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Φύσις κρύπτεσθαι φιλεί 

(Nature  loves to hide herself) 

Heraclitus (ca. 540-480 BC) 
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Part 1 

Logical and mathematical foundation 
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Entropy = uncertainty 
● The definition of entropy relies on probability theory and follows some 

postulates originally set up by Shannon (1948). 

● Assuming a discrete random variable* z taking values zj with probability 
mass function Pj ≡ P(zj) = P{z = zj}, j = 1,…,w the postulates, as reformulated 
by Jaynes (2003, p. 347) are: 

(a) It is possible to set up a numerical measure Φ of the amount of 
uncertainty† which is expressed as a real number. 

(b) Φ is a continuous function of Pj. 
(c) If all the Pj are equal (Pj = 1/w) then Φ should be a monotonic 

increasing function of w. 
(d) If there is more than one way of working out the value of Φ, then we 

should get the same value for every possible way.‡  

● From these general postulates about uncertainty, a unique (within a 
multiplicative factor) function Φ is defined.  

                                  
*  Following the Dutch notation (Hemelrijk, 1966), an underlined symbol denotes a random variable; the same symbol not underlined 
represents a value of the random variable.  
† The notation of entropy by Φ was done deliberately to avoid confusion with the classical thermodynamic entropy S, which has some 
differences discussed below. 
‡ Quantification of this postulate is given by Uffink (1995; theorem 1) and Robertson (1993, p. 3) and is related to refinement of 
partitions to which the probabilities Pj refer. 
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Entropy definition 
Discrete random variable z with 
probability mass function Pj ≡ P(zj),  
j = 1,…,w 

Continuous random variable z with 
probability density function f(z) 

Fundamental constraint 

∑     
 
    (1) ∫  ( )    

 

  
  (2) 

Definition* 

Φ[z] := E[–ln P(z)]  

 =  ∑       
 
     (3) 

Φ[z] :=  [   
 ( )

 ( )
] 

 =  ∫   
 ( )

 ( )
 ( )  

 

  
  (4)  

where h(z) is a background measure† 

Basic properties of Φ[z] 

A nonnegative dimensionless 
quantity 

A dimensionless quantity, either positive or 
negative, that depends on the assumed h(z) 

                                  
* In case of risk of ambiguity, we call Φ[z] probabilistic entropy; most commonly it is referred to as information entropy. 
† The function h(z) can be any probability density, proper (with integral equal to 1, as in (2)) or improper (meaning that its integral 
does not converge); typically it is an (improper) Lebesgue density, i.e. a constant with dimensions [h(z)] = [f(z)] = [z–1], so that the 
argument of the logarithm function be dimensionless. 
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Is probabilistic entropy different from thermodynamic entropy? 
● Typically, probabilistic and thermodynamic entropy are regarded as two distinct 

concepts having in common only the name. 

● The classical definition of thermodynamic entropy, S, through the equation 
dS = dQ/T, where Q and T denote heat and temperature, respectively, does not give 
any hint about similarity with the probabilistic entropy. 

● The fact that the probabilistic entropy Φ is a dimensionless quantity, while the 
thermodynamic entropy S is not (units: J/K), has been regarded as an argument that 
the two are not identical. 

● Even Jaynes (2003), founder of the maximum entropy principle (see below), states: 

We must warn at the outset that the major occupational disease of this field is a 
persistent failure to distinguish between the information entropy, which is a property 
of any probability distribution, and the experimental entropy of thermodynamics, 
which is instead a property of a thermodynamic state as defined, for example by such 
observed quantities as pressure, volume, temperature, magnetization, of some 
physical system. They should never have been called by the same name; the 
experimental entropy makes no reference to any probability distribution, and the 
information entropy makes no reference to thermodynamics. Many textbooks and 
research papers are flawed fatally by the author's failure to distinguish between 

these entirely different things, and in consequence proving nonsense theorems. 
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Probabilistic entropy = thermodynamic entropy* 
● The classical definition of thermodynamic entropy is not necessary; it can be 

abandoned and replaced by the probabilistic definition. 

● The thus defined entropy is the fundamental thermodynamic quantity, 
which supports the definition of all other derived ones.  

○ For example, the temperature is defined as the inverse of the partial 
derivative of entropy with respect to the internal energy (see eqn. (25)). 

● The entropy retains its dimensionless character even in thermodynamics, 
thus rendering the unit of kelvin an energy unit, a multiple of the joule (i.e., 
1 K = 0.138 065 05 yJ = 1.380 650 5×10−23 J). 

○ The introduction of the kelvin is an historical accident (cf. Atkins, 2007). 

● The entropy retains its probabilistic interpretation as a measure of 
uncertainty, leaving aside the obscure ‘disorder’ interpretation (cf. Ben-
Naim, 2008).  

● Two examples related to hydrology will illustrate how thermodynamic laws 
can be derived from probabilistic entropy: the law of ideal gases and the 
law of phase change transition (Clausius-Clapeyron). 

                                  
* The equality is meant on logical grounds; on technical grounds there may be some quantitative differences as shown below.  
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The principle of maximum entropy: Why entropy is important 
● From a physical perspective, the tendency of entropy to become maximal (2nd 

Law of thermodynamics) is the driving force of natural change (in contrast to 
quantities such as mass, momentum and energy which are conserved).  

