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Weighted Objective Function Selector Algorithm for Parameter Estimation of 

SVAT Models with Remote Sensing Data  
 

Joseph A. P. Pollacco, Binayak P. Mohanty*, and Andreas Efstratiadis 

Abstract 

The objective function of the inverse problem in Soil Vegetation Atmosphere Transfer (SVAT) models can be 2 

expressed as the aggregation of two criteria, accounting for the uncertainties of surface soil moisture (θ) and 3 

evapotranspiration (ET), retrieved from remote sensing (RS). In this context, we formulate a Weighted 4 

Objective Function (WOF) with respect to model effective soil hydraulic parameters, comprising of two 5 

components for θ and ET, respectively, and a dimensionless coefficient w. Given that the sensitivity of θ is 6 

increased by omitting the periods when soil moisture decoupling occurs, we also introduce within the WOF a 7 

threshold, θd, which outlines the decoupling of the surface and root-zone moisture. The optimal values of w 8 

and θd are determined by using a novel framework, Weighted Objective Function Selector Algorithm 9 

(WOFSA). This performs numerical experiments, assuming known reference conditions. In particular, it 10 

solves the inverse problem for different sets of θ and ET, considering the uncertainties of retrieving them 11 

from RS, and then runs the hydrological model to obtain the simulated water fluxes and their residuals, ΔWF, 12 

against the reference responses. It estimates the two unknown variables, w and θd, by maximizing the linear 13 

correlation between the WOF and maximum ΔWF. The framework is tested using a modified Soil-Water-14 

Atmosphere-Plant (SWAP) model, under 22 contrasting hydroclimatic scenarios. It is shown that for each 15 

texture class, w can be expressed as function of the average θ and ET-fraction, while that for all scenarios θd 16 

can be modeled as function of the average θ, average ET and standard deviation of ET. Based on the 17 

outcomes of this study, we also provide recommendations on the most suitable time period for soil moisture 18 

measurements for capturing its dynamics and thresholds. Finally, we propose the implementation of WOFSA 19 

within multiobjective calibration, as a generalized tool for recognizing robust solutions from the Pareto 20 

front. 21 
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function based on soil moisture; OFet: objective function based on evapotranspiration; RS: remote sensing; SR: 

shallow roots; SVAT: Soil Vegetation Atmosphere Transfer water flow model; SWAP: Soil-Water-Atmosphere-

Plants model; SWAPinv: modified Soil-Water-Atmosphere-Plant model suitable for inverse modeling; WOF: 

weighted objective function; WOFSA: Weighted Objective Function Selector Algorithm, WF: water fluxes. 
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1. Introduction 23 

In the hydrological community there is a growing interest to make suitable usage of data retrieved from 24 

remote sensing (RS), to be employed within physically-based models. Two of the most typical variables, 25 

which are of key importance in hydrological modeling, are surface soil moisture,  [Sun et al., 2007; Wang et 26 

al., 2008; Zhan et al., 2008; Naeimi et al., 2009; Entekhabi et al., 2010], and actual evapotranspiration, ET 27 

[e.g., Wang et al., 2008; Wu et al., 2008; Hong et al., 2009; Ramos et al., 2009; Teixeira et al., 2009a]. In 28 

particular, RS data of this type have been used to invert the soil hydraulic parameters of Soil Vegetation 29 

Atmosphere Transfer (SVAT) models [e.g. Mohanty and Zhu, 2007; Ines and Mohanty, 2008a; Ines and 30 

Mohanty, 2009; Gutmann and Small, 2010]. Recently, Pollacco and Mohanty [2012] performed numerical 31 

experiments under 18 contrasting hydroclimatic scenarios to estimate the uncertainties of computing the 32 

water fluxes (WF) through a modified SVAT model, by inverting its soil hydraulic parameters from  and ET. 33 

They found that the predictive capacity of the model against its simulated fluxes strongly depends on the 34 

hydroclimatic conditions; specifically, the uncertainty increases under dry climates, coarse textures and 35 

deep rooted vegetation.  36 

In this paper we provide a novel methodological framework, termed Weighted Objective Function 37 

Selector Algorithm (WOFSA), to improve predictions by SVAT models, by ensuring the most appropriate 38 

combination of these two types of information (θ & ET), for a wide range of hydroclimatic conditions and soil 39 

texture patterns. In the simulations we use a modified SWAP 3.2 model, for which we are interested in 40 

inverting the effective soil hydraulic parameters, while the vegetation parameters are assumed known. The 41 

modified SWAP 3.2, introduced by Pollacco and Mohanty [2012] and next termed SWAPinv, is briefly 42 

described in section 2.1. 43 

 In the proposed framework, the inverse problem is expressed in multiobjective terms, by formulating a 44 

Weighted Objective Function (WOF) of two criteria, OF and OFet, which account for the deviation of the 45 

simulated to the “reference” surface soil moisture  and evapotranspiration ET, i.e.: 46 

WOF = w OF + (1 – w) OFet 
 (1) 47 

where w is a dimensionless weighting coefficient. Multiobjective approaches have been widely documented 48 



4 

 

in all aspects of hydrological modeling, starting from the late ‘90s [e.g., Mroczkowski et al., 1997; Gupta et al., 49 

1998; Yapo et al., 1998; Bastidas et al., 1999; Gupta et al., 1999]. The rationale is that as more information is 50 

embedded within calibration, it is expected that the identifiability of parameters is improved, thus also 51 

ensuring an improved predictive capacity. These advantages have been demonstrated in several applications 52 

involving SVAT and land surface models [e.g., Bastidas et al., 1999; Franks et al., 1999; Gupta et al., 1999; 53 

Demarty et al., 2004; 2005; Coudert et al., 2006; Mo et al., 2006]. In this respect, conditioning the hydraulic 54 

parameters of SVAT models against both θ and ET data is generally accepted, although not all researchers 55 

found advantageous of calibrating SVAT models simultaneously with θ and ET data [Ines and Droogers, 2002; 56 

Jhorar et al., 2002; Jhorar et al., 2004; Ines and Mohanty, 2008b]. 57 

In order to increase the information embedded in calibration, the WOF is further parameterized by 58 

introducing a threshold soil moisture θd, which indicates the period when soil moisture θ can be calibrated, 59 

in order to avoid decoupling between surface and subsurface θ. The concept of θd is one of the novelties of 60 

our framework, as explained in section 2.4.2. It is well-known that by tuning the weighting coefficient w and 61 

next solve the inverse (calibration) problem for a given value of θd, we can obtain different sets of optimized 62 

hydraulic parameters. The later are called non-dominated or Pareto-optimal and lie in the boundary of the 63 

feasible objective space (Fig. 1). By assigning a specific value to w and θd we assert that the solution obtained 64 

by minimizing WOF ensures an acceptable compromise between OF and OFet. In this respect, the “optimal” 65 

combination of θ and ET data is mathematically represented as the determination of the weighting 66 

coefficient w and the decoupled soil moisture θd. The Weighted Objective Function Selector Algorithm 67 

(WOFSA) is a novel numerical procedure, which allows for identifying the optimal values of both the control 68 

variables of the multiobjective function (i.e., w and θd) and the model hydraulic parameters. The suitability of 69 

w and θd is evaluated on the basis of the information provided by the simulated water fluxes (model 70 

outputs), in terms of uncertainty, in an attempt to constrain the feasible parameter space. In contrast to the 71 

classic calibration paradigm, which merely aims to achieve the smallest departure between the observed and 72 

simulated model responses, the WOFSA also takes into account the uncertainties due to errors in input data. 73 

For convenience, in the investigations we use synthetic data provided by numerical experiments with known 74 

parameter sets, in order to eliminate the impacts of other sources of uncertainty, e.g., structural (model) 75 
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errors. In this context, WOFSA assumes that the uncertainties of the water fluxes are only caused by 76 

prescribed uncertainties of the observed  and ET.  77 

Specifically, we consider that the top 5cm soil moisture retrieved from remote sensing has an average 78 

accuracy of root mean square error (RMSE) of 0.04 m3 m-3, in terms of volumetric soil moisture [e.g., Kerr et 79 

al., 2001; Simmonds et al., 2004; Davenport et al., 2005; Choi et al., 2008; Das et al., 2008; Sahoo et al., 2008; 80 

Verstraeten et al., 2008; Vischel et al., 2008]. This has been validated with field campaigns, typically under 81 

low vegetated area for which the biomass is up to 4-8 Kg m-2 (for example, under mature corn and soybean), 82 

by using passive microwave remote sensing [e.g. , Jackson and Schmugge, 1991; Bindlish et al., 2006; Li et al., 83 

2006; Njoku and Chan, 2006]. On the other hand, the procedures for retrieving the actual evapotranspiration 84 

from remote sensing exhibit an average relative error of 20%, as also validated from field campaigns. This 85 

value is suggested by Kalma et al. [2008], from a compilation of 30 publications [e.g., Zhang et al., 2006; Gao 86 

and Long, 2008; Opoku-Duah et al., 2008; Bashir et al., 2009; Ramos et al., 2009; Teixeira et al., 2009b]. We 87 

note that the uncertainties of retrieving  are different when compared to the uncertainties of ET, and 88 

therefore have different implication on the uncertainties of the modeled/inverted water fluxes. Moreover, 89 

the behavior of the uncertainties of  and ET retrieved from RS with increasing  and ET is still poorly 90 

understood [e.g., Fernández-Gálvez, 2008]. For this reason, we also assume that the uncertainties of  and ET 91 

linearly increase with increasing θ and ET, thus suggesting that the WOF and the corresponding residuals 92 

are correlated. Under this premise, the optimal w and θ d are those which achieve the maximum linear 93 

correlation between the WOF and the residuals of the simulated water fluxes. This is a key point of the 94 

methodology, which is analytically presented in section 3. 95 

 Our methodology is validated by employing numerical experiments with SWAPinv. Following the recent 96 

research study by Pollacco and Mohanty [2012], we used as reference states/fluxes the surface and root-97 

zone soil moisture, groundwater recharge, actual evapotranspiration, actual evaporation and actual 98 

transpiration. In order to investigate the variability of the optimized w and θd, we formulated 22 contrasting 99 

hydroclimatic scenarios, which are composed as combination of five climates across the USA, three soil 100 

textures and two rooting depths. The need for investigating different rooting depths is justified by Ines and 101 

