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1. Long-term Persistence in climate and its detection 

 

Long-term persistence (LTP), also called long-term correlations or long-term memory, plays 

an important role to characterize records in physiology (e.g. heartbeats), computer science 

(e.g. internet traffic) and in financial markets (volatility). The first hint that LTP is important 

in climate has been given in the classic papers by Hurst more than 50 years ago when 

studying the historic levels of the Nile River.  

 

We can distinguish between uncorrelated records (''white noise''), short-term persistent 

records (STP) and long-term persistent records. In white noise all data points Nxxx ,...,, 21  are 

independent of each other. In STP records, each data point xi depends on a short subset of 

previous points xi-1, xi-2,.. xi-m, i.e., the memory has a finite range m. In LTP records, in 

contrast, xi depends on all previous points. The simplest model for STP is the ''AR1 process'' 

where x i is proportional to the foregoing data point xi-1, plus a white noise component 1i , 

Niaxax iii ,...,2,1,10,11    . 

Despite the evidence that temperature anomalies cannot be characterized by the AR1 process, 

most climate scientists have used the AR1 model when trying to describe temperature 

fluctuations and estimating the significance of a trend. This usually leads to a considerable 

overestimation of the external trend and its significance. 

  

There are several methods to quantify the memory in a given sequence. (For a recent review 

see [1] and references therein). The first one is the autocorrelation function C(s) where s = 

1,2,3,… is the lag time between 2 data points. For white noise, there is no memory and C(s) = 

0. For the AR1 process, C(s) decays exponentially, C(s) ~ exp{- s/S} where S =1/|ln a| is the 

''persistence length''. For infinitely long stationary LTP data C(s) decays algebraically,  
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where   is called correlation exponent. 

 

The first figure shows parts of an uncorrelated (left) and a synthetic long-term persistent 

(right) record, with  =0.4. The full line is the moving average over 30 data points. For the 

uncorrelated data, the moving average is close to zero, while for the LTP data, the moving 

average can have large deviations from the mean, forming some kind of mountain-valley 

structure that looks as if it contained some external deterministic trend. The figure shows that 

it is not a straightforward task to separate the natural fluctuations from an external trend, and 

this makes the detection of external trends in LTP records a difficult task. I will return to this 

later. 



 
 

One can show analytically [2], that in LTP records with a finite length N, the algebraic 

dependence of C(s) on s can be seen only for very small time lags s, satisfying the inequality 

.1)/( Ns  Already for 2/1  and records of length 600 (which corresponds to 50 

years of monthly data), this condition can only be met for very small time lag times s, roughly 

s < 6. For larger time lags, C(s) decays faster than algebraically. This is an artifact of the 

method called ''Finite Size''-Effect. If one is not aware of this effect, one may be led to the 

wrong conclusion that there exists no long-term memory in sequences of a finite length. 

 

A similar mistake may happen, when one uses the second traditional method for detecting 

LTP, the power spectrum (spectral density) S(f). The discrete frequency f is equivalent to an 

inverse lag time, f=1/s, and a multiple of 1/N. For white noise, S(f) is constant. For STP data, 

S(f) is constant for f well below m/N (since the data are uncorrelated at time lags s above m), 

and then decreases monotonously.  

 

For LTP records, S(f) decreases by a power law, 
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so one may detect LTP also by considering the power spectrum. However, due to the 

discreteness of f, the algebraic decay cannot be clearly observed at frequencies below 50/N, 

which again may lead to the wrong conclusion that there is no long-term memory. 

 

In addition to the remarkable finite size resp. discreteness effects, both methods lead an over-

estimation of the LTP in the presence of external deterministic trends. 

 

In recent years, several methods (see, e.g.,[1,3]) have been developed where long-term 

correlations in the presence of deterministic polynomial trends can be detected. These 

methods include the detrended fluctuation analysis (DFA2) and Haar-wavelet analysis (WT2), 

where linear trends are eliminated systematically. DFA2 is quite accurate in the time window 

4/8 Ns  while WT2 is accurate for 50/1 Ns  . In both methods, one determines a 

fluctuation function F(s) which measures the fluctuations of the record in time windows of 

length s around a trend line. For LTP records with correlation exponent  , F(s) increases as  
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where  is usually called Hurst exponent. By combining DFA2 and WT2 one can obtain a 

consistent picture on time scales between s=1 and s=N/4. For a meaningful analysis, the 



records should consist of more than N = 500 data points. I like to emphasize again that in the 

case an external deterministic trend cannot be excluded, the evaluation of the LTP and the 

determination of the Hurst exponent must be done with trend-eliminating methods, e.g., 

DFA2 and WT2, as described above.  

 

The second figure summarizes the results of our earlier analysis (for references, see [1]) for a 

large number of atmospheric and sea surface temperatures as well as precipitation and river 

run-offs. Each histogram shows how many stations have Hurst exponents around 0.5, 0.55, 

0.6, 0.65 and so on.  

