FACETS oF

UNCERTAINTY

Kos Island, Greece | 17-19 October 2013 Union
5th EGU LEONARDO CONFERENCE « HYDROFRACTALS '13 « STATISTICAL HYDROLOGY—STAHY "13

¢ @

N>

European Geosciences International Association International Union of

of Hydrological Sciences Geodesy and Geophysics

Session: STAHY 2013

N-dimensional generalized Hurst-Kolmogorov process and its application to wind fields

P. Dimitriadis!, D. Koutsoyiannis! and C. Onof?

IDepartment of Water Resources and Environmental Engineering, National Technical University of Athens
‘Department of Civil and Environmental Engineering, Imperial College of London

Abstract

An N-dimensional generalized Hurst-Kolmogorov stochastic model is presented that can simulate time-
varying spatial geophysical fields, consistent with the observed long-term spatial and temporal
persistence. The model is tested through some applications based on time-varying wind velocity field.

1. Introduction and definitions

Multi-dimensional stochastic processes are advantageous over multivariate ones,
in cases where the natural process is observed by images (e.g. produced by
satellite, radar) rather than point measurements (e.g. in meteorological stations
tfor rainfall, temperature etc.). We use the methodology followed in Dimitriadis et
al. (in publication) where the definitions of 1D stochastic models, as given in
Koutsoyiannis (2013) and Dimitriadis and Koutsoyiannis (in publication), is
expanded to the LD case. We denote x(t) the continuous space stochastic process
that we use to represent the LD natural process, with t a vector of L variables, i.e.
t :== (tq,...,t;), that describe the natural process (e.g. t; can be a time variable, t, a
spatial one etc.). Recorded samples associated with the observed natural process
are subject to a spatial or temporal step of sampling D := (Dy, ..., Dy ), often fixed
by the observer and a response time 4 = (44, ..., 4;) characteristic of the
instrument (in fig. 1 the case for a 1D process is shown). Both D and 4 have the
same units as t (e.g. if t; is a temporal variable in seconds then D, and 4, will be
measured in seconds as well). To correctly represent the observed natural process
with a stochastic one, we have to discretize the latter by including also the values
D and A. The two special cases where 4,=0 and 4,=D; for a 1D process (L=1), are
analyzed in Koutsoyiannis (2013), who shows that there are small differences
between them. Here, we will focus only in the case D=4>0. Also, for simplicity,
we assume that Dy, ..., D; have the same magnitude (e.g. D=1 s, D,=1 km etc.) and

s0, we can use a unique symbol for that magnitude, i.e. [D| = D = 4. Thus, the
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discretized stochastic process x; ;""" = gi( ), for D = A >0, can be estimated

from x(t) as:

4. Stochastic tools (autocovariance and
variogram)

Table 2: Autocovariance and variograms definition and expressions for a continue (true)
and a discretized LD process, a common estimator and its expected value.
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7. Simulated MHD turbulence in the solar wind
(cont.)

The parameters are estimated as: A=0.04u (nT), g=8v (nT) and b=1.5 (H=0.6), where
u=0.4G+4.8 (nT) and v=13,000 km (earth’s diameter).
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Figure 3: Fitted Gompertz negatively skewed cdf and pdf (a), climacograms (b),
autocovariances (c) and variograms (d) of the MHD turbulence in the solar wind simulation
image of fig. 2b.

10. Hurricane wind speed observations (cont.)

This gHK model does not provide spatiotemporal cross-covariances with time lag
greater than 0 and scales greater than 1. Note that the observed temporal
autocorrelations are estimated around 0.5+0.1 for all time lags, i.e. not varying
much.

2. Definitions (cont.)

144 24, ir4r
w  Ja-na d-1ya, + Jiy—12, XC1 §20 -, §1)d61dE . dE;
Hos Ady .2
1872 - 4]

(1)

where i = (iy, ..., i;), with i; € [1,n,],€ [1,n,], ..., i; € [1,n.] denoting the sequent numbers
of a specific discretized point of x for each dimension,

n=Mmy.,n) = (int(T /A1), ..., int(T, /A L)), the vector of the total number of discretized
points in each dimension and

T:= (Ty, ..., T), the vector of durations (for a time variable) or lengths (for a spatial variable)
of x(t).