Mohanty [2008b], who found that the predictions of the hydraulic parameters of SVAT models are much 102 
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more sensitive to rooting depths than other vegetation parameters. In the numerical experiments, we 103 

assumed that the soil hydraulic parameters are unknown and that the vegetation parameters are not subject 104 

to calibration, since these can be readily retrieved from MODIS (MODerate resolution Imaging 105 

Spectroradiometer) [e.g., Huete et al., 2002; Simic et al., 2004; Nagler et al., 2005; Vegas Galdos et al., 2012]. 106 

In all simulations, we assumed that the soils are homogeneous, based on the work by Jhorar et al. [2004], 107 

who found that, in most cases, a reliable water balance can be obtained by replacing the heterogeneous soil 108 

profile by an equivalent single one. Finally, we selected a deep water table, since Pollacco and Mohanty 109 

[2012] showed that inverting the soil hydraulic parameters with ET in presence of shallow water table 110 

causes extra uncertainties.  111 

The goals of this study include: 112 

 Development of the Weighted Objective Function Selector Algorithm (WOFSA), for determining the 113 

best-compromise weights of a WOF; 114 

 Application of WOFSA within SWAPinv, in order to investigate the variability of the optimal coefficient 115 

w and threshold θd under contrasting hydroclimatic conditions, on the basis of synthetic data obtained 116 

through numerical experiments, i.e. by inverting the soil hydraulic parameters; 117 

 Determination of the most suitable calibration period (in terms of soil moisture thresholds), to take 118 

full advantage of the information provided simultaneously by θ and ET retrieved from remote sensing; 119 

 Development of empirical relationships correlating w and θd against typical statistical metrics of θ and 120 

ET; 121 

 Comparison with the minimum Euclidian distance approach, which is usually employed in 122 

multiobjective calibration problems; 123 

 Discussion of future research perspectives, for implementing WOFSA within a multi-objective 124 

calibration framework, and on the basis of actual (i.e., field) data. 125 

126 
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2. Modeling framework and set-up of numerical experiments 127 

2.1 Soil-Water-Atmosphere-Plant hydrological model 128 

We introduce a modified version of the so-called Soil-Water-Atmosphere-Plant (SWAP 3.2), which is a 129 

physically-based Soil Vegetation Atmosphere Transfer (SVAT) water flow model for representing the 130 

unsaturated zone soil water fluxes of vegetated land [e.g., Van Dam et al., 1997; Kroes et al., 2000; Van Dam 131 

et al., 2008]. SWAP has been extensively used to calibrate the hydraulic parameters by matching θ and/or 132 

ET retrieved from remote sensing [e.g., Ines and Mohanty, 2008a; b; c; 2009; Shin et al., 2012]. The governing 133 

equation solves the mixed form of the Richards’ equation, combined with a sink term for root water 134 

extraction, to simulate the variably saturated soil moisture movement in the soil profile: 135 
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  136 

where  is the volumetric water content (L3 L-3) or the fraction of water-filled pore space; h is the capillary 137 

pressure head (m); t is time (T); z is the vertical coordinate (L) defined as positive upwards; K( ) is the 138 

unsaturated hydraulic conductivity (L T-1); and S(h) is the soil water extraction rate by plant roots (L3 L-3). 139 

2.1.1  Soil water retention and unsaturated hydraulic conductivity 140 

The model accuracy depends on two functions, the soil-moisture characteristic curve h() and the 141 

unsaturated hydraulic conductivity K(). The analytical function of h() is provided by the van Genuchten 142 

model [1980]: 143 
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(3) 144 

where e is the normalized volumetric water content (L3 L-3); r and s are the residual and saturated water 145 

contents (L3 L-3), respectively, with 0 ≤ r <  < s; h is the capillary pressure head (m), hae (1/) is associated 146 
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to the air-entry matrix potential (m-1), n (> 1) is a shape parameter related to the pore-size distribution 147 

(dimensionless), and m is another shape parameter. The two parameters m and n are interrelated via the 148 

expression m = 1 – 1 / n, following the assumption by Mualem [1976]. 149 

The unsaturated hydraulic conductivity function K(θ) is given by Mualem [1976] and van Genuchten 150 

[1980]: 
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(4) 152 

where L is a dimensionless shape factor and Ks is the saturated hydraulic conductivity (m d-1). The shape 153 

factor, L is not a sensitive parameter and it is normally kept fixed to 0.5. Similarly, r does not affect the 154 

goodness-of-fit of the characteristic curve and it is typically eliminated [e.g. Russo, 1988; Luckner et al., 1989; 155 

Tietje and Tapkenhinrichs, 1993; Boufadel et al., 1998; Schaap and Leij, 1998; Ines and Droogers, 2002]. 156 

Hence, in this study, s, hae, n and Ks are the sole hydraulic parameters to be inverted. The expected range of 157 

the above parameters are provided in Table 1; this range was computed by taking the 90% confidence 158 

interval of the combined datasets of GRIZZLY [Haverkamp et al., 2005] and UNSODA [Leij et al., 1996]. In 159 

particular, the minimum range of θs is determined for each hydroclimate by calculating the maximum range 160 

of the reference θ. 161 

2.1.2 Modified sink term of SWAP 3.2 (SWAPinv)  162 

Building parsimonious SWAP models by reducing the number of input vegetation parameters, without 163 

decreasing their predictive capacity and their physical concept, is a challenging task. In this context, we 164 

modified the evaporation, transpiration and rainfall interception modules of SWAP, next termed SWAP inv, in 165 

order to use a reduced number of input parameters, namely the Leaf Area Index (LAI), the extinction 166 

coefficient of solar radiation (Kg), the rooting depth, and the saturated (θs) and residual (θr) water contents. 167 

In this respect, we use the Beer-Lambert law that partitions potential evaporation, potential transpiration 168 

and potential evaporation of a wet canopy by using LAI and Kg [e.g. Ritchie, 1972; Goudriaan, 1977; Belmans 169 

et al., 1983]. In addition, LAI, Kg and the potential evaporation of a wet canopy are also used to compute the 170 
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interception, based on the works of Noilhan and Lacarrere [1995] and Varado et al. [2006]. Thus, the 171 

sensitivity of LAI and Kg are increased since they control multiple processes. The modified SWAP 172 

evaporation module does not require extra parameters, since it is directly estimated from the soil moisture, 173 

the potential soil evaporation and the hydraulic parameters [e.g. Eagleson, 1978; Milly, 1986; Simmons and 174 

Meyer, 2000; Romano and Giudici, 2007; 2009]. Consequently, the sharing of the hydraulic parameters, which 175 

computes soil moisture and evaporation, increases the sensitivity of the hydraulic parameters when they are 176 

inverted simultaneously from soil moisture and evapotranspiration. The general shape of the roots in SWAP 177 

is entered manually, in tabular form. Nevertheless, for large-scale modeling, a detailed description of roots is 178 

not required, thus we introduced an empirical power-law root density function [Gale and Grigal, 1987], that 179 

was further modified by Pollacco et al. [2008a]. The root density function requires two parameters, the 180 

maximum rooting depths and the percentage of roots in the top 30 cm. A detailed mathematical description 181 

of SWAPinv is provided in Appendix A. 182 

2.2 Generation of reference data for numerical experiments 183 

The numerical experiments were carried out for 22 hydroclimatic scenarios, derived by combining three soil 184 

types, two rooting depths and five climates (Table 2). In order to provide realistic simulations, deep roots 185 

(DR) were not assigned to subtropical climates and shallow roots (SR) were not allocated to arid climate 186 

[Schenk and Jackson, 2002]. Moreover, in semi-arid climates, only loamy sand was modeled. More precisely: 187 

 The hydraulic parameters for the three contrasting benchmark soils (loamy sand, silty loam, silty clay) 188 

are given in Table 3. These soil textures were selected from Carsel and Parrish [1988] and Ines and 189 

Mohanty [2008b], and they ensure a large variability of annual evapotranspiration and groundwater 190 

recharge. 191 

 For the two contrasting benchmark-rooting depths (i.e. shallow and deep), the rooting depths and the 192 

percentage of roots for the top 30 cm are given in Table 4. These contrasting rooting depths were 193 

selected to depict shrubs, and they are provided by Schenk and Jackson [2002] and Jackson et al. 194 

[1996]. Forested land use was not selected, because remote sensing platforms using passive 195 

microwave still cannot retrieve soil moisture under dense canopy, the biomass of which is higher than 196 

8 Kg m-2 (e.g., vegetation denser than mature corn) [e.g., Jackson and Schmugge, 1991; Bindlish et al., 197 
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2006; Li et al., 2006; Njoku and Chan, 2006]. 198 

 The values of the typical vegetation parameters that remain constant for all simulations are provided in 199 

Table 5 and explained in Appendix A. It is assumed that all these parameters can be retrieved from 200 

MODIS remote sensing [e.g., Huete et al., 2002; Simic et al., 2004; Nagler et al., 2005; Vegas Galdos et al., 201 

