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1. Introduction and motivation   

• The drawbacks of conventional energy sources, including their negative environmental 
impacts, emphasize the need to integrate renewable energy sources into energy balance. 

• Given that renewables strongly depend on time varying and unpredictable hydro-
meteorological processes, at multiple time scales, it is essential to establish a consistent 
stochastic simulation framework to deal with uncertainty (Koutsoyiannis et al., 2009). 

• Yet, the vision of a future scene in which renewable sources dominate will be feasible only 
if the former are combined with technologies for energy storage, thus formulating hybrid 
renewable energy systems (HRES; Koutsoyiannis and Efstratiadis, 2012). 

• In this vein, we investigate the design of a hypothetical hybrid renewable energy system, 
comprising wind turbines, solar panels, and a pumped-storage reservoir system.  

• We investigate the stochastic properties of the two key driving processes, i.e. wind speed 
and sunshine duration, on the basis of daily data retrieved from a European database.  

• We particularly examine the long-term persistence (LTP) of the two variables, seeking 
representative values ​​of the Hurst coefficient (cf. Koutsoyiannis, 2002, 2003).  

• In the simulations we use synthetic meteorological data that are generated through the 
Castalia software, which performs a thee-level (i.e. annual, monthly, daily) multivariate 
stochastic simulation scheme; we also generate synthetic data of daily energy demand.  

• Using these time series as inputs, we estimate key design variables of the system by 
optimizing the performance expressed in terms of cost and reliability. 

The research of this paper is mainly based on the diploma thesis of the first two authors, 
elaborated at the National Technical University of Athens (Tsekouras, 2012; Ioannou, 2012). 



2. Historical meteorological data 
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The usage of non-homogenous wind speed 
data may provide inconsistent statistical 
estimations; particularly, the Hurst coefficient 
H may be significantly overestimated. As 
shown in the figure, the raw time series at De 
Bilt station, Netherlands, exhibits a non-
realistic value of H = 0.94, due to the presence 
of a sudden shift, indicating a change of 
observation height. The modified (adjusted to 
recent mean) data provide an H value of 0.70. 

H=0.94 

• To investigate the stochastic properties of the two meteorological processes of interest, i.e. 
wind speed (W) and sunshine duration (S), we analysed daily records from three 
European databases (KNMI Climate Explorer, European Climate Assessment & Data, and 
Deutscher Wetterdienst). 

• We retrieved 21 and 20 records of W and S, respectively, on the basis of three criteria:  

– minimum record length of 70 years (in order to properly account for long-term persistence); 

– existence of wind speed metadata (height above ground of anemometer, for wind observations); 

– up to three changes of anemometer height (stations with too many changes may not be reliable). 

• Although we didn’t find long enough records of solar radiation, we indirectly estimated 
this variable, on the basis of sunshine duration. 

• Wind speed data were adjusted, in order to refer to the most recent observation height; in 
this context, the values of each homogenous period were multiplied by the ratio of the last 
period’s average value to each period’s average. 



3. Investigation of theoretical distributions 
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• Since both wind speed and sunshine duration are highly-skewed variables at the daily 
time scale, non-normal distributions should be applied for their statistical representation. 

• The Gamma and Weibull distributions 
are almost identical and both suitable to 
describe the daily wind speed, which is 
characterized by positive skewness. 

• The sunshine duration is bounded, with 
finite probability at X = 0; by employing 
the logarithmic transformation 

Y = – ln(1 – X)  

 the transformed variable Y is defined in 
[0, +∞), while X = 0 corresponds to Y = 0.  

• If Y is Gamma distributed, with shape 
and scale parameters κ and λ, it is 
proved that the pdf of X is:  

fX(x) =  (1 – x)λ – 1 [–ln(1 – x)]κ – 1  

• As shown from the histograms, both the 
theoretical pdf (transformation of 
Gamma) and the beta distributions fit 
well the sunshine duration data. 

