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Summary 

In this chapter we describe four families of distribution functions that are used in geophysical 
and engineering applications, including engineering hydrology and water resources 
technology. The first includes the normal distribution and the distributions derived from this 
by the logarithmic transformation. The second is the gamma family and related distributions 
that includes the exponential distribution, the two- and three-parameter gamma distributions, 
the Log-Pearson III distribution derived from the last one by the logarithmic transformation 
and the beta distribution that is closely related to the gamma distribution. The third is the 
Pareto distribution, which in the last years tends to become popular due to its long tail that 
seems to be in accordance with natural behaviours. The fourth family includes the extreme 
value distributions represented by the generalized extreme value distributions of maxima and 
minima, special cases of which are the Gumbel and the Weibull distributions.  

5.1 Normal Distribution and related transformations 

5.1.1 Normal (Gaussian) Distribution 
In the preceding chapters we have discussed extensively and in detail the normal distribution 
and its use in statistics and in engineering applications. Specifically, the normal distribution 
has been introduced in section 2.8, as a consequence of the central limit theorem, along with 
two closely related distributions, the χ2 and the Student (or t), which are of great importance 
in statistical estimates, even though they are not used for the description of geophysical 
variables. The normal distribution has been used in chapter 3 to theoretically derive statistical 
estimates. In chapter 5 we have presented in detail the use of the normal distribution for the 
description of geophysical variables. 
 In summary, the normal distribution is a symmetric, two-parameter, bell shaped 
distribution. The fact that a normal variable X ranges from minus infinity to infinity contrasts 
the fact that hydrological variables are in general non-negative. This problem has been 
already discussed in detail in section 5.4.1. A basic characteristic of the normal distribution is 
that it is closed under addition or, else, a stable distribution. Consequently, the sum (and any 
linear combination) of normal variables is also a normal variable. Table 6.1 provides a 
concise summary of the basic mathematical properties and relations associated with the 
normal distribution, described in detail in previous chapters. 
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Table 6.1 Normal (Gaussian) distribution conspectus. 
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L skewness τ(3)
X  = 0 

L kurtosis τ(4)
X  = 0.1226 

Typical calculations 
The most typical calculations are the calculation of the value u = FX(xu) of the distribution 
function for a given xu, or inversely, the calculation of the u-quantile of the variable, i.e. the 
calculation of xu, when the probability u is known. The fact that the integral defining the 
normal distribution function (Table 6.1) does not have an analytical expression, creates 
difficulties in the calculations. A simple solution is the use of tabulated values of the 
standardized normal variable z = (x − µ) / σ, which is a normal variable with zero mean and 
standard deviation equal to 1 (section 2.6.1 and Table A1 in Appendix). Thus, the calculation 
of the u-quantile (xu) becomes straightforward by  

 u ux zµ σ= +  (6.1) 

where zu, corresponding to u = FZ(zu), is taken from Table A1. Conversely, for a given xu, zu is 
calculated by (6.1) and u = FZ(zu) is determined from Table A1. 
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 Several numerical approximations of the normal distribution function are given in the 
literature, which can be utilized to avoid use of tables (Press et al., 1987; Stedinger et al., 
1993; Koutsoyiannis, 1997), whereas most common computer applications (e.g. 
spreadsheets*) include ready to use functions. 

Parameter estimation 
As we have seen in section 3.5, both the method of moments and the maximum likelihood 
result in the same estimates of the parameters of normal distribution, i.e., 

 xµ = ,  Xsσ =  (6.2) 

We notice that sX in (6.2) is the biased estimate of the standard deviation. Alternatively, the 
unbiased estimation of standard deviation is preferred sometimes. The method of L moments 
can be used as an alternative (see Table 6.1) to estimate the parameters based on the mean and 
the second L moment. 

Standard error and confidence intervals of quantiles 
In section 3.4.6 we defined the standard error and the confidence intervals of the quantile 
estimation and we presented the corresponding equations for the normal distribution. 
Summarising, the point estimate of the normal distribution u-quantile is 

 ˆu u xx x z s= +  (6.3) 

the standard error of the estimation is 
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and the corresponding confidence limits for confidence coefficient γ are 
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Normal distribution probability plot 
As described in section 5.3.4, the normal distribution is depicted as a straight line in a normal 
probability plot. This depiction is equivalent to plotting the values of the variable x (in the 
vertical axis) versus and the standardized normal variate z (in the horizontal axis). 

5.1.2 Two-parameter log-normal distribution 
The two-parameter log-normal distribution results from the normal distribution using the 
transformation 

 y = ln x ↔ x = ey (6.6) 

 
* In Excel, these functions are NormDist, NormInv, NormSDist and NormSInv. 
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Thus, the variable X has a two-parameter log-normal distribution if the variable Y has normal 
distribution N(µY, σY). Table 6.2 summarizes the mathematical properties and relations 
associated with the two-parameter log-normal distribution. 

Table 6.2 Two-parameter log-normal distribution conspectus. 
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 A direct consequence of the logarithmic transformation (6.6) is that the variable X is 
always positive. In addition, it results from Table 6.2 that the distribution has always positive 
skewness and that its mode is different from zero. Thus, the shape of the probability density 
function is always bell-shaped and positively skewed. These basic attributes of the log-normal 
distribution are compatible with observed properties of many geophysical variables, and 
therefore it is frequently used in geophysical applications. It can be easily shown that the 
product of two variables having a two-parameter log-normal distribution, has also a two-
parameter log-normal distribution. This property, combined with the central limit theorem and 
taking into account that in many cases the variables can be considered as a product of several 
variables instead of a sum, has provided theoretical grounds for the frequent use of the 
distribution in geophysics. 

Typical calculations 
Typical calculations of the log-normal distribution are based on the corresponding 
calculations of the normal distribution. Thus, combining equations (6.1) and (6.6) we obtain 

 e Y u Yz
u Y u Y uy z x µ σµ σ += + ⇔ =  (6.7) 

where zu is the u-quantile of the standardized normal variable.  
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Parameter estimation 
Using the equations of Table 6.2, the method of moments results in: 

 ( )2 2ln 1 /Y Xs xσ = + ,  2ln / 2Y xµ σ= − Y  (6.8) 

Parameter estimation using the maximum likelihood method gives (e.g. Kite, 1988, p. 57)  
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We observe that the two methods differ not only in the resulted estimates, but also in that they 
are based on different sample characteristics. Namely, the method of moments is based on the 
mean and the (biased) standard deviation of the variable X while the maximum likelihood 
method is based on the mean and the (biased) standard deviation of the logarithm of the 
variable X. 

Standard error and confidence intervals of quantiles 
Provided that the maximum likelihood method is used to estimate the parameters of the log-
normal distribution, the point estimate of the u-quantile of y and x is then given by 

 ˆ ˆ ˆln( ) e u Yy z s
u u u Y uy x y z s x += = + ⇒ =  (6.10) 

where zu is the u-quantile of the standard normal distribution. The square of the standard error 
of the Y estimate is given by: 
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Combining these equations we obtain the following approximate relationship which gives the 
confidence intervals of xu for confidence level γ 
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where z(1+γ)/2 is the [(1+γ)/2]-quantile of the standard normal distribution. When the parameter 
estimation is based in the method of moments, the standard error and the corresponding 
confidence intervals are different (see Kite 1988, p. 60).  

Log-normal distribution probability plot 
The normal distribution probability plot can be easily transformed in order for the log-normal 
distribution to be depicted as a straight line. Specifically, a logarithmic vertical axis has to be 
used. This depiction is equivalent to plotting the logarithm of the variable, ln x, (in the vertical 
axis) versus the standard normal variate (in the horizontal axis). 
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Numerical example 
Table 6.3 lists the observations of monthly runoff of the Evinos river basin, central-western 
Greece, upstream of the hydrometric gauge at Poros Reganiou, for the month of January. We wish 
to fit the two-parameter log-normal distribution to the data and estimate the 50-year discharge. 

Table 6.3 Observed sample of January runoff volume (in hm3) at the hydrometric station of 
Poros Riganiou of the Evinos river. 