● The counterpart of the physical law in logic is the principle of maximum entropy 
(ME; Jaynes, 1957). 

● The ME principle postulates that the entropy of a random variable z should be at 
maximum, under some conditions, formulated as constraints, which incorporate 
the information that is given about this variable. 

● The rationale of the principle is very simple and almost self-evident: If 
uncertainty is not the maximum possible, then there must be some more 
information; but all information is already incorporated in the constraints. 

● The ME principle can be regarded as: 
○ a physical (ontological) principle obeyed by natural systems, as well as  
○ a logical (epistemological) principle applicable in making inference about 

natural systems.* 
● Compared to physical laws expressed in the form of equations, the ME principle, 

as a variational law, is extremely more powerful: it can determine infinitely 
many (or even uncountably many) unknown probabilities.  

                                  
* This implies an optimistic view that our logic in making inference about natural systems could be consistent with the behaviour of 
the natural systems. 
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Entropy maximization: The die example 
● What is the probability that the outcome of a die throw will be i? 

● The entropy is: 

 Φ = E[–ln P(z)] = –P1 ln P1 – P2 ln P2 – P3 ln P3 – P4 ln P4– P5 ln P5 – P6 ln P6  (5) 

● The equality constraint is: 

 P1 + P2 + P3 + P4 + P5 + P6 = 1 (6) 

● The inequality constraint is 0 ≤ Pi ≤ 1 (but is not necessary to include). 

● Solution of the optimization problem (e.g. by the Lagrange method) yields a 
single maximum: 

P1 = P2 = P3 = P4 = P5 = P6 = 1/6 (7) 

● The entropy is Φ = –6 (1/6) ln (1/6) = ln 6. In general the entropy for w 
equiprobable outcomes is: 

 Φ = ln w (8) 

● In this case, the application of the ME principle (a variational law) is equivalent 
to the principle of insufficient reason (Bernoulli-Laplace; an “equation” form). 

● Entropy and information are complementary to each other. When we know 
(observe) that the outcome is i (Pi = 1, Pj = 0 for j ≠ i), the entropy is zero. 
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 Entropy maximization: The loaded die example 
● What is the probability that the outcome of a die throw will be i 

if we know that it is loaded, so that P6 – P1 = 0.2? 

● The principle of insufficient reason does not work in this case. 

● The ME principle works. We simply pose an additional constraint: 

   P6 – P1 = 0.2 

● The solution of the optimization 
problem (e.g. by the Lagrange 
method) is a single maximum as 
shown in the figure. 

● The entropy is Φ = 1.732, smaller 
than in the case of equiprobability, 
where Φ = ln 6 = 1.792. 

● The decrease of entropy in the 
loaded die derives from the 
additional information 
incorporated in the constraints.  
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Expected values as constraints: general solution 
● In the most typical application of the ME principle, we wish to infer the 

probability density function f(z) of a continuous random variable z (scalar 
or vector) for constant background measure (h(z) = 1) with constraints 
formulated as expectations of functions gj(z). 

● In other words, the given information, which is used in maximizing entropy, 
is expressed as a set of constraints formed as: 

 [  ( )]  ∫   ( ) ( )  
 

  
     ,  j = 1, …, n  (9)  

● The resulting maximum entropy distribution (by maximizing entropy as 
defined in (4) with constraints (9) and the obvious additional constraint 
(2)) is (Papoulis, 1991, p. 571): 

 ( )     (    ∑     ( )
 
   )  (10) 

where λ0 and λj are constants determined such as to satisfy (2) and (9), 
respectively. 

● The resulting maximum entropy is: 

  [ ]     ∑     
 
     (11) 
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Typical results of entropy maximization 

Constraints for the continuous 
variable z 

Resulting distribution f(z) and entropy Φ (for 
h(z) = 1) 

z bounded in [0, w]  
no equality constraint 

f(z) = 1/w (uniform) 
Φ = ln w 

z unbounded from both below and above 
No constraint  
or constrained mean μ 

not defined 

Constrained mean μ  
and standard deviation σ 

f(z) = exp{–[(z – μ)/σ]2/2} / (σ 2π) (Gaussian) 

Φ = ln (σ 2πe) 

Nonnegative z unbounded from above 

No equality constraint  not defined 

Constrained mean μ f(z) = (1/μ) exp(–z/μ) (exponential) 
Φ = ln (μe) 

Constrained mean μ  
and standard deviation σ  
with σ < μ 

f(z) = A exp{–[(z – α)/β]2/2} (truncated 
Gaussian tending to exponential as σ → μ);  
the constants A, a and β are determined from 
the constraints and Φ from (11)  

As above but with σ > μ not defined 
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Part 2 

Application to simple physical systems 
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ME applied to the uncertain motion of a particle: setup 
● We consider a motionless cube with edge a (volume V = a3) containing spherical 

particles of mass m0 (e.g. monoatomic molecules) in fast motion, in which we 
cannot observe the exact position and velocity. 

● A particle’s state is described by 6 variables, 3 indicating its position xi and 3 
indicating its velocity ui, with i = 1, 2, 3 (three degrees of freedom); all are 
represented as random variables, forming the vector z = (x1, x2, x3, u1, u2, u3). 

