European Geosciences Union General Assembly 2013
Vienna, Austria, 07-12 April 2013

Session HS6.4: Hydrology and remote sensing: current platforms
and the future SWOT mission, Vol. 15, EGU2013-10366

Floodplain mapping
via 1D and quasi-2D numerical models

in the valley of Thessaly, Greece

Athanasios Oikonomou!, Panayiotis Dimitriadis!, Antonis Koukouvinos!,
Aristoteles Tegos'?, Vasiliki Pagana!, Panayiotis-Dionisios Panagopoulos?,
Nikolaos Mamassis!, and Demetris Koutsoyiannis!

I National Technical University of Athens, Civil Engineering, Water Resources and
Environmental Engineering, Greece

2ECOS Consulting S.A.




1. Abstract

The European Union Floods Directive defines a flood as ‘a covering by water of land not normally covered by water’. Human activities, such
as agriculture, urban development, industry and tourism, contribute to an increase in the likelihood and adverse impacts of flood events. The
study of the hydraulic behaviour of a river is important in flood risk management. Here, we investigate the behaviour of three hydraulic
models, with different theoretical frameworks, in a real case scenario. The area is located in the Penios river basin, in the plain of Thessaly
(Greece). The three models used are the one-dimensional HEC-RAS and the quasi two-dimensional LISFLOOD-FP and FLO-2D which are
compared to each other, in terms of simulated maximum water depth as well as maximum flow velocity, and to a real flood event. Moreover,
a sensitivity analysis is performed to determine how each simulation is affected by the river and floodplain roughness coefficient, in terms of

flood inundation.

2. Introduction

The 2007/60/EC Directive implementation by Member
States requires flood hazard and flood risk maps for low,
medium (likely return period >100 years) and high flood
probability. In this context, hydraulic models are widely
used for simulating flood events and mapping the
resulting flooded areas. Comparing such models leads to
conclusions about their performance under specific
scenarios and their particularities . In this study three
models are used: one 1D (HEC-RAS) and two quasi-2D
(LISFLOOD-FP and FLO-2D). The study area is located at
Thessaly, in central Greece (Figure 1) and extended to a
length of 40 km, from the Ali Efenti (upstream) to
Amygdalia (downstream) locations at the western basin of
Penios river. The area of the basin is over 6300 km?, with
an average annual rainfall of 779 mm.

All three models are calibrated based on a recorded
Landsat image flood event (figure 3), on 28/1/2003. The
calibration parameters are the river and floodplain
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Figure 1: study area

Manning’s coefficients as well as the river
discharge. The flood event occurred on 21-
28 January 2003.




3. Elevation and satellite data

Elevation data are critical for hydraulic simulation.
A 5 m x 5 m Digital Elevation Model (DEM) with a
2 m vertical accuracy is available (Figure 2). To
increase the accuracy of the DEM, editing of the
raw dataset is necessary. This is accomplished in a
way that the main river line coincides with the
edge of the slope change and the deepest line of
flow.

Due to the size of the study area and the cell size
limitations imposed by one of the models, a coarser
DEM is produced with 50 m x 50 m analysis.
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Figure 3: Landsat-7 satellite image (ﬂooded area)

Figure 2: Study area DEM

Still, the original finer analysis of 5 m x 5 m is used
to compare two of the models (see section 9).

The extent of the flood is estimated with a semi-
automated methodology to distinguish stagnant
water from soil, using an averaged image of the
infrared channel 5 of the Landsat ETM+ system
(http://landsat.usgs.gov/). Note that the visibility
limit of the image is 30 m (on the soil).




4. HEC-RAS

HEC-RAS (http://www.hec.usace.army.mil/software/hec-ras/) is a freeware 1D hydraulic model, which
estimates the flow characteristics (e.g. free surface elevation, mean velocity) in a cross section, under
steady and non-steady flow conditions. It solves the 1D dynamic wave equation using an implicit finite
difference method. The required initial data are the geometry of the cross section, the Manning coefficient
along the cross section, the inflow discharge and hydraulic boundary conditions (Bruner, 2010). It is noted
that, based on research experience, it provides adequate results in cases of steep and narrow channels but
it deviates from reality in cases of floodplains with small gradients. Also, it experiences difficulties when
it comes to unsteady flow conditions.
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5. LISFLOOD-FP

LISFLOOD-FP (http://www.bris.ac.uk/geography/research/hydrology/models/lisflood) is a freeware
quasi-2D hydraulic model, which estimates only the flow depth across the grid elements, under steady
and non-steady flow conditions. It uses the Manning equation along the river and the 1D kinematic wave
equation for lateral flow expansion. The required initial data are a DEM, the river location and its mean
depth and width (the model assumes a rectangular cross section), the inflow discharge and some simple
hydraulic boundary conditions (Bates et al., 2005). It is noted that, based on research experience, it
provides adequate results for large basins with narrow rivers, up to 10° grid cells of any realistic size can
be used and is convenient for applying probabilistic approaches based on multiple runs.
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Figure 5: LISFLOOD-FP hydraulic model