Histograms for June data at Eelde station 



4. Long-term persistence – Hurst coefficient 

0%

5%

10%

15%

20%

25%

30%

0,5-0,6 0,6-0,7 0,7-0,8 0,8-0,9 0,9-1

P
er

ce
n

ta
g

e 
o

f 
st

a
ti

o
n

s 

Hurst coefficient 

Wind speed 

Historical

time

series

Synthetic

time

series

[3AR(1)]

• We investigate the existence of Long-Term Persistence (LTP) on annual data, by estimating 
the Hurst coefficient H via the LSSD method (Koutsoyiannis, 2003).  

• For both variables, most of H values range from 0.60 to 0.90, while ~15% of them exceed 
0.90, which indicates an exceptionally strong self-similar behaviour. Note that in all 
records H > 0.50, and thus none of the time series indicates anti-persistence. 

• To find a representative value of H, we 
generated synthetic samples for all stations, 
with unique H and length, mean and 
variance same as in the observed records. 

• In simulations we used the same H value for 
all stations, through which we produced 
synthetic data by the multiple time-scale 
fluctuation method (using 3 AR(1) processes; 
Koutsoyiannis, 2002).  

• We employed a Monte Carlo approach, by 
examining different values of H, until the 
frequency histogram of the simulated H 
values becomes as close as possible to the 
histogram of the observed ones.  

• On the basis of the above trial-and-error 
procedure, we concluded that, for both 
processes, the most representative value of 
the Hurst coefficient is H = 0.84. 



5. The software system Castalia  
• Castalia is an open-access software that is used for the generation of synthetic daily time 

series of the two meteorological processes that are inputs to the hypothetical HRES. 

• The program employs a multivariate stochastic simulation at the daily, monthly and 
annual time scales, for which it preserves the marginal (mean, standard deviation, 
skewness) and joint second order statistics (i.e. auto- and cross-correlations).  

• It also reproduces the long-term persistence (LTP) at the annual and over-annual scales, 
the periodicity at the monthly scale, and the intermittency at the daily scale.  

• LTP is reproduced through a symmetric moving average (SMA) scheme for a generalized 
autocovariance function with user-specified parameters (Koutsoyiannis, 2000), allowing to 
represent from ARMA-type (H = 0.50) to highly persistent processes (H > 0.50). 

Step 3: Generation 
of auxiliary 
monthly time 
series through a 
PAR(1) model 

Step 2: Generation of 
annual series through 
a SMA model, for a 
given autocovariance 
function and given H  

Step 5: 
Generation of 
auxiliary daily 
series through 
a PAR(1) model 

Step 4: 
Calculation of 
actual monthly 
series through 
disaggregation 

• Auxiliary series are provided by 
a multivariate PAR(1) scheme, 
both for the monthly and daily 
scales (Koutsoyiannis, 1999). 

• A disaggregation procedure is 
employed to ensure statistical 
consistency between the three 
temporal scales; first the monthly 
series are adjusted to the known 
annual ones, and next the daily 
time series are adjusted to the 
disaggregated monthly ones 
(Koutsoyiannis, 2001). 

Step 6: 
Calculation of 
final daily 
series through 
disaggregation 

Step 1: 
Statistical 
analysis of 
historical 
time series  

Flowchart of computational procedures of Castalia  



6. Reproduction of intermittent processes within Castalia 

• At the daily time scale, some hydrometeorological processes, among which the sunshine 
duration, are intermittent as they can take on zero values with finite probability.  

• The statistical peculiarities of daily processes, such as the very high values of the 
coefficients of variability and skewness, are closely linked to intermittency. 

• In order to reproduce the intermittent behaviour, it is essential to preserve the probability 
of zero values of the observed time series. 