● The constraints for position are: 
 0 ≤ xi ≤ a,  i = 1, 2, 3 (12) 

● The constraints for velocity are (where the integrals are over feasible space Ω, 
i.e. (0, a) for each xi and (–∞, ∞) for each ui): 
○ Conservation of momentum: E[m0 ui] = m0 ∫Ωui f(z) dz = 0 (the cube is not in 

motion), so that: 
  E[ui] = 0,  i = 1, 2, 3 (13) 

○ Conservation of energy*: E[m0 ||u||2/2] = (m0 /2) ∫Ω||u||2 f(z) dz = ε, where ε is 
the energy per particle (known as thermal energy) and ||u||2 =   

    
    

 ; 
thus, the constraint is: 

 E[||u||2] = 2ε/m0  (14) 

                                  
* The expectation E[ui] represents a macroscopic motion, while ui – E[ui] represents fluctuation at a microscopic level. If E[ui] ≠ 0, 
then the macroscopic and microscopic kinetic energies should be treated separately, the latter being ε = Ε[m0 (||u – E[u]||)2/2]. 
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ME applied to the uncertain motion of a particle: results 
● By dimensional considerations we define the background measure in terms 

of universal constants, i.e. the Planck constant h = 6.626 × 10−34 J·s and the 
proton mass mp; thus h(z) = (m0/h)3 [L–6 T3], thereby giving the entropy as: 

 Φ[z] := E[–ln((h/mp)3 f(z))]= –∫Ω ln ((h/mp)3f(z)) f(z) dz  (15) 

● Application of the principle of maximum entropy with constraints (2), (12), 
(13) and (14) gives the distribution of z (see proof in Appendix 1) as: 

 f(z) = (1/a)3 (3m0 / 4πε)3/2 exp(–3m0 ||u||2/ 4ε),  0 ≤ xi ≤ a (16) 

● The marginal distribution of each of the location coordinates xi is uniform in 
[0, a], i.e., 

 f(xi) = 1/a,  i = 1, 2, 3 (17) 

● The marginal distribution of each of the velocity coordinates ui is derived as: 

 f(ui) = (3m0 / 4πε)1/2 exp(–3m0ui
2 / 4ε),   i = 1, 2, 3 (18) 

This is Gaussian with mean 0 and variance 2ε / 3m0 = 2 × energy per unit 
mass per degree of freedom. 
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ME applied to the uncertain motion of a particle: results (2) 
● The marginal distribution of the velocity magnitude ||u|| is: 

 f(||u||) = (2/π)1/2(3m0 / 2ε)3 ||u||2 exp(–3m0||u||2/ 4ε) (19) 

 This is known as the Maxwell–Boltzmann distribution. 

● The entropy is then calculated as follows, where e is the base of natural 
logarithms: 

 Φ[z] = 
3
2 ln




 
 
4πe

3  
mp

2

h2 m0
 ε V2/3




 
 = 

3
2 ln




 
 
4πe

3  
mp

2

h2 m0


 
 + 

3
2 ln ε + ln V (20) 

● From (16) we readily observe that the joint distribution f(z) is a product of 
functions of z’s coordinates x1, x2, x3, u1, u2, u3. This means that all six 
random variables are jointly independent. The independence results from 
entropy maximization. 

● From (16) and (18) we also observe symmetry with respect to the three 
velocity coordinates, resulting in uniform distribution of the energy ε into 
ε/3 for each direction or degree of freedom. This is known as the 
equipartition principle and is again a result of entropy maximization. 

● From (20) we can verify that the entropy Φ[z] is a dimensionless quantity. 
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Extension for many particles 
● The coordinates of N identical monoatomic molecules which are in motion 

in the same cube of volume V form a vector Z = (z1,…, zN) with 3N location 
coordinates and 3N velocity coordinates.  

● If E is the total kinetic energy of the N molecules and ε = E/N is the energy 
per particle, then following a similar approach we find the entropy as: 

 Φ[Z] = 
3N
2  ln




 
 
4πe

3  
mp

2

h2 m0
 ε V 2/3




 
 = 

3N
2  ln




 
 
4πe

3  
mp

2

h2 m0


 
 + 

3N
2  ln ε + N ln V (21) 

● The equation found in literature, known as the Sackur-Tetrode equation, 
(after H. M. Tetrode and O. Sackur, who developed it independently at about 
the same time in 1912) differs from (21) in the last term, which is N ln (V/N) 
instead of N ln V. 

● To derive the Sackur-Tetrode expression an assumption is made (inspired 
from quantum physics) that particles are indistinguishable; this assumption 
is problematic and here is avoided (cf. Koutsoyiannis, 2013). 

● The result (21) is fully consistent with the probabilistic character of entropy 
and also with the thermodynamic content of entropy (Koutsoyiannis, 2013). 
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Extension to many degrees of freedom 
● The number of microscopic degrees of freedom β that can store energy in a 

particle depend on the particle architecture; thus:  
○ A monoatomic molecule has β = 3 translational degrees of freedom, 

corresponding to the 3 components of the velocity vector. 
○ A diatomic molecule (e.g. of N2 or O2 which are the most typical in the 

atmosphere) has a linear structure; thus, in addition to the kinetic 
energy it has rotational energy at two axes perpendicular to the line 
defined by the two atoms; in total it has β = 5 degrees of freedom. 

○ A triatomic (or more complex) molecule has 3 rotational degrees of 
freedom or β = 6 degrees of freedom in total. 