6. FLO-2D

FLO-2D (http://www.flo-2d.com/) is a freeware quasi-2D hydraulic model, which estimates the maximum
flow depth across the grid elements, under steady and non-steady flow conditions. It uses the 1D
dynamic wave equation for the main and lateral flow direction. It is noted that, based on research
experience, it provides adequate results for any type of topography but it experiences difficulties when it
comes to small grid size. In this study, input data are a DEM, the inflow discharge and some simple
hydraulic boundary conditions. Also, channel geometry, being time consuming, is left out and only river
location is considered.
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Figure 6: FLO-2D hydrodynamic model




/. Model comparison (common scenarlo)

For a direct model comparison the chosen
scenario assumes 800 m3/s steady flow and
common roughness coefficient in both channel
and floodplain equal to 0.03 m3 s. As can be
observed from figure 7, flood inundation is
extended more in the case of LISFLOOD-FP
and FLO-2D rather than in HEC-RAS. Also, it
can be seen that according to HEC-RAS, flood
does not cover entirely the upstream small
basin (shown in red circle). This is due to HEC-
RAS prevention of multiple flow directions
within a single cross section.

floodplain n (m™?s)

0.003 0.03

water depth (m)
0.3

0.003

0.03
0.3

2.23 2.23

5.65 5.78
6.90 7.17

2.23

6.36
8.31

Lisflood-FP

0.003
0.03
0.3

1.64 1.64
6.05 7.9
6.79 11.29

1.62
8.83
19.47

Hec-RAS

channel n (m™3s)

0.003 11 10.11
0.03 9.41 10.12

0.3 11.37 11.57

5.74
6.39
10.17

Flo-2D

Table 1: Water depth at the outtlow point
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To introduce a probabilistic view of the flood mapping
necessary when simulating floods (di Baldassare et al.
2010), a sensitivity analysis is made based on the channel
and floodplains Manning’s coefficients. Three values of
the coefficient are being tested, the dominant value in the
study area of 0.03 m3s (used for permanently irrigated
land) and two extreme (and unrealistic) values of 0.3 and
0.003 m3s; and the water depth at the river’s outflow

location is recorded (table 1 and figures 7, 8, 9 and 10).
It can be observed that the models are very sensitive

concerning the channel’s roughness coefficient opposing
to the floodplains’ one. Also, it can be seen that the FLO-
2D results are very different than in the other models due
to the absence of channel simulation.




8. Model comparison (common scenario; contd.) ... f

In the figures below, it can be noted that in the r J 2 j
cases of LISFLOOD-FP and FLO-2D simulations, ; Iﬂj
the resulted flood is more uniformly distributed C'hmel
in contrast to the HEC-RAS one, which evaluates _ N n=0.003
the flood routing from cross-section to cross- | _ — zg‘f
section, creating in certain cases abnormal - : k )

discontinuities.
Moreover, it can be seen that the flow has spread |

more in the FLO-2D simulation rather than in the
other two models showing also the lack of -
sensitivity for the Manning coefficient in the @
channel as well as in the floodplain areas. ("
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Figure 8:

compare models
changing the
HEC-RAS  roughness coefficient

The FLO-2D simulations are accomplished
without separately modelling the channel but by
applying a different Manning coefficient to the

LISFLOOD-FP | river grid cells.




9. Model comparison (common scenario; contd.)

The figures below, demonstrate the change in flooded area and water depth at the river outflow point
with the channel’s and floodplain’s Manning coefficient. One can observe that, as mentioned before, the
FLO-2D is not much sensitive to the roughness coefficient change, probably due to the absence of channel
representation. Moreover, HEC-RAS curves underestimate in general the flooded area. Also, they exhibit
a large sensitivity to the channel’s and floodplain’s roughness coefficients. Finally, LISFLOOD-FP curves
exhibit a large sensitivity to the channel’s roughness coefficient and a small sensitivity to floodplain’s
roughness. Note that each simulation lasts approximately 3 h for the LISFLOOD-FP, 2 h for the FLO-2D
and 10 min for the HEC-RAS.
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Figure 9: Flooded area

Figure 10: Water depth at the outtflow point




10. Model comparison (50 m x 50 m DEM)

In this section, the ‘ideal’ steady flow is estimated based on the minimization of an evaluation coefficient
(as described in equation 1) which compares the satellite observed footprint of the flooded area with the
simulated one. The roughness coefficients are now based on the land cover of the study area as
documented in the EU Corine project in 2000 (Yan Huang, 2005). Again, the topographic data of the study
area are derived from the 50 m x 50 m DTM.
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Figure 11: Best fit of the observed flooded area for each model
R= Es +Em -
Y Em
where, E the flooded area observed by the satellite,
E,, the flooded area simulated by the model, and

E, the intersection of the observed flooded area and the flooded area simulated by the model.