 
Hydrologi-

cal year 
Runoff  Hydrologi-

cal year 
Runoff Hydrologi-

cal year 
Runoff 

1970-71 102  1977-78 121 1984-85 178 
1971-72 74  1978-79 317 1985-86 185 
1972-73 78  1979-80 213 1986-87 101 
1973-74 48  1980-81 111 1987-88 57 
1974-75 31  1981-82 82 1988-89 24 
1975-76 48  1982-83 61 1989-90 22 
1976-77 114  1983-84 133 1990-91 51   

The sample mean is 
 x− = ∑ x / n  = 102.4 hm3 

The standard deviation (biased estimate) is  

 s
 
X = ( )∑ x2 / n − x−2 1/2

 = 70.4 hm3  

and the coefficient of variation  
 ĈvX = sX / x− = 70.4 / 102.4 = 0.69 

The skewness coefficient (biased estimate) is  

 ĈsX  = 1.4 

These coefficients of variation and skewness suggest a large departure from the normal 
distribution. 
 The method of moments results in  

 σ
 
Y =                          ln (1 + s2

X / x−2) = 0.622,  2/ln 2
YY x σµ −= = 4.435  

whereas the maximum likelihood estimates are 

  µY = ∑ ln x / n  = 4.404,  σ
 
Y =                                       ∑ (ln x)2 / n − µ2

Y  = 0.687  

 The 50-year discharge can be estimated from xu = exp (µY + zu σY) where u = 1 − 1/50 = 
0.98 and zu = 2.054 (Table A1). Using the parameters estimated by the method of moments 
we obtain x0.98 = 302.7 hm3, while using the maximum likelihood parameter estimates we get 
x0.98 = 335.1. In the latter case the 95% confidence interval for that value is (based on (6.12), 
for zu = 2.054 and z(1+γ)/2 = 1.96): 
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Fig. 6.1 Alternative empirical and theoretical distribution functions of the January runoff at 
Poros Riganiou (normal probability plot). 
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Fig. 6.2 Alternative empirical and theoretical distribution functions of the January runoff at 
Poros Riganiou (lognormal probability plot). 
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The huge width of the confidence interval reflects a poor reliability of the prediction of the 
50-year January runoff. The reduction of the uncertainty would be made possible only by a 
substantially larger sample. 
 To test the appropriateness of the log-normal distribution we can use the χ2 test (see section 
5.5.1). As an empirical alternative, we depict in Fig. 6.1 and Fig. 6.2 comparisons of the 
empirical distribution function and the fitted log-normal theoretical distribution functions, on 
normal probability plot and on log-normal probability plot, respectively. For the empirical 
distribution we have used two plotting positions, the Weibull and the Cunnane (Table 5.8). 
Both log-normal distribution plots, resulted from the methods and the maximum likelihood 
are shown in the figures. Clearly, the maximum likelihood method results in a better fit in the 
region of small exceedence probabilities. For comparison we have also plotted the normal 
distribution, which apparently does not fit well to the data, and the Gamma distribution (see 
section 5.2.2). 

5.1.3 Three-parameter log-normal (Galton) distribution 
A combination of the normal distribution and the modified logarithmic transformation 

  (6.13) yζxζxy e)ln( +=⇔−=

results in the three-parameter log-normal distribution or the Galton distribution. This 
distribution has an additional parameter, compared to the two-parameter log-normal, the 
location parameter ζ, which is the lower limit of the variable. This third parameter results in a 
higher flexibility of the distribution fit. Specifically, if the method of moments is used to fit 
the distribution, the third parameter makes possible the preservation of the coefficient of 
skewness. Table 6.4 summarizes the basic mathematical properties and equations associated 
with the three-parameter log-normal distribution. 

Typical calculations 
The three-parameter log-normal distribution, can be handled in a similar manner with the two-
parameter log-normal distribution according to the following relationship 

  (6.14) YuY σzµ
uYuYu ζxσzµy ++=⇔+= e

where zu is the u-quantile of the standard normal distribution. 

Parameter estimation 
Using the equations of Table 6.4 for the method of moments, and after algebraic manipulation 
we obtain the following relationships that estimate the parameter σY. 
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Table 6.4 Three-parameter log-normal distribution conspectus 
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 The other two parameters of the distribution can be calculated from 

 2          /)/ln( 2
YXY σφsµ −=

φ
sxζ X−=  (6.17) 

 The maximum likelihood method is based on the following relationships (e.g. Kite, 1988, 
p. 74) 
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that can be solved only numerically. 
 The estimation of confidence intervals for the three-parameter log-normal distribution is 
complicated. The reader can consult Kite (1988, p. 77). 
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5.2 The Gamma family and related distribution functions 

5.2.1 Exponential distribution 
A very simple yet useful distribution is the exponential. Its basic characteristics are 
summarized in Table 6.5. 

Table 6.5 Exponential distribution conspectus 

Probability density function ( ) e
x

Xf x

ζ
λ

λ

−
−

=
 

Distribution function ( ) 1 e
x

XF x
ζ

λ
−

−
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Variable range ζ < x < ∞ (continuous) 

Parameters ζ:  location parameter 
λ > 0:  scale parameter  

Mean Xµ ζ λ= +  

Variance 
2 2
Xσ λ=  

Third central moment 
(3) 3
Xµ λ=  

Fourth central moment 
(4) 49Xµ λ=  

Coefficient of variation 
XvC λ

ζ λ
=

+  

Coefficient of skewness  2
XsC =  

Coefficient of kurtosis  9
XkC =  

Mode px ζ=  

Median 0.5 ln 2x ζ λ= +  

Second L moment λ(2)
X  = λ/2 

Third L moment λ(3)
X  = λ/6 

Fourth L moment λ(4)
X  = λ/12 

L coefficient of variation τ(2)
X  = 

λ
2(λ + ζ) 

L skewness τ(3)
X  = 1/3 

L kurtosis τ(4)
X  = 1/6 

 In its simplesr form, as we have already seen in section 2.5.5, the exponential distribution 
has only one parameter, the location parameter λ (the second parameter ζ is 0). The 
probability density function of the exponential distribution is a monotonically decreasing 
function (it has an inverse J shape). 
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As we have already seen (section 2.5.5), the exponential distribution can be used to 
describe non-negative geophysical variables at a fine time scale (e.g. hourly or daily rainfall 
depths). In addition, a theorem in probability theory states that intervals between random 
points in time, have exponential distribution. Application of this theorem in geophysics 
suggests that, for instance, the time intervals between rainfall events have exponential 
distribution. This is verified only as a rough approximation. The starting times of rainfall 
events cannot be regarded as random points in time; rather, a clustering behaviour is evident, 
which is related to some dependence in time (Koutsoyiannis, 2006). Moreover, the duration of 
rainfall events and the total rainfall depth in an event have been frequently assumed to have 
exponential distribution. Again this is just a rough approximation (Koutsoyiannis, 2005). 

5.2.2 Two-parameter Gamma distribution 
The two-parameter Gamma distribution is one of the most commonly used in geophysics and 
engineering hydrology. Its basic characteristics are given in Table 6.6.  

Table 6.6 Two-parameter Gamma distribution conspectus. 
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xf /1e
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Range 0 < x < ∞ (continuous) 
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κ > 0: shape parameter 

Mean κλµX =  

Variance 
22 κλσX =  

Third central moment 
3)3( 2κλµX =  
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Coefficient of variation  1
XvC

κ
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Coefficient of skewness  2 2
X Xs vC C

κ
= =  

Coefficient of kurtosis  263 3 6
X Xk vC C

κ
= + = +  

Mode xp = (κ – 1) λ (for κ ≥ 1) 

xp = 0 (for κ ≤ 1) 

 Similar to the two-parameter log-normal distribution, the Gamma distribution is positively 
skewed and is defined only for nonnegative values of the variable. These characteristics make 
the Gamma distribution compatible with several geophysical variables, including monthly and 
annual flows and precipitation depths. 
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 The Gamma distribution has two parameters, the scale parameter λ and the shape 
parameter κ. For κ = 1 the distribution is identical with the exponential, which is a special 
case of Gamma. For κ > 1 the probability density function is bell-shaped, whereas for κ < 1 its 
shape becomes an inverse J, with an infinite ordinate at x = 0. For large κ values (above 15-
30) the Gamma distribution approaches the normal. 