○ In solids and liquids there are degrees of freedom associated to 
vibrational energy. 

● Generalizing (20) and (21) for β degrees of freedom we obtain the entropy 
per molecule as: 

 φ ≔ Φ[z] = c + 
 

 
 ln ε + ln V (22) 

where c incorporates all related physical and mathematical constants. 

● Likewise, the total entropy of N molecules is: 

 Φ = Nφ = Φ[Z] = Νc+ 
  

 
 ln ε + Ν ln V = Νc+ 

  

 
    

 

 
 + Ν ln V (23) 



  D. Koutsoyiannis Entropy: from thermodynamics to hydrology  18 

Definition of internal energy and temperature 
● In gases, the internal energy EI equals the thermal energy (εI = ε, EI = E).  

● In liquids and solids, the bonds between molecules are associated with 
dynamic energy; denoting the dynamic energy per molecule as –ξ, we write: 

 εI = ε – ξ,   EI = E – Nξ, (24) 

 where ξ = 0 for gases and ξ > 0 for liquids and solids.  

● Temperature* is defined to be the inverse of the partial derivative of entropy 
with respect to energy†, i.e., 

 
1
θ := 

∂Φ
∂EI

 = 
∂φ
∂εI

 (25) 

● From(22), (23) and (25) we obtain: 

 θ = 
2 ε
β  (26) 

(temperature = 2 × particle’s kinetic energy per degree of freedom). 

                                  
* Since entropy is dimensionless and EI has dimensions of energy, temperature has also dimensions of energy (J). This contradicts the 
common practice of using different units of temperature, such as K or °C. To distinguish from the common practice, we use the 
symbol θ (instead of T which is in K) and we call θ the natural temperature (instead of absolute temperature for T). 
† The definition is based on the internal energy, but assuming constant ξ, there is no difference if we take the thermal energy instead.
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The law of ideal gases 
● We consider again the cube of edge a containing N identical molecules of a 

gas, each with mass m0 and β degrees of freedom. 

● We consider a time interval dt; any particle at distance from the bottom 
edge dx3 ≤ –u3dt will collide with the cube edge (x3 = 0). 

● From (19), generalized for β degrees of freedom, the joint distribution 
function of (x3, u3) of a single particle is: 

 f(x3, u3) = (1/a)(β m0 / 4π ε)1/2 exp(–βm0u3
2 / 4ε) (27) 

● Thus, the expected value of the momentum  (  ) of molecules colliding at 

the cube edge (x3 = 0) within time interval dt is: 

 E[ (  )] = N ∫    
 

  
 ∫      (     )   
     ⁄

  
= N ε dt / βa (28) 

● According to Newton’s 2nd law, the force exerted on the edge is 
F = 2E[ (  )]/dt and the pressure is p = F / a2 = 2 N ε /(β V), or finally (by 

using (26)), 

 p = N θ / V = θ / v  p V = N θ  p v = θ (29) 

This is the well-known law of ideal gasses written for natural temperature. 
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Phase change and the shy molecule 
● The law determining the equilibrium 

of liquid and gaseous phase of water, 
known as the Clausius-Clapeyron 
equation is important in hydrology. 

● As will be shown next, this law can be 
derived by maximizing probabilistic 
entropy, i.e. uncertainty.  

● In particular, the law is derived by 
studying a single molecule which 
“wishes to hide itself” and, to this aim, 
it maximizes the combined 
uncertainty related to:  

(a) its phase (whether liquid or 
gaseous); 

(b) its position in space; and 

(c) its kinetic state, i.e. its velocity and other coordinates corresponding to 
its degrees of freedom and making up its thermal energy.  

 

 
VA 

VB 

       V  
(Total 

volume) 

Gaseous phase A 

Temperature θ 
Pressure p 

Liquid 
phase B 

A shy molecule  
being either in the 
gaseous or the liquid 
phase with probability 
πΑ and πB, respectively. 
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Phase change: setup 
● For a molecule to move from the liquid to gaseous phase, an amount of 

energy ξ to break its bonds with other molecules needs to be supplied 
(phase change energy). 

● The partial entropies of the two phases, i.e. the entropies conditional on the 
particle being in the gaseous (A) or liquid (B) phase, are: 

φA = cA + (βA/2) ln εA + ln VA,   φB = cB + (βB/2) ln εB + ln VB (30)  

● The total entropy is (Koutsoyiannis, 2013): 

φ = πΑ φA + πΒ φB + φπ,  where φπ := –πΑ ln πΑ – πΒ ln πΒ (31) 

or  

φ = πΑ (φA – ln πΑ) + πΒ (φΒ – ln πΒ) (32) 

● The two phases are in open interaction and the constraints are: 

πΑ + πΒ = 1 (33) 

πΑ εA + πΒ (εΒ – ξ) = ε (34) 
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http://en.wikipedia.org/wiki/Water 

Phase change: assumptions 
● Water vapour behaves as a perfect gas. 
● As its molecule has a 3D (not linear) structure, the rotational energy is 

distributed into three directions, so that the total number of degrees of 
freedom (translational and rotational) are: 

βA = 6 (35) 

● Liquid water is incompressible, so that the volume per particle is:  

vB := VB/NB = constant (36) 

● Hence, if V is the total volume, then that of the gaseous phase is: 

VA = V – VB = V – πBvBN (37) 

● The number of degrees of freedom in the liquid phase is  
greater because of the “social behaviour” of water molecules.  