• Castalia handles this problem by introducing the following parameters, which can be also 
determined by the user (Dialynas et al., 2011): 

– the probabilities k1 and k2 of a Markov chain model, which express the probability of a 
zero value occurring in the current time step if there is a zero (k1) or a non-zero value (k2) 
value in the previous time step; 

– the probability k3, which expresses the probability of the values of all variables being 
zero in the current time step, if at least one of them is zero; 

– the parameters π0 and l0 of an empirical round-off rule, according to which a percentage 
π0 of the generated values below a threshold l0 are converted to zero. 

• All the above procedures allow for generating zero values, and they are all contributing to 
the frequency of zero values in the final synthetic sample. 

Castalia has been developed by the research team ITIA in the National Technical University 
of Athens, and it is freely available at http://itia.ntua.gr/en/softinfo/2/ 

http://itia.ntua.gr/en/softinfo/2/


7. Test example 
• In order to evaluate the performance of Castalia, we generated 1000 years of daily data in 

eight stations, where both wind speed and sunshine duration records are available; to the 
latter we employed the proposed logarithmic transformation, while the final synthetic data 
of daily sunshine duration were obtained by applying the reverse transformation.  

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

O
ct

N
o
v

D
ec Ja
n

F
eb

M
ar

A
p
r

M
ay Ju
n

Ju
l

A
u
g

S
ep

Y
ea

r

C
ro

ss
-c

o
rr

el
a
ti

o
n

 

0

0.1

0.2

0.3

0.4

0.5

O
ct

N
o
v

D
ec Ja
n

F
eb

M
ar

A
p
r

M
ay Ju
n

Ju
l

A
u
g

S
ep

Y
ea

rP
ro

b
a
b

il
it

y
 o

f 
ze

ro
 (

 S
) 

Historical

(daily)

Synthetic

(daily)

0

0.5

1

1.5

2

2.5

3

O
ct

N
o
v

D
ec Ja
n

F
eb

M
ar

A
p
r

M
ay Ju
n

Ju
l

A
u
g

S
ep

Y
ea

r

S
ta

n
d

a
rd

  
D

ev
ia

ti
o
n

 (
W

) 

Historical

(monthly)

Synthetic

(monthly)

Historical

(daily)

Synthetic

(daily)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Wind speed Sunshine duration

H
 c

o
ef

fi
ci

en
t 

Historical

Synthetic

-0.5

-0.1

0.3

0.7

1.1

1.5

O
ct

N
o
v

D
ec Ja
n

F
eb

M
ar

A
p
r

M
ay Ju
n

Ju
l

A
u
g

S
ep

Y
ea

r

S
k

ew
n

es
s 

(S
) 

-0.05

0.05

0.15

0.25

0.35

0.45

0.55

0.65

O
ct

N
o
v

D
ec Ja
n

F
eb

M
ar

A
p
r

M
ay Ju
n

Ju
l

A
u
g

S
ep

Y
ea

rA
u

to
-c

o
rr

el
a
ti

o
n

  
(W

) 

• In the charts some of 
the key statistical 
characteristics of the 
wind speed and 
sunshine duration 
data at Eelde station 
are compared. 

• In general, the 
synthetic time series 
preserve with 
satisfactory accuracy 
the key statistical 
characteristics of the 
observed data at all 
time scales, apart 
from monthly 
skewness, which is 
yet not so critical in 
daily simulations.  



• We study a hypothetical, autonomous hybrid renewable energy system, located in Greece 
and comprising a number of wind turbines and solar panels, as well as two 
interconnected reservoirs, with pumped-storage facility.  

• Input variables are wind speed, sunshine duration and energy demand time series.  

• To represent the daily operation of the system for a long-term horizon we follow a 
stochastic simulation approach, using the Castalia software to generate synthetic time 
series of wind speed and sunshine duration. 

• We set as design variables to optimize the number of wind turbines (nw), the number of 
solar panels (ns), and the capacity of the two equally-sized reservoirs (k). 

• Performance criteria are the minimization of the project cost, subject to satisfying the 
energy demand with very high reliability.  