2012]. 202 

 To formulate the hydroclimatic scenarios, we used daily precipitation time series and meteorological 203 

data for computing the potential evapotranspiration through the Penman-Monteith formula [1965], 204 

which were compiled from AmeriFlux http://public.ornl.gov/ameriflux/ (Table 6). The contrasting 205 

climates correspond to typical mainland Southern United States conditions, for which snowfall is 206 

scarce. The forcing data was selected by combining a dry, a normal and a wet water year (October 1 to 207 

September 30).  208 

A summary of the 22 reference water fluxes computed with SWAPinv is presented in Fig. 2. The 209 

scenarios provide satisfactory high variability of the model fluxes. Specifically, the annual groundwater 210 

recharge ranges from 30 to 800 mm, the annual transpiration ranges from 120 to 370 mm, and the annual 211 

evaporation ranges from 7 to 144 mm. 212 

2.3 Boundary conditions and discretization 213 

Within the simulations, the soil column was discretized for deep roots of a total depth of 1.80 m and for 214 

shallow roots of a total depth of 0.90 m. Finer discretization (0.25 cm) near the land atmospheric boundary 215 

and coarser discretization (5 cm) at deeper depths were employed. For all scenarios, the soil columns were 216 

initialized uniformly at h = -0.1 m and SWAPinv run for 90 days (spin up time) ahead of the experiment, to 217 

tune the state of the initial soil moisture profile. For the bottom boundary condition of the soil columns, the 218 

free drainage was selected. The upper boundary condition was determined by the daily net precipitation, 219 

which was computed with the interception model, and the potential evapotranspiration, estimated by the 220 

Penman-Monteith equation. The potential evapotranspiration was partitioned into potential soil 221 

evaporation, potential evaporation of wet canopy and potential transpiration by using the Beer-Lambert law 222 

[e.g., Ritchie, 1972; Goudriaan, 1977; Belmans et al., 1983]. Finally, a maximum of 2 cm of ponding water is 223 

permitted with any overflow lost as runoff. 224 
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2.4 Formulation of the inverse problem 225 

2.4.1 The Weighted Objective Function 226 

Within the inverse problem we use a WOF comprising two fitting criteria, OFθ and OFet, and two control 227 

variables, w and θd. In order to account for the differences in magnitude between the individual criteria, it is 228 

preferable that all the components of the WOF are either dimensionless or normalized. The WOF is derived 229 

by dividing the mean absolute error by the typical observation error (uncertainty) of the corresponding 230 

reference state or flux, i.e.:  231 

rset

N

simref

et

rs

N

simref

ETN

ETET

OF
N

OF

et













11   AND  










  

(5) 232 

where  [L3 L-3] is the top 5 cm surface soil moisture where decoupling does not occur, and N and Net are the 233 

lengths of daily soil moisture and evapotranspiration time series, respectively. When OFθ or OFet is greater 234 

than one indicates that the errors of simulations are greater than the uncertainties of retrieving the 235 

observation from remote sensing. We highlight that for both functions, all model outputs which provide 236 

values greater than 1 are considered as non-acceptable. Hence, a trial set is rejected if OFθ > 1 or OFet > 1. 237 

To provide a proper configuration of the multiobjective calibration problem, it is essential to ensure that 238 

the two fitting criteria, OFθ and OFet, are approximately uncorrelated. Indeed, Pollacco and Mohanty [2012] 239 

showed that for contrasting hydroclimatic conditions the related processes θ and ET are rather independent. 240 

This is because the surface θ is influenced by the evaporation and decouples between the surface and root-241 

zone soil moisture, while ET is a signature of the whole root-zone θ, since ET results in the uptakes of water 242 

stored at depth. In addition, the storage of θ in the root-zone profile is dependent on the past weather 243 

events, whereas the near-surface θ reflects the present weather condition. 244 

2.4.2  Introducing decoupling within WOF 245 

One of the peculiarities when calibrating hydrological models against surface soil moisture is that soil 246 

moisture is prone to decoupling. This originates from the significantly faster drying of the surface compared 247 

to the root-zone, due to evaporation and shallow root water uptake, causing a sharp vertical soil water 248 
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gradient near the surface. When this occurs, the surface  is no more representative of the soil moisture 249 

dynamics in the rooting zone [Capehart and Carlson, 1997; Walker et al., 2002; De Lannoy et al., 2007; 250 

Pollacco and Mohanty, 2012]. For instance, large-scale decoupling was evidenced in New Zealand by Wilson 251 

et al. [2003] between 0-6 cm and 0-30 cm in situ. Decoupling is more prominent when surface  is in the 252 

drying phase and it is below the threshold d   (L3 L-3), which is computed by: 253 

ref(t) < d and ref(t + 1) < ref(t)        (6) 254 

On the basis of Eq. (6), we modified OF such that to increase its sensitivity by omitting the period when 255 

surface and root-zone decoupling occurs. If d = 0, decoupling is not taken into account within WOF.  256 

3. Outline of the Weighted Objective Function Selector Algorithm (WOFSA) 257 

3.1 Identification of the best-compromise parameter set in multiobjective calibration: 258 

approaches and drawbacks 259 

 260 

Equation (1) is a specific case of aggregated objective functions that represent an overall measure of the 261 

model performance, in which the characteristics of the best-compromise solution, which also reflect the 262 

relative importance of the individual criteria, are specified a priori. The later are expressed in terms of 263 

multipliers (e.g. weighting method), target-values combined with distance metrics (e.g., goal-programming 264 

and ε-constraint methods [e.g., Laumanns et al., 2002; Reed et al., 2003]) or priorities (e.g. lexicographic 265 

ordering). Besides, the detection of the best-compromise parameter set remains an open issue in 266 

hydrological calibration, which has not been thoroughly addressed in the literature [e.g., Dumedah et al., 267 

2010].  268 

Most approaches employ hybrid strategies, based on combined objective and subjective criteria, to 269 

support the manual identification of the “most prominent” parameter values [e.g., Efstratiadis and 270 

Koutsoyiannis, 2010]. In particular, a well-accepted technique for detecting the best-compromise 271 

parameters, which is usually employed in subsurface flow modes, is by minimizing the Euclidean distance of 272 

the Pareto set to the origin [e.g., Refsgaard and Storm, 1996; Madsen, 2003; Twarakavi et al., 2008]. Although 273 

this methodology, which is a sub-case of goal-programming, appears to be statistically reasonable, its 274 
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hydrological meaning is not well-understood. On the other hand, few are the procedures for recognizing 275 

effective non-dominated solutions a posteriori, through systematic filtering of the Pareto set. Some of the 276 

proposed approaches are preference ordering and compensation between model objectives [e.g., Khu and 277 

Madsen, 2005] as well as cluster analysis [e.g., Taboada and Coit, 2006; Crispim and de Sousa, 2009; Dumedah 278 

et al., 2010]. For instance, Dumedah et al. [2010; 2012b; 2012a] used cluster analysis to evaluate the 279 

distribution of solutions on the trade-off surface, to find relationships in both objective space and parameter 280 

space. The linkage between the two spaces describes the level of robustness for the parameter sets 281 

(according to Deb and Gupta [2005], robust solutions are less sensitive to variable perturbations in their 282 

vicinity). They also showed that the use of criteria that are based on a compromise between representative 283 

pathways in the parameter space and a dominant variability in the objective space provides solutions that 284 

remain non-dominated across different validation sub-sets.  285 

The above, rather subjective, approaches for detecting the best compromise parameter set in 286 

multiobjective calibration problems, ignore uncertainties that are due to errors in input data, which prevents 287 

providing robust solutions. In this respect, we are proposing a systematic procedure, called Weighted 288 

Objective Function Selector Algorithm (WOFSA), which identifies the most appropriate Weighted Objective 289 

Function (WOF), by performing inverse modeling, where the uncertainties in retrieving θ and ET data are 290 

directly accounted for. Next are described the key assumptions of the methodology, as well as the detailed 291 

computational procedure. 292 

3.2 Key assumptions of WOFSA 293 

The key idea of WOSFA is based on the postulation that the optimal weighting between the individual 294 

objectives is the one ensuring the maximum linear correlation between the residuals ΔWF of the computed 295 

model responses of interest (water fluxes) and the WOF. The rationality is that if the inverse modeling is 296 

well-posed, then an increase in the OF should cause the error of each specific simulated flux to also increase 297 

and vice versa [Pollacco et al., 2008a]. If the later is insensitive against to variations of θ and ET, the problem 298 

is ill-posed as the modeled flux cannot be calibrated solely from the observed θ and ET; thus, additional 299 

observations should be included into the WOF.  300 

This assumption is further illustrated in Fig. 3, where we plot three hypothetical relationships 301 
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between a normalized WOF* and a dimensionless residual metric (e.g. relative bias) ΔQ*, which is a measure 302 

of uncertainty of the corresponding water flux (in the specific case, the groundwater recharge). It is assumed 303 

that the optimal relationship is the 1:1 line (intermediate curve of Fig. 3, e.g. 2), which indicates that a 304 

specific change of the WOF* value results to an equal change of the model uncertainty ΔQ*. Therefore, this 305 

expression is the most suitable to be used in calibration. Any other relationship, derived by different 306 

combinations of weights, is sub-optimal. For instance, the right curve of Fig. 3 (e.g. 1) demonstrates a 307 

weighted function that initially has limited sensitivity against the model uncertainty (a significant change of 308 

the WOF* results to a much less significant change of ΔQ*), followed by sharply varying model uncertainty 309 

for small changes of the WOF*. On the other hand, the left curve of Fig. 3 (e.g. 3) represents an opposite 310 

performance, which is also far from desirable. This feature forms the basis for our linearity assumption 311 

between WOF* and ΔQ* in WOFSA. 312 

3.3 Description of computational procedures 313 

The algorithm is applied to a SWAPinv model, using the objective functions of section 2.4. The model runs on 314 

daily basis. The water fluxes of interest are groundwater recharge Q (mm d-1), evaporation E (mm d-1), 315 

transpiration T (mm d-1), evapotranspiration ET (mm d-1), while the modeled state variables are the root-316 

zone soil moisture rz (m3 m-3) and the surface soil moisture  (m3 m-3). The method is performed in three 317 

successive steps, as also shown in the flowchart of Fig. 4 318 

3.3.1 STEP 1: Generation of reference runs 319 

WOFSA performs numerical experiments to determine the optimal control variables w and θd of the WOF, 320 

which requires that the soil moisture , evapotranspiration ET, and water fluxes (as well as state variables) 321 