● Specifically, in addition to the translational and rotational  
degrees of freedom of individual molecules, there are local  
clusters with low energy vibrational modes that can be thermally excited. 

● The average number of degrees of freedom per molecule (individual and collective 
involving more than one water molecules) is very high (e.g. Fraundorf, 2003): 

βB = 18 (38) 
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Phase change: results  
● The calculations of entropy maximization are shown in Appendix 2. Their 

result is:  

p = constant × e–ξ/θ θ –(βB/2 – βA/2 – 1) (39) 

● Assuming that at some temperature θ0, p(θ0) = p0, we write (39) in a more 
convenient and dimensionally consistent manner as:  

p = p0 e ξ/θ0 (1– θ0/θ) (θ0/θ) (βB/2 – βA/2 – 1) (40) 

● This is the final form of the proposed equation quantifying phase change. 

● The Newton-Raphson method gives the approximation: 

p = p0 e (ξ/θ0 – βB/2 + βA/2 + 1) (1– θ0/θ)  (41) 

● The latter is the standard solution of the Clausius-Clapeyron equation 
appearing in books, which however is an inconsistent approximate 
description of the phenomenon (Koutsoyiannis, 2012). 

● Equation (40) can be anchored at the triple point of water, in which 
θ0 = 37.714 yJ = 273.16 K, p0 = 6.11657 hPa (Wagner and Pruss, 2002), while 
an optimized value of the constant ξ/θ0 based on accurate measurements is 
ξ/θ0 = 24.861. 
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Saturation vapour pressure: comparisons 
● The figure on the left compares the proposed equation (40) with the 

standard (41); they seem indistinguishable.  

● However, the figure on the right, which compares relative differences from 
measurements, clearly indicates the superiority of (40) derived here.* 

   
● This is an amazing example of how we can derive a deterministic law by 

maximizing entropy; the key is the huge number of identical elements. 

                                  
* A slightly more accurate version, based on experimental values of specific heats, instead of using integral degrees of freedom, can be 
found in Koutsoyiannis (2012). 
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Part 3 

Application to complex hydrological systems 
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Typical thermodynamic vs. hydrological systems 
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A rain drop is 
a typical 
thermody-
namic system 
with identical 
elements. 

However, rain drops 
are not identical to 
each other and their 
motion is affected by 
turbulence (photo from 
a monsoon rainfall in 
India). 

As the macroscopization 
level increases, the 
diversity of elements 
becomes more prominent 
(photo of confluent rivers 
in Greece; notice the 
different colours). 
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From statistical thermodynamics of systems with identical 
elements to hydrological systems 
● Higher level of macroscopization is associated with higher complexity. 

● Therefore, the probabilistic description is more imperative in the more 
complex hydrological systems. 

● Maximization of entropy (i.e., uncertainty) provides the way to deal with the 
complex macroscopic hydrological systems. 

● This contrasts the recent research trend in hydrology (and other 
disciplines), which invested hopes to the power of computers that would 
enable faithful and detailed representation of the diverse system elements. 

● This research trend was based on the idea that the hydrological processes 
could be modelled using merely “first principles”, thus resulting in 
(deterministic) “physically-based” models that would tend to approach in 
complexity the real world systems. 

● The aspiration of detailed and exact deterministic modelling traces a 
research direction that is wrong and opposite to the parsimonious way 
that Nature works. 
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Expected difficulties in high-level macroscopic 
hydrological systems 
● The constraints in entropy extremization do not necessarily coincide with 

those in classical statistical thermophysics. 

○ In particular, the mean μ and variance σ2 are important indices of the 
statistical behaviour (see Koutsoyiannis, 2005) with an intuitive 
conceptual meaning, but they are not constrained by physical laws as in 
the kinetic theory of gases—rather they are estimated from data. 

● Independence among different elements and across time is most often 
invalidated. 

○ This, combined with the diversity of elements, entails that all laws 
should remain probabilistic. 

○ High-level macroscopic quantities in hydrological systems will never 
approach the near certainty of low-level macroscopic quantities in 
typical thermodynamic systems—regardless of progress in computers 
and algorithms. 

● Physically-based hydrological models are inevitably stochastic models 
(cf. Montanari and Koutsoyiannis, 2012). 
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Towards adaptation of the ME framework for nonnegative 
random variables 
● Typically for continuous random variables ranging in (–∞,+∞) the Lebesgue 

measure is used in the entropy function, so that h(z) = constant = 1/[z] 
where [z] denotes the physical unit in which the quantity z is expressed. 

● The background measure h(z) determines the way of measuring distances  d 
between values of z; the Lebesgue measure corresponds to the Euclidean 
distance, d(z, z΄) = |z΄ – z|. 

● Most hydrometeorological variables are non-negative physical quantities 
unbounded from above (examples: precipitation, streamflow, temperature). 

● In positive physical quantities (e.g. rainfall depth) often the Euclidean 
distance is not a proper metric; sometimes we use a logarithmic distance 
d(z, z΄) = |ln(z΄/ z)|, as shown in the example. 