The Gamma distribution, similar to the normal, is closed under addition, but only when the 
added variables are stochastically independent and have the same scale parameter. Thus, the 
sum of two independent variables that have Gamma distribution with common scale 
parameter λ, has also a Gamma distribution.  

The χ2 distribution, which has been discussed in section 2.10.4, is a special case of the 
Gamma distribution.  

Typical calculations 
Similar to the normal distribution, the integral in the Gamma distribution function does not 
have an analytical expression thus causing difficulties in calculations. A simple solution is to 
tabulate the values of the standardized variable k = (x − µX) / σX, where µX and σX is the mean 
value and standard deviation of X, respectively. Such tabulations are very common in 
statistics books; one is provided in Table A4 in Appendix. Each column of this table 
corresponds to a certain value of κ (or, equivalently, to a certain skewness coefficient value 
CsX = 2 / κ  = 2σX / x−). The u-quantile (xu) is then given by 

 u X ux k Xµ σ= +  (6.20) 

where ku is read from tables for the specified value of u = FK(ku). Conversely, for given xu, the 
ku value can be calculated from (6.1) and then u = FK(ku) is taken from tables (interpolation in 
a column or among adjacent columns may be necessary).  
 Several numerical approaches can be found in literature in order to avoid the use of tables 
(Press et al., 1987; Stedinger et al., 1993; Koutsoyiannis, 1997) whereas most common 
computer applications (e.g. spreadsheets*) include ready to use functions. 

Parameter estimation 
The implementation of the method of moments results in the following simple estimates of 
the two Gamma distribution parameters: 

 2

2

Xs
xκ = ,  

x
sλ X

2

=  (6.21) 

 Parameter estimation based on the maximum likelihood method is more complicated. It is 
based in the solution of the equations (cf. e.g. Bobée and Ashkar, 1991) 

 ∑
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−=−
n

i
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n
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1
ln1ln)(ln ,  

κ
xλ =  (6.22) 

                                                 
* In Excel, these functions are GammaDist and GammaInv.   
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where ψ(κ) = d ln Γ(κ) / dκ is the so-called Digamma function (derivative of the logarithm of 
Gamma function).  

Standard error and confidence intervals of quantiles 
A point estimate of the u-quantile of Gamma distribution is given by 

 ˆu u Xx x k s= +  (6.23) 

If the method of moments is used to estimate the parameters the square of standard error of 
the estimate is (Bobée and Ashkar, 1991, p. 50) 
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In a first rough approximation, the term ∂ ku /∂ CsX can be omitted, leading to the 
simplification 
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Thus, an approximation of the confidence limits for confidence coefficient γ is 

 ( )1,2

2 2
(1 ) / 2

1ˆ ( ) 1 2 1 3
2X

X
u u X v u v

s
X ux x k s z C k C k

nγ+≈ + ± + + +  (6.26) 

 The maximum likelihood method results in more complicated calculations of the 
confidence intervals. The interested reader may consult Bobée and Ashkar (1991, p. 46). 

Gamma distribution probability plot 
It is not possible to construct a probability paper that depicts any Gamma distribution as 
straight line. It is feasible, though, to create a Gamma probability paper for a specified shape 
parameter κ. Clearly, this is not practical, and thus the depiction of Gamma distribution is 
usually done on normal probability paper or on Weibull probability paper (see below). In that 
case obviously the distribution is not depicted as a straight line but as a curve. 

Numerical example 
We wish to fit a two-parameter Gamma distribution to the sample of January runoff of the 
river Evinos upstream of the hydrometric station of Poros Riganiou and to determine the 50-
year runoff (sample in Table 6.3). 
 The sample mean value is 102.4 hm3 and the sample standard deviation is 70.4 hm3; using 
the method of moments we obtain the following parameter estimates:  

 κ = 102.42 / 70.42 = 2.11, λ = 70.42 / 102.4 = 48.4 hm3.  

 For return period T = 50 or equivalently for probability of non-exceedence F = 0.98 = u we 
determine the quantile xu either by an appropriate computer function or from tabulated 
standardized quantile values (Table A4); we find k0.98 = 2.70 and  
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 xu = 102.4 + 2.70 × 70.4 = 292.5 hm3 

 Likewise, we can calculate a series of quantiles, thus enabling the depiction of the fitted 
Gamma distribution. This has been done in Fig. 6.1 (in normal probability plot) and in Fig. 
6.2 (in log-normal probability plot) in comparison with other distributions. We observe that in 
general the Gamma distribution fit is close to those of the log-normal distribution; in the 
region of small exceedence probabilities the log-normal distribution provides a better fit. 
 To determine the 95% confidence intervals for the 50-year discharge we use the 
approximate relationship (6.26), which for z(1+γ)/2 = 1.96, ku = 2.70 and CvX = 0.69 results in 

 
( )

⎩
⎨
⎧

=±≈

××++××+××±≈

6.181
4.403

9.1105.292

70.269.031
2
170.269.021

21
4.7096.15.292ˆ 22

2,1ux
 

5.2.3 Three-parameter Gamma distribution (Pearson III) 
The addition of a location parameter (ζ) to the two-parameter Gamma distribution, results in 
the three-parameter Gamma distribution or the so-called Pearson type III (Table 6.7). 

Table 6.7 Pearson type ΙΙΙ distribution conspectus. 

Probability density function ( ) λζxκ
κX ζx

κΓλ
xf /)(1e)(

)(
1 −−−−=

 

Distribution function ( )( )
x

X Xc
F x f s= ∫ ds

 
Range ζ < x < ∞ (continuous) 

Parameters ζ:  location parameter  
λ > 0:  scale parameter  
κ > 0: shape parameter 

Mean κλcµX +=  

Variance 
22 κλσX =  

Third central moment 
3)3( 2κλµX =  

Fourth central moment 
4)4( )2(3 λκκµX +=  

Coefficient of skewness  2
XsC

κ
=  

Coefficient of kurtosis  63
XkC

κ
= +  

Mode xp = ζ + (κ – 1) λ (for κ ≥ 1) 
xp = ζ (for κ ≤ 1) 

 The location parameter ζ, which is the lower limit of the variable, enables a more flexible 
fit to the data. Thus, if we use the method of moments to fit the distribution, the third 
parameter permits the preservation of the coefficient of skewness.  
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 The basic characteristics are similar to those of the two-parameter Gamma distribution. 
Typical calculations are also based in equation (6.20). In contrast, the equations used for 
parameter estimation differ. Thus, the method of moments results in 

 
2ˆ
4

XsC
κ = ,  

κ
sλ X= ,  κλxζ −=  (6.27) 

The maximum likelihood method results in more complicated equations. The interested reader 
may consult Bobée and Ashkar (1991, p. 59) and Kite (1988, p. 117) who also provide 
formulae to estimate the standard error and confidence intervals of distribution quantiles.  

5.2.4 Log-Pearson III distribution 
The Log-Pearson III results from the Pearson type III distribution and the transformation 

 y = ln x ⇔ x = ey (6.28) 

Thus, the random variable X has Log-Pearson III distribution if the variable Y has Pearson III. 
Table 6.8 summarizes the basic mathematical relationships for the Log-Pearson III 
distribution. 

Table 6.8 Log Pearson III distribution conspectus. 