WF, are known a priori. The later will be next called “reference” data, symbolized ref, ETref and WFref, 322 

respectively. In particular, WFref are computed by inputting known sets of hydraulic parameters 323 

(HYDRAUref), vegetation parameters (VEGETATIONref) and daily forcing (precipitation, potential 324 

evapotranspiration) data into SWAPinv (Fig. 4, Loop 1). We remark that the vegetation parameters are 325 

treated as known properties of the model (cf. section 2.2), while the soil hydraulic parameters are to be 326 

inverted through optimization. 327 
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3.3.2 STEP 2: Monte Carlo simulation and calculation of uncertainties 328 

In order to assess the uncertainties in retrieving ref and ETref from remote sensing, we use different sets of 329 

sim and ETsim, provided through Monte Carlo simulation (Fig. 4, Loop 2). Each trial set is formulated on the 330 

basis of different values of soil hydraulic parameters (HYDRAUsim), which are generated by SWAPinv to 331 

provide the corresponding simulated time series WFsim, sim and ETsim. The “unknown” constrained 332 

HYDRAUsim are estimated by minimizing the WOF. To initialize the search procedure, the typical values 333 

w = 0.5 and θd = 0 are assigned to WOF, which are updated after the completion of Step 3. The simulations 334 

are carried out by employing the Shuffled Complex Evolution University of Arizona (SCE-UA) algorithm, 335 

developed by Duan et al. [1992; 1994]. The customized global optimization can be seen as a restrained 336 

Monte Carlo simulation that seeks for different combinations of “compromise” parameter sets (HYDRAUsim), 337 

in the vicinity of the global minimum [van Griensven and Meixner, 2006; Pollacco et al., 2008a, b].  338 

For each trial set (i.e. hydraulic parameters and resulting fluxes), the model uncertainties, in terms of 339 

residuals WF, are computed by:  340 
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         (7) 341 

where Nwf is the time length of simulations (days). 342 

 During the Monte Carlo procedure, all the different trials of HYDRAUsim and the corresponding WFsim 343 

and ΔWF are stored in the STORAGE archive (Fig 4). At the end of Step 2, the trial sets are sorted in 344 

increasing order of WOF values. Fig. 5a depicts the relationship between WOF and the residuals of the 345 

groundwater recharge ΔQ, for one of the experiments that are examined next (i.e. loamy sand, temperate 346 

climate and short rooting depth). 347 

3.3.3 STEP 3: Estimation of w and θd 348 

As explained in section 3.2, in order to determine the best-compromise values of w and θd, it is 349 

essential to ensure the greatest linearity between the so-called normalized WOF and the normalized 350 
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maximum uncertainties WFmax*. This linearity is obtained by minimizing an “auxiliary” objective function 351 

OFlin through the SCE-UA method, using the ensemble sets that are generated in Step 2. The computational 352 

procedure is the following:  353 

From each generated WOFi, the maximum corresponding error of WFsim (WFmax) is selected and 354 

plotted. As shown in Fig. 5b (where WFmax is Qmax), the key asumption is that the relationship between 355 

WOF and ΔWFmax monotonically increases is reasonable. The computation of ΔWFmax is mathematically 356 

expressed as: 357 

ΔWFmax(i + 1) = max {ΔWF(i + 1), ΔWF(i)} and ΔWFmax(i + 1) ≥ ΔWFmax(i)   (8)  358 

where index i corresponds to the i-th simulation, classified by an increasing order of WOF. We remind that 359 

here we only consider the uncertainties of the reference data that are used in calibration, and we do not take 360 

into account other error sources, such as structural errors of the model. In order to implicitly account for the 361 

later, we use the upper envelope uncertainties of the water fluxes ΔWFmax and not, for instance, their average 362 

values. 363 

For each flux, in order to evaluate the linearity between WOF and ΔWFmax, the two variables are 364 

normalized, thus taking values in the range [0, 1]. This is performed by selecting the corresponding 365 

“envelopes” of simulated ΔWFmax such that the following condition is fulfilled: 366 

OFθ = Δ  Δrs and OFet = ΔET  ΔETrs        (9) 367 

where Δrs and ΔETrs are typical values of the uncertainties in retrieving  and ET, respectively, from remote 368 

sensing. In the case study, we generated 7000 sets of sim and ETsim which comply with Eq. 9. Preliminary 369 

investigations indicated that generating more sets improve the optimal values of w and θd only marginally. 370 

On the basis of literature data already mentioned in the introduction, for the soil moisture we assigned a 371 

volumetric root-mean-square error Δrs = 0.04 m3 m-3 while for the evapotranspiration we set a relative 372 

error ΔETrs = 20% (apparently, in a particular study, different values can be employed, taking advantage of 373 

uncertainty estimations based on local data). The simulated ΔWFmax values that comply with Eq. 9 are 374 

depicted in Fig. 5c, through the non-shaded area. WOF and ΔWFmax are normalized and symbolized with (*), 375 
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using the maximum feasible simulated value that complies with Eq. 9, which is annotated with the circle in 376 

Fig. 5c.  377 

As explained in section 3.2, the optimal WOF is determined such that to ensure the maximum linearity 378 

between WOF* and WFmax*. The linearity is quantified by means of the auxiliary objective function OFlin 379 

(Fig. 3), which is computed separately for each water flux, as follows:   380 
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where the index i corresponds to the i-th simulation, classified by an increasing order of ΔWF*
max and 2/2  382 

is only used for graphical reasons, i.e. in order to normalize OFlin thus being equal to half the diagonal of a 383 

unit square. 384 

The value of OFlin
* depicts the maximum deviation from the 1:1 line composed of WFmax* and WOF*, as 385 

described in Fig. 3. The value OFlin = 0 denotes a perfect linearity, while OFlin = 1 corresponds to the greatest 386 

deviation from the desirable line 1:1. The final value of OF lin is computed by averaging OFlin, which is 387 

calculated for each individual water flux and state variables of interest (root-zone soil moisture, 388 

groundwater recharge, evapotranspiration, evaporation and transpiration) by using the following 389 

expression: 390 
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where index j corresponds to j-th water flux of interest, and NOFlin is the number of water fluxes of interest. 392 

An example of the relationship between the optimal WOF* and WFmax
* for all water fluxes is provided in Fig. 393 

5d. 394 

The SCE-UA optimization algorithm is next used to minimize the auxiliary function (Eq. 10b) against w 395 

and θd. After getting the optimal values of w and θd, the initial objective function (WOF) is updated and Steps 396 

2 and 3 are repeated. The iterative procedure continues until the values of w and θd are stabilized, thus WOFi 397 
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≈ WOFi - 1. Typically, four runs are enough to achieve convergence. 398 

4. Results 399 

4.1 General outcomes 400 

An overview of the WOFSA capabilities is provided by investigating the three representative scenarios, 401 

which are presented in Table 7 and plotted in Fig. 6. The figure shows the relationship between WOF* and 402 

ΔWFmax*, which is computed for ET, T, E, , rz and Q. The following general outcomes are drawn: 403 

(a) The strength of linearity between WOF* and ΔWFmax* can vary greatly with hydroclimate conditions 404 

(Fig. 6); 405 

(b) The usage of the decoupling algorithm (Eq. (6)) increases the linearity between WOF* and ΔWFmax* (e.g. 406 

for loamy sand; Fig. 6a); 407 

(c) Deep roots compared to shallow roots tend to increase the discrepancy in the predictions of 408 

transpiration (e.g. for sandy clay; Fig. 6b); 409 

(d) The usage of WOF instead of a single OFet did not improve the linearity between WOF* and ΔWFmax* 410 

(e.g. for silty clay under a Mediterranean climate for which we will show that it is a special case; Fig. 6c). 411 

Next, we further investigate how the optimized values of w and d vary under different hydroclimatic 412 

conditions. 413 

4.2 Correlating soil moisture decoupling with hydroclimatic variables  414 

The weighting coefficient w and the decoupling threshold d (m3 m-3) were optimized by minimizing OFlin 415 

(Eq. 10b). As already mentioned in section 2.4.2, to account for the observed θ within WOF we only used 416 

periods when soil moisture decoupling does not occur. We remind that decoupling only occurs when the soil 417 

is drying and the soil moisture falls below d. For loamy sands, an example of decoupling is given in Fig. 7a, 418 

where the reference time series of soil moisture  are plotted at different depths. Fig. 7a suggests that during 419 

the drying period and when  < d = 0.07 m3 m-3 (where 0.07 m3 m-3 is the optimal value obtained through 420 

the WOFSA, for the specific combination of soil texture and climate), the surface moisture is decoupled from 421 
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root-zone moisture. 422 

For each hydroclimatic scenario, we employed preliminary simulations to express d as function of 423 

average surface soil moisture , average evapotranspiration ET and its standard deviation σET (Fig. 8). The 424 

scatter plots indicate a negative correlation between 
ETET /  and   3/1

/d . The ratio 
ETET /  is a climatic 425 

indicator which increases as the climate gets wetter, since there is a positive correlation (r2 = 0.70) between 426 