 Euclidean distance Logarithmic distance 
z = 0.1 mm, z΄ = 0.2 mm 0.1 mm ln 2 
z = 100 mm, z΄ = 100.1 mm 0.1 mm ln 1.001 
z = 100 mm, z΄ = 200 mm 100 mm ln 2 

● Can we merge/unify the Euclidean and logarithmic distance?  
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Adaptation of the ME framework for nonnegative random 
variables 
● For nonnegative variables we heuristically introduce the generalized 

background measure:  

 ( )  
 

   
  (42) 

where p is a characteristic scale parameter, which also serves as a physical 
unit for z; for p→∞, h(x) tends to the Lebesgue measure. 

● According to this generalized measure, the distance of any point z from 0 is:  

 ( )  ∫    ( )  
 

 
    (    ⁄ )  (43) 

● Hence, the distance between any two points z and z΄ is: 

 (    )  | (  )–   ( )|   |  (
     ⁄

    ⁄
)|  (44) 

○ For small values, i.e., z < z΄ << p, d(z, z΄) = p ln [1 + (z΄ – z)/(p + z)] ≈ z΄ – z 
(Euclidean distance). 

○ For large values, p << z < z΄, d(z, z΄) ≈ p ln (z΄/z) (logarithmic distance). 

○ Note: H(z) and d(z, z΄) have the same units as z (physical consistency). 
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Illustration of the distance function H(z) 
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Simplest case—a single constraint 
● It is reasonable to replace constraints of raw moments with those of 

generalized moments (cf. Papalexiou and Koutsoyiannis, 2012). 

● The simplest constraint is the preservation of a “generalized mean”, i.e.: 

E[H(z)] = E[p ln(1 + z/p)] = mp (45) 

● The entropy maximizing distribution (derived by the general methodology 
in Papoulis, 1991, p. 571) is: 

f(z) = A exp ((1 ─ λ1p) ln(1 + z/p)) = Α (1 + z/p)1─λ1p (46) 

 where λ1 is a Lagrange multiplier and A is such that (2) holds. 

● By renaming parameters (p = λ/κ, λ1 = (1 + 2κ)/λ) we obtain the typical 
expression of the 2-parameter Pareto distribution: 

f(z) = (1/λ) (1 + κ z/λ)─1 ─ 1/κ (47) 

with mean μ = λ/(1 – κ), standard deviation σ = λ/[(1 – κ) √    ], 
generalized mean mp = λ and entropy Φ[z] =E[–ln(f(z) (λ/κ + z)] = ln(eκ). 

● The exponential distribution is fully recovered by setting κ = 0; its statistics 
are μ = σ = λ, mp = p exp(p/λ) Γp/λ(0); however Φ[z] = –∞. 

● In the Pareto distribution σ/μ =   √     > 1, while in the exponential 
distribution σ/μ = 1. 
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Enhanced uncertainty in comparison to classical 
thermodynamics 
● In classical thermodynamics, a constrained mean results in exponential 

distribution. 

● The two density functions plotted, Pareto, fP(z), with κ = 0.15 and λP = 0.9 
and exponential, fE(z), with λE = 0.953 have same mp = 0.9 for p = λP/κ = 6. 

● Their means are μP = 1.059 > μE = 0.953 and their entropies are ΦP =–0.897 > 

ΦΕ = –∞. 
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than the non-scaling 
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Validation based on intense daily rainfall worldwide 

Data set: Daily rainfall from 168 stations worldwide each having at least 100 
years of measurements; series above threshold, standardized by mean and 
merged; period 1822-2002; 17922 station-years of data (Koutsoyiannis,  
2005). 

0.1

1

10

0.1 1 10 100 1000 10000 100000

T  (years)

x

Empirical Pareto
Exponential Truncated Normal
Normal

μ = 0.28  
(mean minus 
threshold) 
σ/μ = 1.19 > 1 
ME distribution: 
Pareto, κ = 0.15. 
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Generalization for the marginal distribution of any 
hydrometeorological variable 
● When the variation is small (σ/μ < 1, where μ is the mean and σ the 

standard deviation), the typical ME framework with constraints μ and σ, 
gives satisfactory results (although generalized constraints are again 
superior). 

● Generally, the ME 
framework can 
give the shape of 
the distribution 
function based on 
a single metric, σ/μ 
(Koutsoyiannis, 
2005). 
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Systems evolving in time: Entropy and clustering 
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Two simulated series of 
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each, in a period of 1000 
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series are equal:  
 ΦC = ΦR = ln(10)/10 + 
(9/10) ln(10/9) = 0.33. 
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Maximum entropy and clustering of rainfall occurrence 
● Rainfall occurrence is 

characterized by a 
clustering behaviour. 

● The observed behaviour 
can be explained by 
maximizing, for a range of 
scales, the entropy of the 
binary-state rainfall 
process using two 
constraints representing 
the observed occurrence 
probabilities at two time 
scales (1 and 2 hours). 

● Entropy maximization 
with only two parameters 
determined from the data 
(necessary for the 
constraints) give very good 
predictions for all time scales. 
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 that an interval of k hours is dry, as 
estimated from the Athens rainfall data set (70 years) 
and predicted by the model of maximum entropy for the 
entire year (full triangles and full line) and the dry 
season (empty triangles and dashed line); see details in 
Koutsoyiannis (2006). 
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Maximum entropy production and scaling in time 
● The dependence structure of processes evolving in time (expressed in terms of 

autocorrelogram, periodogram or climacogram, which are transformations of 
each other) can be determined by entropy extremization. 