Probability density function ( ) λζxκ
κX ζx

κΓλx
xf /)(ln1e)(ln

)(
1 −−−−=

 

Distribution function ( )∫=
x
eζ XX dssfxF )(

 
Range eζ < x < ∞ (continuous) 

Parameters ζ:  scale parameter 
λ > 0:  shape parameter 
κ > 0: shape parameter 

Mean 1,
1

1e <⎟
⎠
⎞

⎜
⎝
⎛

−
= λ

λ
µ

κ
ζ

X  

Variance 2/1,
1

1
21

1e
2

22 <
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
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−⎟

⎠
⎞

⎜
⎝
⎛

−
= λ

λλ
σ

κκ
ζ

X  

Raw moments of order r rλ
λr

m
κ

ζrr
X /1,

1
1e)( <⎟

⎠
⎞

⎜
⎝
⎛

−
=  

 The probability density function of the Log-Pearson III distribution can take several shapes 
like bell-, inverse-J-, U-shape and others. From Table 6.8 we can be conclude that the rth 
moment tends to infinity for λ = 1/r and does not exist for greater λ. This shows that the 
distribution has a long tail (see section 2.5.6), which has made it a popular choice in 
engineering hydrology. Thus, it has been extensively used to describe flood discharges; in the 
USA the Log-Pearson III has been recommended by national authorities as the distribution of 
choice for floods.  
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Typical calculations 
Typical calculations for the Log-Pearson III are based on those related to the Pearson III. 
Hence, a combination of the equations (6.20) and (6.28) gives 

 e Y u Yk
u Y u Y uy k x µ σµ σ += + ⇔ =  (6.29) 

where the standard Gamma variate ku can be determined either from tables or numerically as 
described in section 5.2.2. 

Parameter estimation 
The parameter estimation by either the method of moments or the maximum likelihood is 
quite complicated (Bobée and Ashkar, 1991, p. 85. Kite, 1988, p. 138). Here we present a 
simpler method of moments of logarithms: According to this method we calculate the values 
yi = ln xi from the available sample and then we calculate the statistics of the values yi. 
Finally, we apply the equations resulted from the method of moments for the variable Y, thus 
we have 

 
2

4
ˆ

sYC
κ = ,  

κ
sλ Y= ,  κλyζ −=  (6.30) 

 As in the case of the Pearson III distribution, the estimation of the confidence intervals is 
pretty complicated.  

Log-Pearson ΙΙΙ probability plot 
It is not possible to construct a probability paper that depicts any Log-Pearson ΙΙΙ distribution 
as a straight line. Of course it is possible to make a probability paper for a specified value of 
the shape parameter κ but this is impractical. Thus, the depiction of the Log-Pearson III 
distribution is usually done on Log-normal probability paper or on Gumbel probability paper 
(see below). In that case the distribution is not depicted as a straight line but as a curve. 

5.2.5 Two-parameter Beta distribution 
The Beta distribution is an important distribution of the probability theory and has been 
extensively used as a conditional distribution and in Bayesian statistics. Moreover, the two-
parameter Beta distribution is related to the Gamma distribution. Specifically, if X and Y are 
independent random variables with distributions Gamma(α, θ) and Gamma(β, θ) respectively 
(where Gamma(α, θ) denotes a Gamma distribution with shape parameter α and scale 
parameter θ), then the random variable X / (X + Y) has Beta(α, β) distribution. A basic 
property of the Beta distribution is that the variable ranges from 0 to 1, contrary to the other 
distributions examined that are unbounded from above. The Beta distribution is frequently 
used in geophysics for doubly bounded variables, e.g. relative humidity.  
 The Beta distribution has two shape parameters, α and β whereas an additional scale 
parameter could be easily added. Depending on the parameter values, the probability density 
function of the Beta distribution can take a plethora of shapes. Specifically, for α = β = 1 it 
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becomes identical to the uniform distribution, while for α = 1 and β = 2 (or α = 2 and β = 1) it 
is identical to the negatively (positively) skewed triangular distribution. If α < 1 (or β < 1) the 
probability density function is infinite at point x = 0 (x = 1). If α > 1 and β > 1 the Beta 
probability density function is bell shaped. Table 6.9 summarizes the basic properties of the 
Beta distribution.  

Table 6.9 Two-parameter Beta distribution conspectus. 

Probability density function ( ) 1 1( ) (1 )
( ) ( )Xf x x xα βα β
α β

− −Γ +
= −

Γ Γ  

Distribution function ( )
0

( )
x

X XF x f s ds= ∫  
Variable range 0 < x < 1 (continuous) 

Parameters α, β > 0: shape parameters 
Mean 

X
αµ

α β
=

+  

Variance 2
2( ) (X 1)
αβσ

α β α β
=

+ + +  

Third raw moment (3) ( 1)( 2)
( )( 1)(Xm

2)
α α α

α β α β α β
+ +

=
+ + + + +  

Coefficient of variation  
( 1XvC β

α α β
=

)+ +  

Mode 
2

1
p −+

−
=

βα
αx  (for α, β > 1) 

5.3 Generalized Pareto distribution 

The Pareto distribution was introduced by the Italian economist Vilfredo Pareto to describe 
the allocation of wealth among individuals since it seemed to describe well the fact that a 
larger portion of the wealth of a society is owned by a smaller percentage of the people. Its 
original form is expressed by the power-law equation 

 

κ

λ
xxXP

1

}{
−

⎟
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⎞

⎜
⎝
⎛=>

 (6.31) 

where λ is a (necessarily positive) minimum value of x (x > λ) and κ is a (positive) shape 
parameter. A generalized form, the so-called generalized Pareto distribution, in which a 
location parameter ζ independent of the scale parameter λ has been added, has been used in 
geophysics. Its basic characteristics are summarized in Table 6.10. Similar to the Log-Pearson 
III, the generalized Pareto distribution has a long tail. Indeed, as can be observed in Table 
6.10, its third, second and first moments diverge (become infinite) for κ ≥ 1/3, κ ≥ 1/2 and κ ≥ 
1, respectively. For its long tail the distribution recently tends to replace short-tail 
distributions such as the Gamma distribution in modelling fine-time-scale rainfall and river 
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discharge (Koutsoyiannis, 2004a,b, 2005). Since the analytical expression of the distribution 
function is very simple (Table 6.10) no tables or complicated numerical procedures are 
needed to handle it. Application of l'Hôpital's rule for κ = 0 results precisely in the 
exponential distribution, which thus can be derived as a special case of the Pareto distribution.  

Table 6.10 Generalized Pareto distribution conspectus. 

Probability density function ( )
11

11 −−

⎟
⎠
⎞

⎜
⎝
⎛ −

+=
κ

X λ
ζxκ

λ
xf

 

Distribution function κ

X λ
ζxκxF

1

11)(
−

⎟
⎠
⎞

⎜
⎝
⎛ −

+−=
 

Range For κ > 0, ζ ≤ x < ∞  
For κ < 0, ζ ≤ x < ζ – λ / κ (continuous) 

Parameters ζ: location parameter  
λ > 0: scale parameter 
κ: shape parameter 

Mean 
κ
λζµX −

+=
1  

Variance 

 ( ) ( )κκ
λσX 211 2

2
2

−−
=  

Third central moment 
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κλµX 31211
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3
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Skewness coefficient ( )
κ

κκC
Xs 31

2112
−

−+
=  

Mode xp = ζ 

Median ( )κ
κ
λζx −−+= 5.015.0  

Second L moment 
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λλΧ −−
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21
)2(

 

Third L moment ( )
( )( )( )κκκ

κλλΧ −−−
+

=
321
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Fourth L moment ( )
( )( )( ) )4(321

)2(1)4(

κκκκ
κκλλΧ −−−−
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L coefficient of variation 
( ) ( )κλκζ

λτΧ −+−
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L skewness 
κ
κτΧ −

+
=

3
1)3(  

L kurtosis ( )
( ) )4(3
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κκ
κκτΧ −−
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5.4 Extreme value distributions 

It can be easily shown that, given a number n of independent identically distributed random 
variables Y1,…,Yn, the largest (in the sense of a specific realization) of them (more precisely, 
the largest order statistic), i.e.: 

 Xn = max(Y1, …, Yn) (6.32) 

has probability distribution function:  

 Hn(x) = [F(x)]n (6.33) 

where F(x) := P{Yi ≤ x} is the common probability distribution function (referred to as the 
parent distribution) of each Yi. 