ETET /  and the evapotranspiration fraction potETET /   fET  (results not provided here). On the other 427 

hand, the ratio  /d  
can be viewed as a normalized expression of d, where   is representative of the soil 428 

texture, which is lower for coarse texture and higher for fine texture. To understand the correlation we 429 

rewrite θd model as: 430 
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(11) 431 

From the above equation it results that when the soil moisture storage   in the root-zone increases, 432 

ET  also increases, which is reasonable. An increase in   also generates a decrease in soil moisture 433 

decoupling, which is represented by a decrease in θd. However, a high value of σET indicates more 434 

pronounced periods of drying and wetting, which in turn produces an increase in soil moisture decoupling 435 

θd, due to differences in the soil moisture storage between the surface and the root-zone. Fig. 8 shows that 436 

for dry hydroclimates θd /  > 1, while for wetter hydroclimates θd /   << 1. Thus, 
ETET /  is negatively 437 

correlated with   3/1

/d . The conclusion that soil moisture decoupling is more pronounced in drier 438 

climates is in line with the results of Capehart and Carlson [1997]. 439 

4.3 Correlating weighting coefficient with hydroclimatic variables 440 

A major objective of this study is to relate the weighting coefficient w with easily obtainable predictors. The 441 

optimal value of w is a complex tradeoff between the information gathered by OF and OFet. When more 442 

weight is assigned to OF, then the errors in Δrs influences more the computation of the water fluxes (WF) 443 

compared to ΔETrs. On the other hand, when more weight is assigned to OFet then the errors in ΔETrs 444 
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influences more the computation of the WF compared to Δrs. In fact, the inverse modeling will favor the 445 

weighting to OF, since  is a better predictor of the hydraulic parameters than ET [Pollacco et al., 2008a]. 446 

For the three soil texture class subdivided climatically, Fig. 9a depicts the relationship of w against the 447 

average evapotranspiration fraction potETET / , and Fig. 9b shows the correlation of w against the average 448 

measured surface soil moisture  . For every texture class, the empirical linear equations of Figs. 9a and 9b 449 

are described in Table 8. No correlation of the rooting depth with w was found since the former influences 450 

indirectly w through
fET . The hydroclimates which are enclosed in ovals are the ones for which little 451 

difference arises in *

linOF , given that OFet is used instead of WOF. These hydroclimates are depicted by 452 

arrows, representing threshold values of   and ETf. 453 

Loamy Sand 454 

For coarser texture soils (loamy sand and sandy clay), w is negatively correlated to both
fET  (Fig. 9a) and   455 

(Fig. 9b). It is to be noted that   is small for coarse soils because, as shown in Fig. 7a, there are long periods 456 

of droughts for which  ≈ 0. Therefore, for dry hydroclimates, represented by low values of fET , more 457 

weight is assigned to OF, and for wetter hydroclimates, represented by larger fET , more weight is assigned 458 

to OFet. 459 

These results can be explained in terms of the sensitivity of OFet against ∆WF, which depends on fET . 460 

The later is computed from the water uptake function of Feddes et al. [1978], as shown in Fig. 9c. The 461 

sensitivity of OFet is considerably reduced when the vegetation is under arid conditions, with fET  as low as 462 

10%. This is due to the closure of the stomata, thus more weight is assigned to OFθ. For wetter hydroclimatic 463 

scenarios characterized by an increase of fET , the sensitivity of OFet increases but at the same time OF 464 

weakens due to the enhanced surface and root-zone decoupling caused by evaporation. As fET  further 465 

increases (hydroclimates enclosed in ovals in Fig. 9a and 9b), *

linOF  remains invariant if either OFet or WOF 466 
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is used independently. Therefore, under these hydroclimatic conditions, it is preferable to use OFet instead of 467 

WOF. OFlin remains invariant when 
fET > 68% and  > 0.035 L3 L-3, approximately (refer to arrows in Fig.9a, 468 

b), where the relationships between w vs. 
fET  and w against θ change slope. These outcomes explain why 469 

Ines and Droogers [2002], Ines and Mohanty [2008b] and Jhorar et al. [2002; 2004] did not find advantages 470 

of using a WOF instead of a single OF to optimize the hydraulic parameters. 471 

Sandy clay 472 

The behavior of sandy clay soils is very similar to the loamy sands described above. Nevertheless, sandy 473 

clays are less coarse than loamy sand and thus the average drainage and the evaporation rate is moderated. 474 

Therefore, for the non-arid hydroclimatic scenarios  %70fET , w is clustered around 0.60. 475 

Silty clay 476 

For finer texture soils (silty clay), w is positively correlated with both 
fET  (Fig. 9a) and   (Fig. 9b). 477 

Therefore, for dry hydroclimates more weight is assigned to OFet and for wetter hydroclimates more weight 478 

is given to OF. The correlation between w with   and w with fET  of fine texture soils is positive, while for 479 

coarse texture soils it is negative (Table 8). This difference arises because the vegetation under moist soils 480 

do not experience much stress, thus ETf remains close to unity (Fig. 9c). Under this premise, h is free to vary 481 

between h2 and h3 (Eq. (A.8)), which reduces the sensitivity of OFet. Thus, for wet hydroclimates, more 482 

weight is assigned to OFθ. 483 

On the other hand, for drier hydroclimates, more weight is assigned to OFet due to another type of 484 

decoupling, which occurs for fine texture soils termed as fine texture decoupling. An example is provided in 485 

Fig. 7b, where the reference time series  are plotted at different depths. Fig. 7b suggests that for drier 486 

climates the top soil dries up progressively and decouples with the root-zone, for which there is a substantial 487 

amount of water stored at depth. Under these conditions, ET is more representative of the root-zone soil 488 

moisture than the surface soil moisture, thus more weight should be assigned to OFet. 489 
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5. Discussion 490 

5.1 Selection of the most suitable calibration period 491 

It is widely accepted that the information which is embedded in calibration data plays much more important 492 

role than the length of observations themselves. However, most of the existing hydrological calibration 493 

approaches do not provide any guidance about which sets of measurements are most informative for 494 

specific model parameters [e.g., Vrugt et al., 2002]. In particular, for SVAT models, an additional quest is to 495 

determine the “optimal” period to calibrate the hydraulic parameters from reference surface   and ET 496 

retrieved from remote sensing. The use of a multiobjective function, by means of the WOF, can adequately 497 

represent the errors that may be incurred due to the inverted parameter sets and may also help to recognize 498 

the structural errors much easier than when using a single fitting criterion. Therefore, to reduce ΔWF we 499 

need to select the period where the optimal w is theoretically around 0.6 (more weight is assigned to OF, 500 

since  is a better predictor of the hydraulic parameters), thus taking full advantage of the information 501 

provided simultaneously from OFet and OF . 502 

Feddes et al. [1993], Ines and Mohanty [2008c], Jhorar et al. [2002] and Van Dam [2000] suggested that 503 

the identifiability of the parameters increases with the ranges of the data from very dry to very wet. 504 

Nevertheless, these results are partly supported by our study, which showed that better predictions are 505 

obtained when optimization is performed during periods where soil moisture decoupling does not occur. In 506 

this respect, given that soil moisture decoupling is accentuated under dry conditions (Eq. (6)), inverse 507 

estimations should be avoided during dry periods. Our investigations also indicated that under dry 508 

conditions ETf is reduced and therefore OFet, driven by the Feddes et al. [1978] model, becomes less 509 

significant. In section 4.3 it was also shown that for wet periods, during which ETf remains close to unity 510 

(Fig. 9c), the sensitivity of OFet is reduced. Thus, the common belief that one requires a period such that  511 

goes from saturated to residual water content is not supported by this study. 512 

In practical terms, it is recommended that the hydraulic parameters should be preferably optimized 513 

after heavy rainfall events, when the soil moisture profile is homogeneous. Nevertheless, the measurements 514 

should only start after the plant is starting to experience stress and stopped when the roots are experiencing 515 
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excessive stress. This finding suggests that the inverse modeling should be performed during the period 516 

where evaporation is not at its maximum, to avoid soil moisture decoupling. 517 

 518 

5.2 Comparison of the WOFSA with the minimum distance from the origin 519 

In section 3.1 we mentioned that a well-accepted technique for detecting the optimal value of w, which is a 520 

complex tradeoff between the information gathered by OF and OFet, is by Minimizing the Euclidean Distance 521 

of the Pareto front to the origin (MEDP). Apparently, this requires determining the shape of the Pareto front. 522 

In nonlinear spaces, this is only achievable by running a suitable multiobjective evolutionary optimization 523 

algorithm, which can provide representative non-dominated solutions that are uniformly distributed across 524 

the objective space [Efstratiadis and Koutsoyiannis, 2010]. For a given shape of the front, the computation of 525 

its minimal distance from the origin is trivial. In particular, as illustrated in Fig. 1, when OF and OFet are 526 

normalized this method results to w = 0.5, independently of the values of Δrs and ΔETrs, and also 527 

independently of the hydroclimatic conditions. 528 

The major drawback of the MEDP approach is the erroneous assumption that the magnitude of Δrs is 529 

similar to the one of ΔETrs and that the impact of Δrs and ΔETrs on the WF are similar. Indeed, our extended 530 

investigations within this paper concluded that w is far from constant; in opposite, it is highly dependent on 531 

both the soil texture and climate (Fig. 9). Moreover, MEDP fails to take into consideration that when more 532 

weight is assigned to OF, then the errors in Δrs influences more the computation of the water fluxes and 533 

state variables WF, compared to ΔETrs. On the other hand, when more weight is assigned to OFet, the errors 534 

in ΔETr have more influence to the simulated WF, if compared to Δrs. Hence, the only advantage of MEDP 535 

against WOFSA is the simplicity of the computational procedure, but only under the premise that the shape 536 

of the Pareto front is well-approximated.  537 

5.3 Implementing WOFSA within a Pareto-optimization framework 538 

Forthcoming research needs to address how we can integrate WOFSA within global multiobjective 539 

calibration procedures (e.g. MOSCEM, MOPSO, MOHBMO, [Barros et al., 2010]), by using real observations. 540 
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Moreover, it can provide guidance for the selection of the most robust solution, among the mathematically 541 

equivalent Pareto optimal alternatives. Indeed, the best-compromise solution of the multi-objective 542 

calibration problem is theoretically found in the cross-section of the optimally-weighted objective function 543 