● Koutsoyiannis (2011) suggested the use of entropy production in logarithmic 
time (EPLT) defined as φ[z(t)] ≔ dΦ[z(t)]/d(ln t), with z(t) being a cumulative 
stochastic process.  

● The specific assumptions are: 
○ Lebesgue background measure (assumption good for σ/μ << 1) and 

constrained mean μ and variance σ2; these result in Gaussian marginal 
distribution, hence (see slide 11):  

  Φ[z(t)] = (1/2) ln[2πe γ(t)] where γ(t) := Var [z(t)] ; 
○ constrained lag-one autocorrelation ρ. 

● These constraints are formulated for a single observation time scale but the 
extremization of entropy production is made at asymptotic time scales, i.e.,  
t → 0 and t → ∞. 

● Such extremization of entropy production yields two simple solutions: 
○ A (non-scaling) Markov process (the AR(1) process in discrete time, or the 

Ornstein–Uhlenbeck process in continuous time). 
○ A (scaling) Hurst-Kolmogorov (HK) process (due to Hurst, 1951, and 

Kolmogorov, 1940). 
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Maximum entropy production and scaling in time (contd.) 
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The solutions depicted are generic, valid for any Gaussian process, independent of μ 
and σ, and depended on ρ only (the example is for ρ = 0.4)—see Koutsoyiannis (2011). 

As t → 0, the EPLT is maximized 
by a Markov process. 

As t → 0, the EPLT is 
minimized by an 
HK process. As t → ∞, the EPLT is 

minimized by a 
Markov process 

As t → ∞, the EPLT 
is maximized by an 
HK process. 

The conditional EPLT 
corresponds to the case where 
the past has been observed. 

The HK process has 
constant EPLT = H, where H 
is the Hurst coefficient—the 
exponent of the power law:  
H = ½ + ½ ln(1 + ρ)/ln 2 
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 Application to the annual temperature of Vienna 

Data set: 235 years of annual temperature (1775–2009; one of the longest 
available instrumental geophysical records) available from the climexp.knmi.nl, 
partly included in the Global Historical Climatology Network (GHCN; 1851–
1991); from Koutsoyiannis (2011). 
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Comparison of the Markov and HK models: Vienna 
temperature 
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Maximum entropy and the emergence of linearity in highly 
nonlinear systems 
● Hydrological processes (e.g. rainfall, runoff) are highly nonlinear if modelled using 

deterministic dynamical systems methods. 
● The same processes, if approached macroscopically in stochastic terms, exhibit 

impressively linear behaviour (after the processes are transformed to Gaussian). 
● Linearity in stochastic terms is a result of the principle of maximum entropy and 

makes our macroscopic descriptions as simple and parsimonious as possible. 
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Maximum entropy and parsimonious stochastic modelling 
● Multivariate stochastic modelling involves vectors and matrices of 

parameters with very many elements. 
● As an example, we consider the prediction w of the monthly flow one month 

ahead, conditional on a number s of other variables with known values that 
compose the vector z, using the linear model: 

  w = aT z + v 

where a is a vector of parameters (T denotes transpose) and v is the 
prediction error, assumed to be independent of z; for simplicity, all elements 
of z are assumed normalized and with zero mean and unit variance. 

● For the model to take account of both short-range and long-range 
dependence (HK behaviour), a possible composition of z may include the 
following: 

○ The flows of a few previous months of the same year. 
○ All available flow measurements of the same month on previous years. 

● The model parameters are estimated from: 

  aT = ηT h –1,   Var[v] = 1 – ηT h –1 η = 1 – aT η 

 where η := Cov[w, z] and h := Cov[z, z] (see Koutsoyiannis, 2000). 
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ME and parsimonious stochastic modelling (contd.) 
● Both the vector η := Cov[w, z ] and the matrix h := Cov[z, z ] may contain numerous 

items, typically of the order of 103-104 (e.g. for a dimensionality 100, if we have 100 
years of observations: 100 + 100 × 100 = 10 100 items—albeit reduced due to 
symmetry). 

● Traditionally, the items of such covariance matrices and vectors have been estimated 
directly from data; this is totally illogical (100 years of data cannot support the 
statistical estimation of 1000-10 000 parameters). 

● An alternative approach is to use data to estimate a couple of parameters per month 
and derive all other ‘unestimated’ parameters by maximizing entropy. 

● Such entropy maximization is in fact very simple (generalized matrix 
decomposition). 
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Concluding remarks 
● Entropy is none other than uncertainty quantified. 

● The tendency of entropy to become maximal is not a curse—it is blessing. 

● This tendency constitutes the driving force of change and evolution; also, it 
offers the basis to understand and describe Nature. 

● By maximizing entropy, i.e. uncertainty, we can describe the behaviour of 
physical systems; such description is essentially probabilistic. 

● However, if a system is composed of numerous identical elements, the 
uncertainty, despite being maximal at the microscopic level, in the 
macroscopic system it becomes as low as to yield a physical law that is in 
effect deterministic; this is the case in the equilibrium of liquid water and 
water vapour (Clausius-Clapeyron equation).  

● Extremal entropy considerations provide a theoretical basis in modelling 
hydrological processes; however, at high macroscopization levels there is no 
hope to derive deterministic laws; only stochastic modelling is feasible. 