Symbols 

PE: energy production 

RE: energy demand 

SE: available hydroelectric 
energy in the upper reservoir  

TE: theoretical energy for 
pumping all water stored in 
the lower reservoir 

8. Proof-of-concept through a hypothetical case study  



9. Generation of synthetic meteorological data 
• The objective is to minimize the cost of the hypothetical HRES project, which should 

operate with very high reliability. 

• In this respect, we accept a very low failure probability (i.e. probability of not fulfilling the 
energy demand), specified as one day per five years, on the average. 

• To estimate the aforementioned probability with satisfactory accuracy, we assume a 
simulation length of 500 years (approximately 182 500 days). 

• Meteorological inputs are synthetic time series of daily wind speed and sunshine duration 
of 500 years length, which were generated by Castalia.  

• Historical data for daily wind speed and sunshine duration are obtained from the 
automatic meteorological station of Agios Kosmas, South Attica (run by the Hydrological 
Observatory of Athens). 

• The historical records extend over a seven year period (Feb. 2005 to June 2012), which is 
not sufficient for estimating all statistical characteristics. For this reason, some 
unreasonable values were corrected manually.  

• In the theoretical autocovariance function we introduced the representative value of the 
Hurst coefficient that was found from the analysis of long-term European data (H = 0.84).  

• The specific value of H which was well-reproduced in the synthetic time series (0.85 for 
wind speed and 0.83 for sunshine duration).  

• In order to assess the influence of LTP, we also generated an alternative set of synthetic 
data, with significantly lower Hurst coefficients (0.64 for wind speed and 0.61 for sunshine 
duration).  



10. Generation of energy demand data 
Normalization of historical 
data by dividing with the 

annual average of the 
corresponding year 

Linear transformation  
Ζ = (Χ – μ) / σ  

Generation of synthetic series 
using an AR(1) model   

Inverse transformation 
X = μ + σ Z 

Multiplication with the 
energy demand of 2011 

Division by the number of 
days of each month 

Adjustment to the 
specific population 

• We assumed a hypothetical area of 100 000 inhabitants, for 
which we generated synthetic time series of energy demand 
for the 500-year simulation period. 

• The time step of analysis was monthly, since the available 
daily energy demand data were not found reliable enough. 

• We retrieved monthly energy consumption data over the 
continental Greece from 2004 to 2011, provided by the 
Independent Power Transmission Operator of Greece. 

• In order to remove over-annual trends and seasonality, 
historical data were normalized, first by dividing with the 
corresponding annual average value and next by employing 
the linear transformation Ζ = (Χ – μ) / σ, where μ and σ are 
the monthly mean and standard deviation of standardized 
data. 

• For the generation of synthetic normalized data we used an 
AR(1) model; next we applied the inverse transformation to 
obtain the monthly values of energy demand, taking as 
standard the annual energy demand of year 2011. 

• Daily data were calculated by dividing by the number of 
days of each month (this assumption, albeit unrealistic, was 
deemed consistent with the purpose of the study). 

• The final estimates were adjusted to the specific population 
size (100 000).  



11. Calculation of energy production/consumption 
• For the pumped-storage system, we assumed two equally-sized reservoirs, which is 

control variable of the optimization problem. The reservoir system was assumed to be 
closed, without inflows and outflows. 

• The hydroelectric energy production and consumption (due to pumping) depend on the 
hydraulic head (difference of reservoir levels), the discharge and the efficiency (n = 0.85). 

• The other two system components are a hypothetical photovoltaic panel of 240 W per 
unit for 1 000 W/m2 irradiance and a commercial wind turbine (7.5 MW; type E-126 by 
Enercon). 

• For the given system, the solar energy production is function of the panel angle and the 
incoming solar radiation, while the wind production is function of the power curve of 
the turbine and wind velocity data. 

• The solar radiation is function of latitude and daily sunshine duration data. Given that 
different panel angles match to different temporal distributions of solar energy, which in 
turn affects the size of reservoirs, we investigated alternative angle values. 

