), we provide in Fig. 5.4 graphical 
depiction of the classes and their actual number of points on a normal probability plot. 
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 From (5.14) we obtain  

 q = (4/21) × (62 + 52 + 42 + 62) − 21 = 0.52  

For significance level α = 0.05 the critical value of the variable is  

 qc = χ2
0.95 (1) = 3.84  

(as derived from Table A2 in Appendix for u = 1 − α = 0.95 and number of degrees of 
freedom = 4 − 2 − 1 = 1). Hence, q < qc and the normal distribution is accepted. 

5.6 Statistical prediction 

Statistical prediction in engineering applications aims at estimating the value of a physical 
quantity that corresponds to a given exceedence probability (or return period). Provided that a 
specific probability model is already set up and fitted to the sample under interest, this 
prediction is computationally done applying the methods described in chapter 3. The 
prediction may be either point or interval, as demonstrated in the following example. 

5.6.1 Demonstration of statistical prediction  
Completing the numerical example started in section 5.1.1, we wish to estimate the 100-year 
maximum and minimum annual runoff volume of the Evinos river basin upstream of Poros 
Reganiou, as well as its 95% confidence limits. We apply the same procedure as in section 
3.4.7. As the sample size is very small in comparison to the return period of 100 years, we 
expect that the confidence intervals will be wide (high uncertainty). 
 We calculate first the point estimates. For the 100-year maximum runoff volume the 
probability of non-exceedence is u = 1 − 1/100 = 0.99 and zu = 2.326 (e.g. from Table A1 in 
the Appendix). Thus, the point estimate is  

 xu = 725.0 + 2.326 × 211.5 = 1216.9 hm3  

Likewise, for the 100-year minimum runoff volume, the probability of non-exceedence is u = 
1 / 100 = 0.01 and zu = −2.326, so  

 xu = 725.0 − 2.326 × 211.5 = 233.1 hm3 

 We proceed with the calculation of confidence limits. For γ = 95% and z(1+γ)/2 = 1.96, the 
limits for the 100-year maximum runoff volume are (equation (3.46)) : 

 
0.1391

21
5.211

2
326.2196.19.1216ˆ

8.1042
21

5.211
2

326.2196.19.1216ˆ

2

2

2

1

=++=

=+−=

u

u

x

x
 

Likewise, the limits for the 100-year minimum runoff volume are: 
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 Repeating these calculations for several other return periods we have determined a series 
of point estimates and confidence limits which we have plotted in Fig. 5.3. More specifically, 
connecting the points of the confidence limits in the graph we have obtained the 95% 
confidence curves of the distribution. We observe the all points of the observed sample lie 
within these confidence curves; particularly the lowest observed value (217 hm3 for the year 
1989-90) is just on the border, which reflects the severity of the drought of 1989-90.  

Acknowledgement I thank Andreas Efstratiadis for his help in translating Greek texts into 
English. 
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