The evaluation of the exact distribution (6.33) requires the parent distribution to be known. 
For n tending to infinity, the limiting distribution H(x) := H∞(x) becomes independent of F(x). 
This has been utilised in several geophysical applications, thus trying to fit (justifiably or not) 
limiting extreme value distributions, or asymptotes, to extremes of various phenomena, and 
bypassing the study of the parent distribution. According to Gumbel (1958), as n tends to 
infinity, Hn(x) converges to one of three possible asymptotes, depending on the mathematical 
form of F(x). However, all three asymptotes can be described by a single mathematical 
expression, known as the generalized extreme value (GEV) distribution of maxima. 
 The logic behind the use of the extreme value distributions is this. Let us assume that the 
variable Yi denotes the daily average discharge of a river of the day i. From (6.33), X365 will 
be then the maximum daily average discharge within a year. In practical problems of flood 
protection designs we are interested on the distribution of the variable X365 instead of that of 
Yi. It is usually assumed that the distribution of X365 (the maximum of 365 variables) is well 
approximated by one of the asymptotes. Nevertheless, the strict conditions that make the 
theoretical extreme value distributions valid are rarely satisfied in real world processes. In the 
previous example the variables Yi can neither be considered independent nor identically 
distributed. Moreover, the convergence to the asymptotic distribution in general is very slow, 
so that a good approximation may require that the maximum is taken over millions of 
variables (Koutsoyiannis, 2004a). For these reasons, the use of the asymptotic distributions 
should be done with attentiveness.  
 If are interested about minima, rather than maxima, i.e.: 

 Xn = min(Y1, …, Yn) (6.34) 

then the probability distribution function of Xn is:  

 Gn(x) = 1 – [1 – F(x)]n (6.35) 

As n tends to infinity we obtain the generalized extreme value distribution of minima, a 
distribution symmetric to the generalized extreme value distribution of maxima. 
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 These two generalized distributions and their special cases are analysed below. 
Nevertheless, several other distributions have been used in geophysics to describe extremes, 
e.g. the log-normal, the two and three-parameter Gamma and the log-Pearson III distributions. 

5.4.1 Generalized extreme value distribution of maxima 
The mathematical expression that comprises all three asymptotes is known as the generalized 
extreme value (GEV) distribution. Its basic characteristics are summarized in Table 6.11.  

Table 6.11 Generalized extreme value distribution of maxima conspectus. 

Probability density function fX(x) = 
1 
λ  ⎝⎜

⎛
⎠⎟
⎞1 + κ 

 x– ζ 
λ  

–1 / κ – 1

 exp⎣⎢
⎡

⎦⎥
⎤– ⎝⎜

⎛
⎠⎟
⎞1 + κ  

 x – ζ
λ  

–1 / κ

 

Distribution function FX(x) = exp⎣⎢
⎡

⎦⎥
⎤– ⎝⎜

⎛
⎠⎟
⎞1 + κ 

 x – ζ
λ  

–1 / κ

 

Range In general: κ x ≥ κ ζ – λ 
For κ > 0 (Extreme value of maxima type II):  ζ – λ / κ ≤ x < ∞ 

For κ < 0 (Extreme value of maxima type III): –∞ < x ≤ ζ – λ / κ

Parameters ζ:  location parameter 
λ > 0: scale parameter 
κ:  shape parameter 

Mean µX = ζ – 
 λ 
κ  [1 – Γ (1 – κ)] 

Variance σ2
X = ⎝⎜

⎛
⎠⎟
⎞ λ 

κ
2

[Γ(1 – 2 κ) – Γ 2(1 – κ)] 

Third central moment µ(3)
X  = ⎝⎜

⎛
⎠⎟
⎞ λ 

κ
3

[Γ (1 – 3 κ) – 3 Γ (1 – 2 κ) Γ (1 – κ) + 2Γ 3(1 –κ)] 

Coefficient of skewness  CsX = sgn(κ) 
Γ (1 – 3 κ) – 3 Γ (1 – 2 κ) Γ (1 – κ) + 2 Γ 

 
3(1 – κ)

[Γ (1 – 2 κ) – Γ 
 
2(1 – κ)]3/2   

Second L moment λ(2)
X  = –Γ(–κ) (2κ – 1) λ 

Third L moment λ(3)
X  = –Γ(–κ) [2(3κ – 1) – 3(2κ – 1)] λ  

Fourth L moment λ(4)
X  = –Γ(–κ) [5(4κ – 1) – 10(3κ – 1) + 6(2κ – 1)] λ 

L Coefficient of variation τ(2)
X  = 

Γ(1 – κ) (2κ – 1) λ
 λ Γ(1 – κ) + ζ κ –  λ 

L Skewness τ(3)
X  = 2 

3κ – 1
2κ – 1 – 3 

L Kurtosis τ(4)
X  = 6 + 

5(4κ – 1) – 10(3κ – 1)
2κ – 1  

 The shape parameter κ determines the general behaviour of the GEV distribution. For κ > 0 
the distribution is bounded from below, has long right tail, and is known as the type II 
extreme value distribution of maxima or the Fréchet distribution. For κ < 0 it is bounded from 
above and is known as the type III extreme value distribution of maxima; this is not of 
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practical interest in most real world problems because a bound from above is unrealistic. The 
limiting case where κ = 0, derived by application of l'Hôpital's rule, corresponds to the so-
called extreme value distribution of type I or the Gumbel distribution (see section 5.4.2), 
which is unbounded both from above and below. 

Typical calculations 
The simplicity of the mathematical expression of the distribution function, permits typical 
calculations to be made directly without the need of tables or numerical approximations. The 
value of the distribution function can be calculated if the variable value is known. Also, the 
inverse distribution function has an analytical expression, namely the u-quantile of the 
distribution is  

 [ ]
κ
uλζx

κ

u
1)ln( −−

+=
−

 (6.36) 

Parameter estimation 
As shown in Table 6.11, both coefficients of skewness and L skewness are functions of the 
shape parameter κ only, which enables the estimation of κ from either of the two expressions 
using the samples estimates of these coefficients. However the expressions are complicated 
and need to be solved numerically. Instead, the following explicit equations (Koutsoyiannis, 
2004b) can be used, which are approximations of the exact (but implicit) equations of Table 
6.11:  

 κ = 
1
3 – 

1

0.31 + 0.91ĈsX + (0.91 ĈsX)2 + 1.8
 (6.37) 

 κ = 8c – 3c2,  c := 
ln2
ln3 – 

2

3 + τ̂(3)
X

  (6.38) 

The former corresponds to the method of moments and the resulting error is smaller than 
±0.01 for –1 < κ < 1/3 (–2 < CsX < ∞). The latter corresponds to the method of L moments and 

the resulting error is smaller than ±0.008 for –1 < κ < 1 (–1/3 < τ(3)
X  < 1). 

 Once the shape parameter is calculated, the estimation of the remaining two parameters 
becomes very simple. The scale parameter can be estimated by the method of moments from: 

 λ = c1sX,  c1 = |κ| / Γ(1 – 2κ) – Γ2(1 – κ) (6.39) 

or by the method of L moments from: 

 λ = c2 l
(2)
X ,  c2 = κ/[Γ(1 – κ)(2κ – 1)] (6.40) 

The estimate of the location parameter for both the method of moments and L moments is: 

 ζ = x– – c3 λ,  c3 = [Γ(1 – κ) – 1]/κ (6.41) 
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5.4.2  Extreme value distribution of maxima of type I (Gumbel) 
As we have explained in the previous section, the type I or the Gumbel distribution is a 
special case of the generalized extreme value distribution of maxima for κ = 0. Its basic 
characteristics are summarized in Table 6.12, where the constant γE that appears in some 
equations is the Euler* constant.  

Table 6.12 Type I or Gumbel distribution of maxima conspectus. 