(WOF) and the Pareto-front. Yet, the task of implementing the above idea is non-trivial, since the true water 544 

fluxes and state variables (WFref) are unknown. In the following we propose preliminary guidelines how to 545 

use WOFSA in a multiobjective calibration setting by assuming that the inverse problem is well-posed, thus 546 

exhibiting relatively steep trade-offs and that an increase in WOF would produce an increase in WFsim. 547 

STEP a: Run multi-objective optimization 548 

Perform multi-objective optimization by simultaneous minimizing OFet and OFθ, for which w does not need to 549 

be provided. On the other hand, θd which depends on the climate data can be estimated from Fig. 8. During 550 

the optimization, all the feasible HYDRAUsim and WFsim which complies with Eq. 9 are kept in storage which 551 

will give the sub-set of acceptable Pareto-optimal solutions (Fig. 1). 552 

STEP b: Selection of temporary reference water fluxes 553 

A first guess of the reference parameters (WFref, HYDRAUref) is obtained from the cross-section of the 554 

weighted objective function (WOF) and the sub-set of Pareto optimal solutions. To obtain a first guess of 555 

WOF, w is approximated from Table 8 and θd is provided from Fig. 8. Next, WF is computed for the sub-set 556 

of acceptable solutions. 557 

STEP c: Dividing the sub-set of acceptable solutions 558 

WOFSA is performed independently on different parts of the sub-set of acceptable solutions, i.e. the Pareto 559 

front (Fig. 1). The area is divided on the basis on w. For instance, if the sub-set of acceptable solutions are 560 

divided into four sub-areas, then the ranges of w are [0 ; 0.25], [0.25 ; 0.5], [0.5 ; 0.75] and [0.75 ; 1.0]. For 561 

each sub-areas, the WOFSA runs from STEP 3, (section 3.3.3), thus obtaining the corresponding *

linOF .  562 
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STEP d: Refining the results 563 

The WFref is updated with the new value of w based on the group which exhibits the lowest 
*

linOF . Thus, the 564 

best-compromise solution is in the cross section of the optimal WOF and the Pareto front (Fig. 1). Steps b 565 

and c are repeated until convergence occurs between the new optimal w and the previously computed value. 566 

We should remark that although in this study we used two fitting criteria, the WOFSA can be performed 567 

with more criteria. In the current version, we suggest using a maximum of four fitting criteria, thus allowing 568 

the calibration of up to three weights within the minimization of 
*

linOF  (Eq. 10b). The introduction of more 569 

criteria would result to a significantly extended Pareto front, tending to cover a large part of the entire 570 

objective space. Evidently, this is far from desirable, for both theoretical (i.e. increased uncertainty) and 571 

practical reasons (i.e. poor understanding of the generated trade-offs). Nevertheless, very limited are the 572 

cases where more than four independent criteria have been applied in real-world applications [Efstratiadis 573 

and Koutsoyiannis, 2010]. Forthcoming research will investigate whether is it practical to increase the 574 

number of fitting criteria, taking into account that the WOFSA enables to constrain the feasible Pareto front, 575 

as depicted in Fig. 1, thus significantly facilitating the multiobjective searching procedure. 576 

5.4 The need for validation experiments with field data 577 

The proposed WOFSA methodology, which was thoroughly tested on the basis of synthetic data for a wide 578 

range of soil texture and climatic conditions, provided consistent and reasonable results. By using synthetic 579 

data, we also explicitly ignored uncertainties that are related to field observation errors, thus only focusing 580 

to uncertainties due to retrieval of surface soil moisture and evapotranspiration from remote sensing. 581 

Evidently, in real-world conditions, inherent modeling and measurement errors and uncertainties cannot be 582 

neglected. 583 

Yet, for a full validation of the methodology, and in order to quantify the gain in accuracy would 584 

require the collection of field data. This is by far non-trivial, due to the extent of in situ and remote sensing 585 

data requirements as well as potential scaling problems. In fact, performing measurements of effective large 586 

scale water fluxes is considered infeasible because typically  and ET are retrieved at a scale of several 587 

square kilometers. Without considering the scale issues, a way forward can be by using precise weighing 588 
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lysimeters for which all the water fluxes are continuously monitored (storage, drainage, and 589 

evapotranspiration). The surface  determined (for example) by neutron probe or time-domain 590 

reflectometer needs to be monitored. To mimic the uncertainties in retrieving  and ET from remote sensing, 591 

noise can be introduced into the measurements of surface  and lysimeter ET. 592 

The different lysimeters experiments should contain contrasting textures and climate as described in 593 

Fig. 2. Preferably, the lysimeters should be filled with representative soils and vegetation. Too dry climates 594 

may be avoided since it causes strong surface and root-zone  decoupling for which these periods can be 595 

recognized through the newly introduced threshold d, which is computed from Eq. (6). 596 

During the validation phase, it is also important to recognize that non-daily information for observed  597 

and ET is retrieved from thermal-band land surface temperature retrievals, which to date are limited to 598 

cloud-free atmospheric conditions (e.g., Anderson et al., 2011). This implies that the collected data from 599 

remote sensing is skewed toward drier conditions.  600 

6. Conclusions  601 

The inversion of the hydraulic parameters of a one-dimensional physically-based SVAT model by taking 602 

advantage simultaneously of surface soil moisture (), and evapotranspiration (ET), requires to take into 603 

consideration the uncertainties of retrieving  and ET from remote sensing and the decoupling of the surface 604 

and root-zone . To increase the sensitivity of , the optimization should not be performed during dry 605 

periods, i.e. when decoupling of the surface and root-zone soil moisture occurs. These periods can be 606 

recognized through the newly introduced threshold d, which is computed from Eq. (6). 607 

The proposed multiobjective approach, by means of a Weighted Objective Function (WOF), provides a 608 

suitable compromise between fitting criteria against  and ET, also taking into consideration the contrasting 609 

uncertainties in retrieving  and ET from remote sensing. As shown in the simulations, the uncertainties of  610 

have different implication in the computation of the water fluxes of interest compared to the uncertainties of 611 

ET. WOF comprises of two control variables, namely a weighting coefficient (w) and the decoupling 612 

threshold d.  613 
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In order to determine the best-compromise values of w and d, we developed a novel inverse modeling 614 

framework, called Weighted Objective Function Selector Algorithm (WOFSA). WOFSA aims to minimize the 615 

uncertainties of the computed water fluxes and state variables, following a systematic and as much as 616 

objective procedure, in terms of a theoretical framework for formulating an optimal WOF, on the basis of 617 

synthetic data. WOFSA performs forward simulations in order to ensure the greatest linearity between the 618 

optimized WOF and the maximum uncertainties of the generated water fluxes ΔWF. The ΔWF are derived by 619 

mimicking the typically recommended uncertainties of retrieving  and ET from remote sensing.  620 

To determine how the optimal w and d of WOF vary under different hydroclimatic conditions, 22 621 

contrasting hydroclimatic scenarios were formulated, by combining five climates, three soil textures and two 622 

different rooting depths. Based on the results provided by WOFSA, we established relationships between the 623 

optimized values of w and d. In particular, for all scenarios we provided empirical relationships to compute 624 

d from the average values of  and ET, and the standard deviation of ET. Moreover, for each texture class, 625 

we correlated w with average evaporation fraction and with average surface soil moisture, for which we also 626 

provided empirical linear equations. All results are interpreted in terms of hydrological evidence, which is a 627 

strong justification of the proposed WOFSA methodology. For instance, we found that d increases for drier 628 

hydroclimates and that the rooting depths influence indirectly w through the average evapotranspiration 629 

fraction. We remark that typical multiobjective calibration approaches, such as the well-known minimization 630 

of the Euclidean Distance of the Pareto set, erroneously assume that the magnitude of Δrs is similar to the 631 

one of ΔETrs and that the impacts of Δrs and ΔETrs on the simulated model responses are not affected by soil 632 

and climate conditions.  633 

In practical terms, it is recommended to employ soil moisture measurements preferably after heavy 634 

rainfall, when the soil moisture column is homogenized to avoid soil moisture decoupling. Nevertheless, the 635 

measurements should be performed only after the plant is starting to experience stress since it was found 636 

that the fitting criteria of ET reduces the sensitivity when the Feddes plant water stress response function 637 

equals to the potential evapotranspiration. The measurements should also not be taken when the plant is 638 

experiencing excessive stress, since it reduces the sensitivity of the fitting criteria of ET and causes soil 639 

moisture decoupling. It is also advised to perform the study during the season where evaporation is not at its 640 
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maximum to avoid soil moisture decoupling.  641 