Based on previous studies (cf. Mimikou & Koutsoyiannis, 1995), the observed discharge cannot be as
large as HEC-RAS indicates and not as small as shown by the FLO-2D simulation. It will be useful to run
the FLO-2D scenarios (in future studies) by adding the channel geometry and banks, so as to compare

with the ones without the channel and derive more robust conclusions concerning the FLO-2D best fit
simulation.




11. Model Companson (5 m x 5 m DEM)

i Here, the more fine DEM of 5 m x 5 m analysis is used, in
‘ | steady flow conditions, for the LISFLOOD-FP and HEC-
llj;r;:;ieﬁt{;ﬁri:zifﬁid A RAS models. Again, the roughness coefficient is based on
y - the land cover data of the Corine project. Following the

e : ~ previous section’s analysis, the best fitted discharge is
Scerophylous vegetation =l estimated at the rate of 850 m3/s (with 8.59 m water depth
=\ o at the outflow point) for the HEC-RAS and at 400 m?3/s

(with 5.96 m water depth at the outflow point) for the
LISFLOOD-FP. The FLO-2D experiences difficulties
when it comes to large extent and small grid size. Note

that each simulation lasts approximately 60 h for the
LISFLOOD-FP and only 10 min for the HEC-RAS.

HEC-RAS achieves an

LISFLOOD-FP achieves a 94% | f S Ein/ E, = 83.5%. Although the
coverage percentage (E; ./ E;) =l & downstream s§ct10ns
with half the discharge of the ' | embankment is overrun by the

HEC-RAS (as shown in figure & | WZ= flood, opening a north-west path
14) and also, it fits well Ay for the water to penetrate the

small upstream basin, the flow
does not even reach that area.

LANDUSE
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Figure 12: Land use data (Corine, 2000)

occurred flood in the circled
upstream basin.

HEC-RAS

-

LISFLOOD- A o background: Landsat image (RGB 742)
FP

sz e igrommek DIEML mn = & m Figure 13: Flooded area (using the 5 m x 5 m analysis DEM)
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12. Model comparison (b m x 5 m DEM,; contd.)

Here, the resulted best fit simulation is presented for LISFLOOD-FP and HEC-RAS. Moreover, the outer
line of the simulated flood for both models is shown in addition with the topographic gradients of the
area. As can be observed, the topographic gradients on both plains of the river are smaller than 2.5%.
Thus, as already mentioned in section 4, the problematic behaviour of HEC-RAS is maybe due to the 1D
nature of the model. 1D models have difficulties to simulate flood routing in areas with small gradients,

Fitted discharge (m3/s) | 400 | 850
Eint/ Es

(Em - Eint) / Em

(Es - Eint) / Em

complex topography (e.g. multiple flow directions within a
cross-section), and usually lead to underestimations of the
flood extent as well as the flood residence times (for the

unsteady flow regime).

Figure 14:
Best fit of the

observed flooded
area for

Hec-RAS

Lisflood-FP
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Thus, using a 1D
model in a such cases
could be misleading
and could lead in
wrong conclusions
about the location and
geometric
characteristics (height,
width) of the
embankment
structures.




13. Conclusions

* Opverall, the case study illustrates the large uncertainties in modelling flow in inundated floodplains.

In cases of a complex topography (like the one in this study) where multiple directions of the flow is
possible within a cross section, 1D models often fail to correctly simulate the flood in contrast to quasi-
2D models with grid-based numerical schemes.

In cases of small gradients, the simulated discharge of the quasi-2D LISFLOOD-FP is much closer to
the expected value in comparison to the underestimated one of HEC-RAS (especially in the case of
fine grid) and the overestimated one of FLO-2D (note that for the FLO-2D the channel is not modelled
separately as in LISFLOOD-FP).

In cases where a fine grid is applied, LISFLOOD-FP has no difficulties with the small cell size in
contrast to FLO-2D. Moreover, the HEC-RAS numerical scheme is not grid-based and thus, increasing
the resolution of the grid only affects the number of cross-sections.

LISFLOOD-FP seems to be in a better agreement with the general conclusion that there is a much
greater sensitivity of the flood extent to the channel’s Manning coefficient rather than the floodplain’s
one (similar conclusions have been derived by Cunge et al., 1980 and Hunter et al., 2005).
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