 

 
 

For the daily precipitation records and the continental atmospheric temperatures the 

distribution of Hurst exponents is quite narrow. For daily precipitation, the exponent is close 

to 0.5, indicating the absence of persistence (see also [3]), while for the daily continental 

temperature records, the exponent is close to 0.65, indicating a “universal” persistence law. 

Both laws can be used very efficiently as test bed for climate models and paleo 

reconstructions (for references, see [1] and [3]). 

 

There are also more intuitive measures of LTP, and one of them is the distribution of the 

persistence lengths l in a record (see, e. g. [3]). In temperature data, l describes the lengths of 

warm resp cold periods where the temperature anomalies (deviation of the daily or monthly 

temperature from their seasonal mean) are above resp. below zero. It is easy to show that the 

distribution P(l) of the persistence length decays exponentially for uncorrelated data, i.e., ln 

P(l) ~ - l. For LTP data, P(l) decays via a stretched exponential, ,~)(ln llP   where   is the 

correlation exponent (see [1]). Accordingly, in LTP records large persistence lengths are more 

frequent, which is intuitively clear.  



2. Detection of external trends in LTP data 

 

For detection and estimation of external trends (“detection problem”) one needs a statistical 

model. For monthly (and annual) temperature records the best statistical model is long-term 

persistence, as we have seen in the foregoing section. The main features of a long-term 

persistent record of length N are determined by the Hurst exponent  . Synthetic LTP records 

characterized by these two parameters can be easily generated by a Fourier-transformation 

(see, e.g., [1]) with the help of random number generators. 

 

When using LTP as statistical model we assume that there are no additional short term 

correlations, generated by ''Großwetterlagen'' (blocking situations). Since the persistence 

length of these short term correlations is below 14 days, they are not present in monthly data 

sets.  

 

For the detection problem, one then needs to know the probability W(x) that in a long-term 

correlated record of length L and Hurst exponent  , the relative trend exceeds x. For 

temperature data, the relative trend is the ratio between the temperature change (determined 

by a simple regression analysis) and the standard deviation  around the trend line. For 

Gaussian LTP data, an analytical expression for W(x), for given   and N, has been derived 

in [4], which is easy to implement and can serve also as a very good approximation for Non-

Gaussian data. In order to decide if a measured relative trend mx  may be natural or not, one 

has to determine the exceedance probability at mx . If W( mx ) is below 0.025, the trend 

usually is called significant (within the 95 percent confidence interval), if it is below 0.005, 

the trend is called highly significant (within the 99 percent confidence interval).  

 

From the condition W(y) = 0.025 one may derive error bars y (within the 95 percent 

confidence interval) for the expected external trend, yxx mexternal  . If mx  is slightly 

below y, then the minimum value of the external trend is negative and thus the trend is not 

significant. But the maximum value of the external trend can be large, and thus an external 

trend cannot be excluded, even though the trend is not significant. Accordingly, if a trend is 

not significant since W( mx ) is above 0.025, this does not mean that one can exclude the 

possibility of an external deterministic trend. It only means that one is not forced to assume an 

external trend in order to describe the variability of the record properly. For example, if we 

observe a small insignificant positive trend, then this trend may either arise from the 

superposition of a strong positive natural fluctuation (as in Fig.1b) and a small negative 

external trend or from a strong negative fluctuation (as in Fig. 1b, but downwards) and a large 

positive external trend.  

 

These conclusions are independent of the used model and hold also for the STP model. In 

previous significance analyses, climate scientists usually used the STP model, where the 

model parameter a has been determined from measuring C(1) of the data, see Sect. 1. The 

significance of a trend (see below) is clearly underestimated by this model.  

 

3. Detection of climate change within the LTP model 

 

Using our terminology of “significant” and “highly significant” we have obtained a mixed 

picture of the significance of temperature records, partly reviewed in [1]. 

 



(i) The global sea surface temperature increased, in the past 100y, by about 0.6
 

degree, which is not significant. The reason for this is the large persistence of 

the oceans, reflected by a large Hurst exponent.  

(ii) The global land air temperature, in the past 100y, increased by about 0.8 

degrees. We find this increase even highly significant. The reason for this is 

the comparatively low persistence of the land air temperature, which makes 

large natural increases unlikely. 

(iii) Local temperatures: In local temperature records it is more difficult to detect 

external trends due to their large variability. We have studied a large number 

of local stations around the globe. For stations at high elevation like Sonnblick 

in Austria or in Siberia, we found highly significant trends. For about half of 

the other stations, we could not find a significant trend. However, when 

averaging the records in a certain area, this picture changed. Due to the 

averaging, the fluctuations around the trend line decrease and the temperature 

increases become more significant. 

 

Our estimations are basically in line with earlier, less rigorous trend estimations in LTP data 

by Rybski et al [5] and in line with the conclusions of Zorita et al when estimating the 

probability that 11 of the warmest years in a 162 year long record all lie in the last 12 years. 

 

My conclusion is that the AR1 process falsely used by climate scientists to describe 

temperature variability leads to a strong overestimation of the significance of external trends. 

When using the proper LTP model the significance is considerably lower. But also the LTP 

model does not reject the hypothesis of anthropogenic climate change. 
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