● Linking statistical thermophysics with hydrology with a unifying view of 
entropy as uncertainty is a promising scientific direction. 

● Uncertainty and entropy are not enemies of science that should be 
eliminated; they are just important objects to be studied and understood.  
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Appendix 1: Proof of equations (16)-(20) 
● According to (10) and taking into account the equality constraints (2), (13) and (14), the ME 

distribution will have density: 

f(z) = exp (–λ0 – λ1u1 – λ2u2 – λ3u3 – λ4(  
    

    
 )) (48)  

● This proves that the density will be an exponential function of a second order polynomial of (u1, 
u2, u3) involving no products of different ui. The f(z) in (16) is of this type, and thus it suffices to 
show that it satisfies the constraints. 

● Note that the inequality constraint (12) is not considered at this phase but only in the 
integration to evaluate the constraints. That is, the integration domain will be Ω := {(0 ≤ x1 ≤ a, 0 ≤ 

x2 ≤ a, 0 ≤ x3 ≤ a, -∞ < u1 < ∞, –∞ < u2 < ∞, –∞ < u3 < ∞)}. We denote by ∫Ω dz the integral over this 
domain. It is easy then to show (the calculation of integrals is trivial) that: 

∫Ω f(z) dz = 1; ∫Ω u1f(z) dz = 0; ∫Ω u2f(z) dz = 0; ∫Ω u3f(z) dz = 0; ∫Ω (  
    

    
 )f(z) dz = 2ε/m0 (49)  

● Thus, all constraints are satisfied. To find the marginal distribution of each of the variables we 
integrate over the entire domain of the remaining variables; due to independence this is very 
easy and the results are given in (17) and (18). To find the marginal distribution of ||u|| (eqn. 
(19)), we recall that the sum of squares of n independent N(0, 1) random variables has a χ2(n) 
distribution (Papoulis, 1990, p. 219, 221); then we use known results for the density of a 
transformation of a random variable (Papoulis, 1990, p. 118) to obtain the distribution of the 
square root, thus obtaining (19). 

● To calculate the entropy, we observe that –ln[f(z)] = (3/2) ln(4πε/3m0) + ln a3 + 3m0(  
    

  
  
 ) / 4ε and ln h(z) = 3 ln (m0/h). Thus, the entropy, whose final form is given in (20), is derived 

as follows:  

Φ[z] = ∫Ω (–ln f(z) + ln h(z)) f(z) dz = (3/2) ln ((4πε /3m0 (m0/h)2)) + ln a3 + (3m0 / 4ε) 
(2ε/m0) = (3/2) ln(4πm0 /3 h2) + (3/2) ln ε + ln V + 3/2 

(50)  
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Appendix 2: Proof of (39) 
● Based on assumptions (36) and using (37), (30) becomes: 

φA = cA + (βA/2) ln εA + ln (V – πBvBN),   φB = cB + (βB/2) ln εB + ln (πBvBN) (51)  

● We wish to find the conditions which maximize the entropy φ in (31) under constraints (34) and 
(33) with unknowns εA, εB, πA, πB. We form the function ψ incorporating the total entropy φ as 
well as the two constraints with Langrage multipliers κ and λ: 

ψ = πΑ (φA – ln πΑ) + πΒ (φΒ – ln πΒ) + κ (πΑ εA + πΒ (εΒ – ξ) – ε) + λ (πA + πB – 1) (52) 

● To maximize ψ, equating to 0 the derivatives with respect to εA and εB, we obtain: 

∂ψ
∂εA

 = 
πA βA

2εA
 + κ πΑ = 0,  

∂ψ
∂εB

 = 
πB βB

2εB
 + κ πΒ = 0 (53) 

● By virtue of (26), this obviously results in equal temperature θ in the two phases, i.e., 

κ = –
βA

2εA
 = –

βΒ

2εΒ
 = –

1
θA

 = –
1
θΒ

 = –
1
θ (54) 

● Equating to 0 the derivatives with respect to πA and πB, we obtain: 

∂ψ
∂πA

 = φA – ln πΑ – 1 + κ εA + λ = 0, 

∂ψ
∂πΒ

 = 
–πAvBN

V – πBvBN + φΒ – ln πΒ – 1 + 1 + κ (εΒ – ξ) + λ = 0 

(55) 

● It can be seen that the first term of ∂ψ/∂πΒ equals –vB/vA and is negligible since vB ≪ vA.  
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Appendix 2: Proof of (39) (contd.) 
● After eliminating λ, substituting κ from (54), and making algebraic manipulations, we get: 

(φA – ln πΑ) – (φΒ – ln πΒ) = ξ/θ – (βB/2 – βA/2 – 1) (56) 

● On the other hand, from (30), the entropy difference is: 

(φA – ln πΑ) – (φΒ – ln πΒ) = cA + (βA/2) ln εA + ln vA – cB – (βB/2) ln εB – ln vB (57)  

● Substituting θ for εA and εB from (54) and using the ideal gas to express vA in terms of θ and p we 
obtain: 

(φA – ln πΑ) – (φΒ – ln πΒ) = –(βB/2 – βA/2 – 1) ln θ – ln p + constant  (58) 

● Combining (56) and (58), and eliminating (φA – ln πΑ) – (φΒ – ln πΒ), we find (39).  
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