The proposed framework, which was thoroughly tested on the basis of synthetic data for a wide range of 642 

soil texture and climatic conditions, provided consistent and reasonable results. Yet, for a full validation of 643 

the methodology, and in order to quantify the gain in accuracy without considering the scale issues, a 644 

number of calibration experiments with real data are necessary. Evidently, this task is not trivial, mainly 645 

because it is very demanding in terms of in situ data measurements, e.g. through high-precise weighing 646 

lysimeters. 647 

Our next research step is the implementation of WOFSA within a multiobjective optimization context, 648 

taking into account the preliminary ideas of section 5.3. This will enable to reduce the range of the Pareto set 649 

in a hydrological perspective, on the basis of real (observed) data across a specific study area. The results of 650 

these investigations will be reported in due course. 651 

652 
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7. Appendix A 653 

 The appendix describes the sink term and the interception module of SWAPinv which is substantially 654 

different than the ones implemented into SWAP. 655 

7.1 Potential evapotranspiration 656 

The potential evapotranspiration ETp (mm d-1) is estimated by the Penman-Monteith [1965] equation 657 

that was further modified by Allen et al. [1998], and is computed by: 658 
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where v is the slope of the vapor pressure curve (ML-1T-2-1); w is the latent heat of vaporization of water 660 

(L2 T -2); Rn is the net radiation flux density (MT -3) above the canopy; G is the soil heat flux density (M T -3); 661 

p1 accounts for unit conversion (86 400 s d-1); air is the air density (MT -3); Cair is the heat capacity of moist 662 

air (L T-1 -1); esat is the saturation vapor pressure (ML-1 T-2); ea is the actual vapor pressure (ML-1T-2); rair is 663 

the aerodynamic resistance (L-1 T); air is the psychrometric constant (ML-1T-2-1); and rcrop = 70 s m-1 is the 664 

crop resistance [Allen, 1986]. 665 

ETp is partitioned into potential evaporation of the wet canopy EPW (mm d-1), potential soil evaporation 666 

Ep (mm d-1) and potential transpiration Tp (mm d-1). The partitioning is performed using the leaf area index 667 

LAI (m3 m-3) and the fraction of the canopy, 1 – Fw that is not wet. It is to be noted that Fw is computed 668 

differently in SWAPinv (Eq. (A.15)). SWAP assumes that the net radiation inside the canopy decreases 669 

exponentially and that the soil heat is negligible. The partitioning is performed by using a Beer-Lambert law 670 

[e.g., Ritchie, 1972; Goudriaan, 1977; Belmans et al., 1983]: 671 

 TP = max {ETp [1 – Fw(Epw, LAI)] – Ep, 0]        (A.2) 672 

Ep = Epo Fs             (A.3)  673 
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Fs = exp (– Kg LAI)           (A.4) 674 

where Fs (dimensionless) is the interception of solar radiation that will also be used in the interception 675 

model; Kg (-) is the extinction coefficient for solar radiation that is set to 0.5 [Varado et al., 2006; Wang et al., 676 

2009]. ETp decreases with increasing Kg and increasing LAI. Epo (mm d-1) is the potential evaporation of bare 677 

soil, computed for albedo equal to 0.1. For further information on the computation of ETp, EPW and Ep0 the 678 

readers are referred to the SWAP manual (http://www.swap.alterra.nl/). 679 

7.2 Sink term 680 

 To take into account tree physiology and the reduction of transpiration by soil water stress, the actual 681 

transpiration T is distributed by the sink term S(hi) over the whole root-zone and is calculated for each cell 682 

by Feddes et al. [1978]. The sink term is computed by: 683 

S(hi) = Tp G(hi) Rdfi           (A.5) 684 

where  is the transpiration fraction or crop factor (-), the value of which is provided in Table 5; Tp (mm d-1) 685 

(Eq. (A.2)) is the potential transpiration estimated for short grass; Rdfi is the vertical fraction of the root 686 

density function per cell i (%) (Eq. (A.6)); and G(hi) is the reduction of root water uptake at pressure head h 687 

per cell i (-) (Eq. (A.8)). All these variables except for Tp are dimensionless. 688 

7.2.1 The root-density distribution 689 

 

In SWAP the vertical fraction of the root density function per cell i (Rdfi), which defines the general 690 

shape of the roots, is entered manually in tabular form. In SWAPinv, the root distribution is modeled with an 691 

empirical function of Gale and Grigal [1987] that was modified further by Pollacco et al. [2008a]. The model 692 

requires the rooting depth and the percentage of root density in the top 30 cm (Rdf30). It is to be noted that 693 

in this literature the percentage of root density is often stated for the top 30 cm, but the user can specify any 694 

other depth. The values of the parameters for the two contrasting scenarios used in this study, composed of 695 

shallow and deep rooted plants, are provided in Table 4. For each cell i, the fraction of roots Rdfi between 696 

the top depth zup and the bottom depth zdown is computed as: 697 
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where zup and zdown are respectively the top and bottom depth of each cell which is positive downwards (cm). 699 

Ec is the “extension coefficient” parameter, zroot is the rooting depth (cm) and imax is the last cell of the root-700 

zone. Ec varies between 0.700 and 0.9999, such that when Ec is close to 0.7 all the roots are distributed in the 701 

top cell, and when Ec is close to 1, the roots are distributed evenly within the root-zone.

 

702 

 The value of EC is computed from the percentage of roots. For example, in the top 30 cm, Rdf30 is 

703 

estimated by solving the following equation:  

704 
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(A.7) 705 

where Ec is the “extension coefficient” parameter, and zroot is the rooting depth (cm). 706 

7.2.2 Root water uptake 707 

When the capillary pressure head hi per node i is reduced, the vegetation closes their stoma and 708 

decreases transpiration, by using the Feddes et al. [1978] stress function computed as follows: 709 

G(hi) = 0, if |h|> |h4| or |h|< |h1| 710 

G(hi) = 1, if |h|> |h2| and |h|< |h3|         (A.8) 711 

Water uptake belowh1 (oxygen deficiency) and aboveh4 (wilting point) is set to zero. Betweenh2 712 

and h3, g(hi) =Tp maximal. The value of h3 varies with Tp. For different values of Tp, h3 is linearly 713 

interpolated between h3low and h3high. The values of h1, h2, h3high, h3low and h4 are provided in Table 5. 714 

7.3  Evaporation from bare soil 715 

The evaporation module of SWAP was simplified. Under wet soil conditions, the actual soil evaporation 716 

E [mm d-1] equals the potential soil evaporation Ep. During inter-storm period SWAP computes E by using the 717 

empirical evaporation method of Black et al. [1969] that requires two fitting parameters. Nevertheless 718 
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Eagleson [1978], Milly [1986], Simmons and Meyer [2000] and Romano and Giudici [2007; 2009] showed 719 

that good results can be achieved by relating evaporation with . We therefore used the Romano and Giudici 720 

[2007; 2009] evaporation model that does not require any extra parameters: 721 
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(A.9) 722 

where the maximum θ is taken from the highest soil moisture between the surface and the depth to 15 cm; r 723 

and s are residual and saturated water contents (L3 L-3) respectively defined earlier by Eq. (3). 724 

7.4 Rainfall interception model 725 

SWAP computes rainfall interception following Braden [1985] and Von Hoyningen-Huene [1981]. These 726 

interception models require extra parameters and do not use potential evaporation of a wet canopy Epw (mm 727 

d-1). We introduced in SWAPinv a physically-based interception model, following the work of Noilhan and 728 

Lacarrere [1995] and Varado et al. [2006] described in Pollacco and Mohanty [2012]. In this model, Epw is 729 

used as a predictor, while the Leaf Area Index LAI (-) and the extinction coefficient of solar radiation Kg (-) 730 

are assumed as parameters. The values of the LAI and Kg are provided in Table 5. The gross precipitation Pg 731 

(mm d-1) defined as the amount of water which reaches the canopy is computed following Rutter et al. 732 

[1971]: 733 

Pg = Pint + Pfree           (A.10) 734 

where Pfree (mm d-1) is the free throughfall that is the fraction of precipitation that reaches the ground 735 

surface through gaps in the canopy; Pint (mm d-1) is the intercepted precipitation. 736 

The foliage of the canopy is considered as a water reservoir filled up to a depth of  Wr (mm), with a maximum 737 

storage capacity Wmax (mm). When the canopy is fully saturated (Wr = Wmax) than any excess of Pint overflows 738 

Pover (mm) to the ground such that according to Valante et al. [1997]:  739 

 Pover = max {Pint + Wr – Wmax, 0}         (A.11) 740 

The amount of water that reaches the ground is the net precipitation Pnet (mm d-1): 741 
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Pnet = Pover + Pfree           (A.12) 742 

A fraction of the water from the reservoir Wr will be evaporated at the rate of the actual evaporation of a 743 

wetted canopy EAw (mm d-1) during and after a rainfall event. Wr is calculated following Deardorff [1978]:  744 

∂Wr / ∂t = Pint – Pover – EAw         (A.13) 745 

The maximum quantity of water which can be evaporated during a time step is computed as: 746 

EAw = min {Epw Fw,Wr / dt}          (A.14) 747 

where Epw is the potential transpiration of a wet canopy. 748 

According to Rutter et al. [1971], evaporation from wet canopies is assumed to be proportional to 749 

the fraction of the canopy that is wet Fw (0-1) that is computed following Deardorff [1978]: 750 

Fw = (Wr / Wmax) 2/3

 

         (A.15) 751 

Wmax is related to LAI based on the empirical relationship of Varado et al. [2006] and Von Hoyningen-752 

Huene [1981]. Varado et al. [2006] assumes that the interception of water of a canopy is similar to the 753 

interception of solar radiation Fs (0-1)(Eq. (A4)). Combining Varado et al. [2006] and Von Hoyningen-Huene 754 