Probability density function fX(x) =
1
λ exp ⎝⎜

⎛
⎠⎟
⎞–

x – ζ
λ  exp⎣⎢

⎡
⎦⎥
⎤– exp ⎝⎜

⎛
⎠⎟
⎞–

x – ζ
λ   

Distribution function FX(x) = exp⎣⎢
⎡

⎦⎥
⎤–exp ⎝⎜

⎛
⎠⎟
⎞–

x – ζ
λ   

Range -∞ < x < ∞ (continuous) 

Parameters ζ:  location parameter 
λ > 0: scale parameter 

Mean λζλγζµX 5772.0Ε +=+=  

Variance 
2

2 2 1.645
6X

π 2σ λ λ= =  

Third central moment 
(3) 32.404Xµ λ=  

Fourth central moment 
(4) 414.6Xµ λ=  

Coefficient of skewness  1.1396
XsC =  

Coefficient of kurtosis  5.4
XkC =  

Mode xp = ζ 

Median 0.5 ln( ln 0.5) 0.3665x ζ λ ζ λ= − − = +  

Second L moment λ(2)
X  = λ ln2 

Third L moment λ(3)
X  = (2 ln3 – 3 ln2) λ 

Fourth L moment λ(4)
X  = 2(8 ln2 – 5 ln3) λ 

L coefficient of variation τ(2)
X  = 

ln2 λ
ζ + γE λ 

L skewness τ(3)
X  = 2 

ln3
ln2 – 3 ≈ 0.1699 

L kurtosis τ(4)
X  = 16 – 10 

ln3
ln2 ≈ 0.1504 

                                                 
* The Euler constant is defined as the limit 
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Typical calculations 
Due to the simplicity of the mathematical expression of the distribution function, typical 
calculations can be done explicitly without the need of tables or numerical approximations. 
The value of the distribution function can be calculated easily if the value of the variable is 
known. Moreover, the inverse distribution function has an analytical expression, namely the 
u-quantile of the distribution is  

 ln( ln )ux uζ λ= − −  (6.42) 

Parameter estimation 
Since the Gumbel distribution is a special case of the GEV distribution, the parameter 
estimation procedures of the latter can be applied also in this case (except for the estimation 
of κ which by definition is zero). Specifically equations (6.39)-(6.41) for the method of 
moments and L moments still hold, and the constants ci have the following values: c1 = 6/π 
= 0.78, c2 = 1/ln2 = 1.443 and c3 = γE = 0.577.  
 Another method that results in similar expressions is the Gumbel method (Gumbel, 1958, 
p. 227). The method is based in the least square fit of the theoretical distribution function to 
the empirical distribution. For the empirical distribution function the Weibull plotting position 
must be used. The expressions of this method depend on the sample size n. The original 
Gumbel method is based on tabulated constants. To avoid the use of tables we give the 
following expressions that are good approximations of the original method: 

 

( )0.65
1 1.57

0.78 1

Xs

n

λ =
−

+

,  
( )0.74

0.530.577
2.5

x
n

ζ λ
⎡ ⎤

= − −⎢ ⎥
+⎢ ⎥⎣ ⎦

 (6.43) 

The approximation error is smaller than 0.25% for the former equation and smaller than 
0.10% for the latter (for n ≥ 10). For small exceedence probabilities, the Gumbel method 
results in safer predictions in comparison to the method of moments. The maximum 
likelihood method is more complicated; the interested reader may consult Kite (1988, p. 96). 

Standard error and confidence intervals of quantiles 
If the method of moments is used to estimate the parameters, then the point estimate of the u-
quantile can be written in the following form that is equivalent to (6.42): 

 ˆ 0.5772 ln( ln )u u Xx x u x k sλ λ= − − − = +  (6.44) 

where, 

 0.5772 ln( ln ) 0.45 0.78ln( ln )u
X

uk u
s

λ − − −
= = − − −  (6.45) 

In this case it can be shown (Gumbel, 1958, p. 228. Kite, 1988, p. 103) that the square of the 
standard error of the estimate is 
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2
2 ˆ=Var( ) 1 1.1396 1.1X
X u u

s )2
uX k k

n
ε = + +  (6.46) 

Consequently, the confidence intervals of the u-quantile for confidence coefficient γ is 
approximately  

 ( )1,2

2
(1 )/ 2ˆ 1 1.1396 1.1X

u u X u
s

ux x k s z k k
nγ+= + ± + +  (6.47) 

Gumbel probability plot 
The Gumbel distribution can be depicted as a straight line on a Gumbel probability plot. This 
plot can be easily constructed with horizontal probability axis h = −ln(−ln F) (sometimes 
called Gumbel reduced variate) and vertical axis the variable of interest. Clearly, equation 
(6.42) is a straight line in this probability plot. 

Numerical example 
Table 6.13 lists a sample of the annual maximum daily discharge of the Evinos river upstream 
of the hydrometric station of Poros Reganiou. We wish to fit the Gumbel distribution of 
maxima and to determine the 100-year maximum discharge. 

Table 6.13 Sample of annual maximum daily discharge (in m3/s) of the river Evinos upstream 
of the hydrometric station of Poros Reganiou. 

 
Hydrolo-
gical year

Maximum 
discharge 

 Hydrolo-
gical year

Maximum
discharge

Hydrolo-
gical year

Maximum 
discharge 

1970-71 884  1977-78 365 1984-85 317 
1971-72 305  1978-79 502 1985-86 374 
1972-73 215  1979-80 381 1986-87 188 
1973-74 378  1980-81 387 1987-88 192 
1974-75 176  1981-82 525 1988-89 448 
1975-76 430  1982-83 412 1989-90 70 
1976-77 713  1983-84 439     

The sample average is 

 x− = ∑ x / n  = 385.1 m3/s 

The standard deviation is 

 s
 
X = ∑ x2 / n − x−2 = 181.5 m3/s  

and the coefficient of variation is 

 ĈvX = sX / x− = 181.5 / 385.1 = 0.47 

The skewness coefficient is 

 ĈsX  = 0.94 
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a value close to the theoretical value of the Gumbel distribution (1.14). 
 The method of moments results in  

 λ = 0.78 × 181.5 = 141.57 m3/s, ζ = 385.1 − 0.577 × 141.57 = 303.4 m3/s 

The maximum daily discharge for T = 100, or equivalently for u = 1 − 1/100 = 0.99, is 

 x0.99 = 303.4 − 141.57 × ln[−ln(0.99)] = 955.0 m3/s 

Based on (6.47), for 

 ku = (955.0 − 385.1) / 181.5 = 3.16, z(1+γ)/2 = 1.96  

we determine the 95% confidence intervals of the 100-year maximum daily discharge: 

⎩
⎨
⎧

=±≈

×+×+×±≈

/sm9.641
/sm1.1268

1.3130.955

16.31.116.31396.11
20

5.18196.10.955ˆ

3

3

2
2,1ux

 

 The Gumbel method using the equations (6.43), for n = 20, gives  

 λ = 170.36 m3/s, ζ = 295.7 m3/s 

and the 100-year maximum discharge estimation is 

 x0.99 = 295.7 − 170.36 × ln[−ln(0.99)] = 1079.4 m3/s 
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Fig. 6.3 Empirical and theoretical distribution of the daily maximum discharge of the river 
Evinos at station of Poros Riganiou plotted in Gumbel of maxima probability paper. 

 Fig. 6.3 depicts a comparison of the empirical distribution function and the theoretical 
Gumbel distribution of maxima on a Gumbel probability plot. For the empirical distribution 
function we have used the Weibull and the Gringorten plotting positions. For comparison we 
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have also plotted the normal and log-Pearson III distributions. Clearly, the normal distribution 
is inappropriate (as expected) but even the Gumbel distribution does not fit well in the area of 
small exceedence probabilities that are of more interest, and seems to underestimate the 
highest discharges. The log-Person III distribution seems to be the most appropriate for the 
highest values of discharge. This seems to be a general problem for the Gumbel distribution. 
For more than have a century it has been the prevailing model for quantifying risk associated 
with extreme geophysical events. Newer evidence and theoretical studies (Koutsoyiannis, 
2004a,b, 2005) have shown that the Gumbel distribution is quite unlikely to apply to 
hydrological extremes and its application may misjudge the risk, as it underestimates 
seriously the largest extremes. Besides, it has been shown that observed samples of typical 
length (like the one of this example) may display a distorted picture of the actual distribution, 
suggesting that the Gumbel distribution is an appropriate model for geophysical extremes 
while it is not. Therefore, it can be recommended to avoid the Gumbel distribution for the 
description of extreme rainfall and river discharge and use long-tail distributions such as the 
extreme value distribution of type II or log-Pearson III.  