Energy demand of Greece vs. incident solar energy at Agios Kosmas for panel angles 0o (left) and 38o (right) 



12. Accounting for hourly 
distribution of wind energy 
• Using daily averaged wind data, we neglect 

the hourly fluctuations of wind speed which 
result to a significant variability of the 
produced energy.  

• Thus, we employed a stochastic approach, in 
which we reproduced the statistical 
characteristics of hourly energy, on the basis 
of hourly wind speed at Agios Kosmas 
station. 

• The daily energy calculated from hourly data 
was classified into 87 classes of daily wind 
speed W, and for each class we calculated the 
mean μ, standard deviation σ, and skewness, 
ξ.  

• For each statistical characteristic we fitted an 
empirical function to the corresponding 
sample of 87 values, thus μ = f1(W), σ = f2(W), 
and ξ = f3(W). 

• Given the synthetic daily wind speed data, we 
estimated the daily production through a 
Gamma distribution, with random probability 
and parameter values depending on W. 
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13. Optimization model and results 
• For each set of synthetic data (i.e. with high and low H values), we formulated a nonlinear 

optimization problem, where the objective is the minimization of the annual cost of the 
system, for the specified failure probability (i.e. 100 days out of 500 simulated years). 

• The total cost depends on the number of wind turbines nw, the number of solar panels ns, and 
the reservoir capacity k, which are the design variables of the optimization problem. 

• This comprises initial investment as well as maintenance costs for the mechanical equipment 
(turbines, panels, pumps); the economic time life of reservoirs was taken 50 years, while for 
the rest of components the time life was assumed 25 years. 

• Optimization was carried out using evolutionary algorithms. 

• For both scenarios, the use of solar panels provided suboptimal solutions and thus the 
optimal design value was ns = 0 (because they are much less efficient than wind turbines); the 
optimal number of wind turbines remained the same in both scenarios (nw = 23). 

• The size of the pumped-storage system, in terms of reservoir capacity, is strongly affected by 
the long-term persistence of the driving meteorological processes; yet, the differences in the 
total cost are rather small. 

Hurst values 0.83-0.85 Hurst values 0.61-0.64 

Number of wind turbines, nw 23 23 

Number of solar panels, ns 0 0 

Capacity of reservoirs, k (hm3) 250 195 

Annual cost (million €) 33.6 32.8 



14. Conclusions & Summary 

• The suitability of Gamma and Weibull distributions for the representation of 
wind speed is confirmed. Both the proposed distribution function and the Beta 
distribution fit satisfactorily to the relative sunshine duration data. 

• Both processes are characterized by LTP. A unique value H = 0.84 is found to be 
representative for both variables.  

• Due to the relatively small available amount of samples globally, having 
sufficient record length, further investigation of the stochastic structure of both 
processes is recommended. 

• The software system Castalia performs multivariate stochastic simulation of 
both processes on annual, monthly and daily scale satisfactorily, preserving the 
marginal, the joint second order statistics and the LTP. 

• The proposed HRES transforms the two natural processes, which are 
characterized by uncertainty and unpredictability, into regular energy outflows 
that satisfy the energy demand at multiple time scales.    

• The presence of LTP should not be neglected in the design of a HRES as this may 
lead to the incorrect estimation of design variables. 

• Further investigation is required in order to detect the influence of the design 
variables, such as type of wind turbines and solar panels, and the simulation 
time scale of meteorological variables. 
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• Hydrological Observatory of Athens (http://hoa.ntua.gr/) 

• Independent Power Transmission Operator of Greece (http://www.admie.gr/nc/en/home/) 

• KNMI Climate Explorer (http://climexp.knmi.nl/) 

Databases 

http://itia.ntua.gr/1300/
http://www.dwd.de/
http://eca.knmi.nl/
http://hoa.ntua.gr/
http://www.admie.gr/nc/en/home/
http://climexp.knmi.nl/