[1981], Wmax is computed as: 755 

Wmax = (0.935 + 0.498LAI – 0.00575 LAI2) (1 – Fs)      756 

 (A.16)  757 

Wmax increases with increasing LAI and Kg. The partitioning of Pg and Pfree is computed as:  758 

Pfree = Fs Pg           (A.17) 759 

Pint = (1 – Fs) Pg           (A.18)  760 

Fs = e-Kg LAI           (A.19) 761 

            762 

763 
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Parrish, 

1988] 

 1171 

 1172 

Table 4. Contrasting scenarios of the percentage of roots in the top 30 cm, RDF30 [Jackson et al., 1996], and maximum 1173 

rooting depths, Zroot [Schenk and Jackson, 2002].  1174 

Description Acronym Zroot RDF30 Vegetation type  

  [cm] [%]   

Shallow roots SR 40 80 Meadows  

Deep roots DR 130 50 Semi-desert  

1175 
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Table 5. Values of vegetation parameters that remains constant. Where h1, h2, h3h, h3l, h4 are the capillary pressure 1176 

head that regulate the water uptake model, LAI is the Leaf Area Index,  is the crop factor and Kg is the 1177 

extinction coefficient of solar radiation [-]. Refer to Appendix A for further information. 1178 

 h1 h2 h3h h3l h4  LAI Kg β 

 [cm] [cm] [cm] [cm] [cm]  [m3 m-3] [-] [-] 

 -1 -22 -1000 -2200 -16000  2 0.5 0.9 

 [Singh et al., 2006]   [Brutsaert, 2005] [Varado et al., 2006] [J. A. P. Pollacco, 2005] 

 wheat  scrubland universal grassland 

 1179 

 1180 

Table 6. Sources of reference hydroclimate data compiled from AmeriFlux (http://public.ornl.gov/ameriflux/). 1181 

CLIMATE ACRONYM SITE STATE LAT. LONG. IGBP CLASSIF. 

Temperate semi-

arid 

Tsa Kendall Grassland AZ 32 -110 Grasslands 

Mediterranean M Tonzi Ranch CA 38 -121 Woody Savannas 

Temp. 

Continental 

Tc Walnut river OK 37 -97 Cropland 

Temperate T Mead Rainfed NE 41 -96 Croplands 

Subtropical S Kennedy Space Center Scrub 

Oak 

FL 29 -81 Closed 

Shrublands 

 1182 

Table 7. Detailing the different scenarios used in Fig. 6. 1183 

TEXTURE SPECIFICATION OFlin Fig. 6 

 

Loamy sand 

Decoupling equation  21% A1 

No decoupling  17% A2 

Sandy clay 

Shallow roots 13% B1 

Deep roots 10% B2 

Silty clay 

Calibrated with OFet  13.9% C1 

Calibrated with WOF 14.5% C2 

 1184 

Table 8. Empirical relationship for the 3 texture classes which relates w with average fET  (ET/ ETp) and w with 1185 

average . 1186 

TEXTURE 
w = 

Fig. 10a  Fig. 10b 

Loamy sand 311910 .  + ET .- f   04.106.13   +  -   

Sandy clay 201590 .  + ET .- f   5.110.3   +  -   

Silty clay 280151 .   ET . f    52.263.9       

1187 
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 1189 

Fig. 1. Graphical example illustrating the objective space, the Pareto front and characteristic solutions of a hypothetical 1190 

problem of simultaneous minimization of two criteria (in the specific case OFθ and OFet). Vector e = [e1, e2] 1191 

indicates limits of acceptability (in the specific case uncertainty bounds), for distinguishing feasible solutions. 1192 

Shown are the extreme solutions of the Pareto front (corresponding to w = 0 and w = 1), the solution that has the 1193 

minimum distance from the origin and the solution provided by WOFSA, corresponding to w = 0.75.  1194 



47 

 

0

200

400

600

800

1000

1200

LS
 /

 T
sa

 /
 D

R

Si
C

 /
 T

 /
 D

R

Si
L 

/ 
T 

/ 
D

R

Si
L 

/ 
T 

/ 
SR

Si
C

 /
 T

 /
 S

R

LS
 /

 T
 /

 D
R

Si
L 

/ 
M

 /
 D

R

LS
 /

 T
 /

 S
R

Si
C

 /
 M

 /
 D

R

Si
L 

/ 
M

 /
 S

R

Si
C

 /
 M

 /
 S

R

LS
 /

 M
 /

 D
R

LS
 /

 M
 /

 S
R

Si
C

 /
 T

c 
/ 

D
R

Si
L 

/ 
Tc

 /
 D

R

Si
C

 /
 T

c 
/ 

SR

Si
L 

/ 
Tc

 /
 S

R

LS
 /

 T
c 

/ 
D

R

LS
 /

 T
c 

/ 
SR

Si
C

 /
 S

 /
 S

R

Si
L 

/ 
S 

/ 
SR

LS
 /

 S
 /

 S
R

W
A

TE
R

 F
LU

X
ES

 [
m

m
 /

 y
e

ar
-1

]

Q  T  E Pint

Pg = Q + T + E + Pint

 1195 

 Fig. 2. The 22 hydroclimatic scenarios depicted by average yearly groundwater recharge Q, transpiration T, 1196 

evaporation E, interception Pint computed from SWAPinv. For visualization, the gross precipitation Pg= Q + T+ E + 1197 

Pint with the long-term storage computed to 0. The acronyms are provided in Table 3 for the soil texture, in Table 1198 

4 for the roots and in Table 6 for the climate. 1199 
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1:1

WOF* 1

1
Δ

Q
*

 1200 

Fig. 3. Examples of relationships between a normalized weighted objective function (WOF*) with the normalized 1201 

uncertainty of the water flux (ΔWF*) error, represented by ΔQ*. The ideal is a linear correlation between WOF* 1202 

and ΔQ*. 1203 

1204 
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 1205 

 1206 

Fig. 4. Flowchart of the Weighted Objective Function Selector Algorithm (WOFSA) where HYDRAUref and 1207 

VEGETATIONref are a known set of reference parameter values; WFref are the modeled reference water fluxes 1208 

outputs which are computed from the SVAT hydrological model requiring a priori known sets of hydraulic 1209 

parameters (HYDRAUref) and gross precipitation (Pg) and potential evapotranspiration (ETp) as forcing data; 1210 

HYDRAUsim are trial set of parameter values that are obtained from the OPTIMIZATION ALGORITHM; WFsim 1211 

are simulated fluxes and ΔWF is their residuals, derived by a posteriori estimated hydraulic parameters 1212 

(HYDRAUsim) by minimizing the weight w (between the fitting criteria based on soil moisture θ and 1213 

evapotranspiration ET) and the decoupling threshold d of WOF. All the trials are stored in the STORAGE which 1214 

are filtered such that the uncertainties in sim and ETsim are not greater than the uncertainties of retrieving  and 1215 

ET from remote sensing (Δrs and ΔETrs). WOFSA is performed in two separate parts: Part A generates 1216 

uncertainties in the fluxes ΔWF as if they were available from independent measurements, while Part B 1217 

optimizes w and d by minimizing the OFlin such that to ensure the maximum linearity between the normalized 1218 

WOF* and the normalized maximum uncertainty ΔWFmax
*. The different loops are colored coded with blue for 1219 

loop 1, red for loop 2 and green for loop 3. 1220 

 1221 

  1222 

1223 
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 1228 

 1229 

 1230 

 1231 

 1232 

 1233 

 1234 

 1235 

 1236 

 1237 

 1238 

 1239 

 1240 

Fig. 5. Different steps of the WOFSA given as an example for loamy sand, temperate climate and short rooting depth. 1241 

(A) An ensemble of generated parameter sets HYDRAUsim with the relationship between WOF and the residuals 1242 

between reference and simulated WFsim given as an example for groundwater recharge ΔQ; (B) From each 1243 

generated WOFi, described in (A) the maximum corresponding error Qmax is selected; (C) Selection of feasible 1244 

parameter sets Qmax to reproduce the uncertainties in retrieving θref and ETref from remote sensing; (D) 1245 

Correlation between normalized WOF* and normalized WFmax* for top soil moisture SM (θ), root-zone soil 1246 

moisture SMrz (θrz) evapotranspiration ET, evaporation E, transpiration T, and groundwater recharge Q. 1247 

1248 
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 1252 

Fig. 6. Relationships between normalized optimized WOF* and normalized ΔWFmax*, for the scenarios described in 1253 

Table 7.1254 
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 Fig. 7. Reference time series  plotted at different depths: (A) for coarse soils, showing that the top layer is decoupled 1259 

from the deeper layer when  is drying and  < d, and (B) for fine texture soils under dry climate, showing that 1260 

the top layer gets gradually decoupled from the deeper layer. 1261 

1262 
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 Fig. 8. For all hydroclimatic conditions a relationship is obtained between average ET divided by the standard 1269 

deviation of ET (σET) with (d / )0.3. The scenarios are wetter as ET / σET increases.  1270 
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 1278 
 1279 

Fig. 9. For the three soil texture class subdivided climatically: (A) relationship of w with average evaporative fraction 1280 

ETf , and (B) correlation of optimal w with measured average . The empirical linear equations of each texture 1281 

classes are described in Table 8. The enclosed hydroclimates are those for which a single OFet can be used instead 1282 

of a WOF. These hydroclimates are depicted by arrows which represent threshold values of θ and ETf . The (C) 1283 

schematizes the Feddes et al., [1978] plant water stress response function (ETf) as a function of soil water 1284 

pressure. The position of the parameter h3 depends on the intensity of the potential transpiration (Tp < 1 mm d-1 1285 

or Tp ≥ 5 mm d-1). The interpolation of h3 is between the interval h3low, h3high for which their values are provided 1286 

in Table 5. 1287 
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