5.4.3 Generalized extreme value distribution of minima 
If H(x) is the generalized extreme value distribution of maxima then the distribution function 
G(x) = 1 – H(–x)  is the generalized extreme value distribution of minima. Its general 
characteristics are summarized in Table 6.14, where we have changed the sign convention in 
the parameter κ so that the distribution be unbounded from above for κ > 0 (bounded from 
below). This is similar to the generalized extreme value distribution of maxima where again κ 
> 0 corresponds to a distribution be unbounded from above. However, they are termed, 
respectively, type II extreme value distribution of maxima and type III extreme value 
distribution of minima (or the Weibull distribution). For κ < 0 the distribution of minima 
(similar to that of maxima) is bounded from above and is known as the type II extreme value 
distribution of minima; this is not of practical interest as in most real world problems a bound 
from above is unrealistic. The limiting case where κ = 0, derived by application of l'Hôpital's 
rule, corresponds to the so-called type I extreme value distribution of minima or the Gumbel 
distribution of minima, which is unbounded both from above and below. 

Typical calculations 
The mathematical expression of the generalized extreme value distribution of minima is 
similar to that of maxima. Thus, typical calculations can be done explicitly. The value of the 
distribution function can be calculated directly from the value of the variable. Also, the 
inverse distribution function has an analytical expression, namely the u-quantile of the 
distribution is given by 

 xu = ζ + 
 λ 
κ { [–ln (1 – u)]κ – 1}   (6.48) 
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Table 6.14 Generalized extreme value distribution of minima conspectus. 

Probability density function fX(x) = 
1 
λ  ⎣⎢

⎡
⎦⎥
⎤1 + κ ⎝⎜

⎛
⎠⎟
⎞ 

 x– ζ 
λ  

1 / κ – 1

 exp
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– ⎣⎢
⎡

⎦⎥
⎤1 + κ ⎝⎜

⎛
⎠⎟
⎞ 

 x – ζ
λ  

1 / κ

 

Distribution function FX(x) = 1 – exp⎣⎢
⎡

⎦⎥
⎤– ⎝⎜

⎛
⎠⎟
⎞1 + κ 

 x – ζ
λ  

1 / κ

 

Range In general: κ x ≥ κ ζ – λ 
For κ > 0 (Extreme value of minima type III):  ζ – λ / κ ≤ x < ∞ 

For κ < 0 (Extreme value of minima type II): –∞ < x ≤ ζ – λ / κ 

Parameters ζ:  location parameter 
λ > 0: scale parameter 
κ:  shape parameter 

Mean µX = ζ + 
 λ 
κ [Γ (1 + κ) – 1]  

Variance σ2
X = ⎝⎜

⎛
⎠⎟
⎞ λ 

κ
2

[Γ(1 + 2 κ) – Γ 2(1 + κ)] 

Third central moment µ(3)
X  = ⎝⎜

⎛
⎠⎟
⎞ λ 

κ
3

[Γ (1 + 3 κ) – 3 Γ (1 + 2 κ) Γ (1 + κ) + 2Γ 3(1 + κ)] 

Coefficient of skewness  CsX = sgn(κ) 
Γ (1 + 3 κ) – 3 Γ (1 + 2 κ) Γ (1 + κ) + 2 Γ 

 
3(1 + κ)

[Γ (1 + 2 κ) – Γ 
 
2(1 + κ)]3/2   

Second L moment λ(2)
X  = Γ(κ) (1 – 2–κ) λ 

Third L moment λ(3)
X  = Γ(κ) [3(1 – 2–κ) – 2(1 – 3–κ)] λ  

Fourth L moment λ(4)
X  = Γ(κ) [5(1 – 4–κ) – 10(1 – 3–κ) + 6(1 – 2–κ)] λ 

L coefficient of variation τ(2)
X  = 

Γ(1 + κ) (1 – 2–κ) λ
 λ Γ(1 + κ) + ζ κ –  λ 

L skewness τ(3)
X  = 3 – 2 

1 – 3–κ

 1 – 2–κ 

L kurtosis τ(4)
X  = 6 + 

5(1 – 4–κ) – 10(1 – 3–κ)
 1 – 2–κ  

Parameter estimation 
As shown in Table 6.14, both coefficients of skewness and L skewness are functions of the 
shape parameter κ only, which enables the estimation of κ from either of the two expressions 
using the sample estimates of these coefficients. However the expressions are complicated 
and need to be solved numerically. Instead, the following explicit equations (Koutsoyiannis, 
2004b) can be used, which are approximations of the exact (but implicit) equations of Table 
6.11:  

 κ = 
1

0.28 – 0.9ĈsX + 0.998 (0.9 ĈsX)2 + 1.93
 – 

1
3 (6.49) 
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 κ = 7.8c + 4.71 c2,  c := 

2

3 – τ̂(3)
X

 – 
ln2
ln3  (6.50) 

The former corresponds to the method of moments and the resulting error is smaller than 
±0.01 for –1/3 < κ < 3 (–∞ < Cs < 20). The latter corresponds to the method of L moments and 
the resulting error is even smaller. 
 Once the shape parameter is known, the scale parameter can be estimated by the method of 
moments from: 

 λ = c1sX,  c1 = |κ| / Γ(1 + 2κ) – Γ2(1 + κ) (6.51) 
or by the method of L moments from: 

 λ = c2 l
(2)
X ,  c2 = κ/[Γ(1 – κ)(2κ – 1)] (6.52) 

The estimate of the location parameter for both the method of moments and L moments is: 

 ζ = x– + c3 λ,  c3 = [1 – Γ(1 + κ)]/κ (6.53) 

5.4.4 Extreme value distribution minima of type I (Gumbel) 
As shown in Table 6.15, the type I distribution of minima resembles the type I distribution of 
maxima. The typical calculations are also similar. The inverse distribution function has an 
analytical expression and thus the u-quantile is given by: 

 xu = ζ + λ ln [–ln(1 – u)] (6.54) 

 Since the Gumbel distribution is a special case of the GEV distribution, the parameter 
estimation procedures of the latter is based on equations (6.51)-(6.53) but with constants ci as 
follows: c1 = 6/π = 0.78, c2 = 1/ln2 = 1.443 and c3 = γE = 0.577.  
 We can plot the Gumbel distribution of minima on a Gumbel-of-maxima probability paper 
if we replace the probability of exceedence with the probability of non-exceedence. Further, 
we can construct a Gumbel-of-minima probability plot if we use as horizontal axis the variate 
h = ln[−ln (1−F)]. 

5.4.5 Two-parameter Weibull distribution 
If in the generalized extreme value distribution of minima we assume that the lower bound 
(ζ – λ/κ) is zero, we obtain the special case known as the two two-parameter Weibull 
distribution. Its main characteristics are shown in Table 6.15, where for convenience we have 
performed a change of the scale parameter replacing λ/κ with α.  

Typical calculations 
The related calculations are simple as in all previous cases and the inverse distribution 
function, from which quantiles are estimated, is 

 xu = α{ [–ln (1 – u)] κ} (6.55) 
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Table 6.15 Type I or Gumbel distribution of minima conspectus. 

Probability density function fX(x) =
1
λ exp ⎝⎜

⎛
⎠⎟
⎞x – ζ

λ  exp⎣⎢
⎡

⎦⎥
⎤– exp ⎝⎜

⎛
⎠⎟
⎞x – ζ

λ   

Distribution function FX(x) = 1 – exp⎣⎢
⎡

⎦⎥
⎤–exp ⎝⎜

⎛
⎠⎟
⎞x – ζ

λ   

Variable range -∞ < x < ∞ (continuous) 

Parameters ζ:  location parameter 
λ > 0: scale parameter 

Mean λζλγζµX 5772.0Ε −=−=  

Variance 
2

2 2 1.645
6X

π 2σ λ λ= =  

Third central moment 
(3) 32.404Xµ λ= −  

Fourth central moment 
(4) 414.6Xµ λ=  

Skewness coefficient 1.1396
XsC = −  

Kurtosis coefficient 5.4
XkC =  

Mode xp = ζ 

Median 0.5 ln( ln 0.5) 0.3665x ζ λ ζ λ= + − = −  

Second L moment λ(2)
X  = λ ln2 

Third L moment λ(3)
X  = – (2 ln3 – 3 ln2) λ 

Fourth L moment λ(4)
X  = 2(8 ln2 – 5 ln3) λ 

L coefficient of variation τ(2)
X  = 

ln2 λ
ζ – γE λ 

L skewness τ(3)
X  = –2 

ln3
ln2 + 3 ≈ –0.1699 

L kurtosis τ(4)
X  = 16 – 10 

ln3
ln2 ≈ 0.1504 

Parameter estimation 
From the expressions of Table 6.14, the estimate of κ by the method of moments can be done 
from: 

 
Γ(1 + 2 κ)
Γ 2(1 + κ)  = Ĉ

2

vX + 1 (6.56) 

This is implicit for κ and can be solved only numerically. An approximate solution with 
accuracy ±0.01 για 0 < κ < 3.2 or 0 < CvX < 5) is 

 κ = 2.56 {exp{0.41 [ln(C
2
v + 1)]0.58} –1} (6.57) 

The L moment estimate is much simpler: 
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 κ = 
–ln(1 – τ(2)

X )

 ln 2   (6.58) 

Once κ has been estimated, the scale parameter for both the method of moments and L 
moments is 

 ( )κΓ
xα
+

=
1

 (6.59) 

Table 6.16 Two-parameter Weibull distribution (type III of minima) conspectus. 

Probability density function 
f(x) = 

1 
κ α ⎝⎜

⎛
⎠⎟
⎞ x 

α  
1 / κ – 1

 exp⎣⎢
⎡

⎦⎥
⎤– ⎝⎜

⎛
⎠⎟
⎞ x 

α
1 / κ

 

Distribution function F(x) = 1 – exp⎣⎢
⎡

⎦⎥
⎤– ⎝⎜

⎛
⎠⎟
⎞ 

 x 
α  

1 / κ

 

Range 0 < x < ∞ (continuous) 

Parameters α > 0:  scale parameter  
κ > 0: shape parameter 

Mean ( )κΓαµX += 1  

Variance σ2
X = α2[Γ (1 + 2 κ) – Γ 2(1 + κ)] 

Third central moment µ(3)
X  = α3[Γ(1 + 3 κ) – 3Γ(1 + 2 κ) Γ(1 + κ) + 2Γ 3(1 + κ)] 

Coefficient of variation CvX = 
[Γ (1 + 2 κ) – Γ 

 
2(1 + κ)]1/2

Γ (1 + κ)   

Coefficient of skewness  CsX = 
Γ(1 + 3 κ) – 3 Γ(1 + 2 κ) Γ(1 + κ) + 2 Γ 

3(1 + κ)
[Γ(1 + 2 κ) – Γ 

2(1 + κ)]3/2   

Mode 
κκαx )1(p −=  (for κ > 1) 

Median ( )καx 2ln5.0 =  

Second L moment λ(2)
X  = Γ(1 + κ) (1 – 2–κ) α 

Third L moment λ(3)
X  = Γ(1 + κ) [3(1 – 2–κ) – 2(1 – 3–κ)] α 

Fourth L moment λ(4)
X  = Γ(1 + κ) [5(1 – 4–κ) – 10(1 – 3–κ) + 6(1 – 2–κ)] α 

L coefficient of variation τ(2)
X  = 1 – 2–κ 

L skewness τ(3)
X  = 3 – 2 

1 – 3–κ

 1 – 2–κ 

L kurtosis τ(4)
X  = 6 + 

5(1 – 4–κ) – 10(1 – 3–κ)
 1 – 2–κ  

 We observe that the transformation Z = ln X results in 

 ]  (6.60) eexp[1)( /)ln( καz
z zF −−−=
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which is a Gumbel distribution of minima with location parameter ln α and scale parameter κ. 
Thus, we can also use the parameter estimation methods of the Gumbel distribution applied 
on the logarithms of the observed sample values.  

Weibull probability plot 
A probability plot where the two-parameter Weibull distribution is depicted as a straight line 
is possible. The horizontal axis is h = ln[−ln (1−F)] (similar to the plot of Gumbel of minima) 
and the vertical axis is v = ln x (logarithmic scale).  

Numerical example 
Table 6.17 lists a sample of annual minimum (average) daily discharge of the Evinos river 
upstream of the hydrometric station of Poros Reganiou. We wish to fit the Gumbel 
distribution of minima and the Weibull distribution and to determine the minimum 20-year 
discharge. 

Table 6.17 Sample of annual minimum daily discharges (in m3/s) of the river Evinos at the 
station of Poros Riganiou. 

 
Hydrolo-
gical year 

Minimum. 
discharge 

 Hydrolo-
gical year

Minimum 
discharge

Hydrolo-
gical year

Minimum. 
discharge 

1970-71 0.00  1977-78 2.14 1984-85 0.54 
1971-72 2.19  1978-79 2.00 1985-86 0.54 
1972-73 2.66  1979-80 1.93 1986-87 1.70 
1973-74 2.13  1980-81 2.29 1987-88 1.70 
1974-75 1.28  1981-82 2.66 1988-89 0.32 
1975-76 0.56  1982-83 2.87 1989-90 1.37 
1976-77 0.13  1983-84 1.88     

The sample mean is 

 x− = ∑ x / n  = 1.545 m3/s 

The standard deviation is 

 s
 
X = ∑ x2 / n − x−2 = 0.878 m3/s  

and the coefficient of variation is 

 ĈvX = sX / x− = 0.878/1.545 = 0.568 

The skewness coefficient is 

 ĈsX  = −0.40 

The negative value of the skewness coefficient is expected for a sample of minimum 
discharges. 
 For the Gumbel distribution, the method of moments yields  
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 λ = 0.78 × 0.878 = 0.685 m3/s, ζ = 1.545 + 0.577 × 0.685 = 1.940 m3/s  

The minimum discharge for T = 20 years, or equivalently for u = 1/20 = 0.05, is  

 x0.05 = 1.940 + 0.685 × ln[−ln(1 − 0.05)] = −0.09 m3/s 

Apparently, a negative value of discharge is meaningless; we can consider that the minimum 
20-year discharge is zero. 
 For the two-parameter Weibull distribution, application of (6.57) for the method of 
moments gives  

 κ = 2.56 {exp{0.41 [ln(0.5682 + 1)]0.58} –1}= 0.55 

Hence 

 ( )55.01
1.545

+
=
Γ

α  = 1.740 m3/s  

and the 20-year mminimum daily discharge is estimated at  

 x0.05 = 1.740 {[−ln(1−0.05)]0.55}= 0.340 m3/s 

99 98 95 90 80 70 60 50 0.
1

0.
5

12510203040

0

1

2

3

4

5

-5.00 -4.50 -4.00 -3.50 -3.00 -2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

Gumbel (of minima) reduced variate k

M
in

im
um

 d
ai

ly
 d

is
ch

ar
ge

 x
 [m

3 /s
] Empirical distribution (Weibull)

Gumbel distribution (minima)
Weibull distribution
Normal distribution

Exceedence probability F *(x ) (%)

 

Fig. 6.4 Empirical and theoretical distribution function of the minimum daily discharge of the 
river Evinos at the station Poros Riganiou in Gumbel of minima probability paper. 

 Fig. 6.4 compares graphically the empirical distribution function with the two fitted 
theoretical distributions. For the empirical distribution we have used the Weibull plotting 
position. None the two theoretical distributions fits very well to the sample, but clearly the 
Gumbel distribution performs better, especially in the area of small exceedence probabilities. 
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The two-parameter Weibull distribution is defined for x > 0, which seems to be a theoretical 
advantage due to the consistency with nature. However, in practice it turns to be a 
disadvantage due to the departure of the empirical distribution for the lowest discharges. On 
the other hand, the Gumbel distribution of minima is theoretically inconsistent as it predicts 
negative values of discharge for high return periods. An ad hoc solution is to truncate the 
Gumbel distribution at zero, as we have done above. For comparison the normal distribution 
has been also plotted in Fig. 6.4 but we do not expect to be appropriate for this problem.  
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