T x(t) x(4)
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Figure 1: An example of a 1D continue sample of (T) duration and the sampling process with
sampling frequency (D) and instrument response (4). We assume that t is continue and of
infinite size.

5. Generalized HK stochastic model (gHK)

Table 3: Autocovariance for a 2D spatial continue and discretized gHK (or Cauchy type for
the 1D case) process (eq. 7 and 8) and the 1D gHK climacogram. Note that solution of eq. 6
for the 2D climacogram is not a closed expression.

Type Generalized HK stochasticmodel
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To fit an observed climacogram, we first use the estimated value of eq. 13

(described in eq. 5) for the 1D case, replacing m with \/m;2 + m,2, to have a first
approximation of the fitted parameters. Then, we use eq. in Tables 1 and 2, for the
2D case, to find the best fitted parameters based on an target value (sum of
squares of differences between observed and estimated values) for each
stochastic tool (climacogram, autocovariance and variogram). Note that we do
not use all possible scales and lags but rather a selection of them logarithmically
spaced.

8. Hurricane wind speed observations

Here, we apply an gHHK model to a spatial image of wind speed magnitude from
hurricane Sandy (www.nhc.noaa.gov/data), observed in October 2012 (fig. 4). As
a start point for the estimation of the climacogram, autocovariance and
variogram, we choose the center of the image in fig. 4b (which has 0 wind speed
as it is the eye of the hurricane) and not an arbitrary point (usually is the bottom
left), which would cause high anisotropy.
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Figure 4: The image on the right (a) shows the Sandy hurricane from a satellite view (source:
www.nhc.noaa.gov/data), on which wind velocity and directions measurements are based.
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Figure 6: gHK parameters estimations vs time (t) (a), fitted Weibull positively skewed cdf
and pdf for the 237 and 29t (b), autocovariances (c) and variograms (d) for the 29t of
October.

The left images, represent the wind speed magnitude (in m/s) across a 150 X 150 grid (the
distance between two points is 10 km) centralized to the eye of the hurricane observed in the
23t (b), 25t (¢), 27 (d) and 29t (e) of October 2012.

11. Simulated fully developed turbulence

Here, we apply an gHK model to a 2D spatial simulation of fully developed
turbulence provided by INSIDE

(http://inside.hlrs.de/htm/Edition 01 11/article 09.html). The parameters are estimated
as: A=0.016 m/s, g=1 m and b=0.2 (H=0.95).
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from the vorticity formulation of the and climacogram (b) of the fully developed
incompressible Navier-Stokes equation turbulence simulation image of fig. 6.
with 5123 grid points.

3. Stochastic tools (climacogram)

Table 1: Climacogram definition and expressions for a continuous (true) and a discretized
LD process, a common estimator of its expected value.

Type Climacogram
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where k: = (kq, ..., k;), with k € N¥, the vector of all the dimensionless
scales for a discretized process.
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Note that the true climacogram can be estimated from the true autocovariance as
(expansion of Koutsoyiannis et al. 2010 expression of the 2D case):

y(m) = 2% fgl ---fol(l — &) . (1 =& )c(my, ..., §my)dé; ... dE;, (6)

6. Simulated MHD turbulence in the solar wind

Here, we apply a combination of Markovian and gHK models to a 2D
spatiotemporal numerical simulation of freely decaying MHD turbulence in the
solar wind. This simulation is performed by ESA and based on recent observations
from Cluster spacecraft (Perri et al., 2012). We use the animation video provided
by J. Donelli of NASA: http://www.youtube.com/watch?v=BNdMEucVsX0
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Figure 2: The image on the right (b)

nT the darkest grayscale shades and 5.2 nT the white ones) at the last frame of the
simulation. It is perpendicular to the interplanetary magnetic field and to the direction of
flow of the solar wind (as shown in (a)). Source: http://sci.esa.int/cluster/51231-turbulent-
eddies-may-warm-the-solar-wind/.

9. Hurricane wind speed observations (cont.)

Here, anisotropy is apparent (high dispersion of observed data). Here, we ignore
this and fit the average stochastic structure of the hurricane wind magnitude. The
fitted parameters for each date (fig. 6) are used to incorporate time in the gHK
model (i.e. creating a 2D* spatiotemporal model).
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Figure 5: Climacograms for the 23 (a), 25% (b), 27t (c) and 29t (d) day of October 2012.
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12. Simulated fully developed turbulence (cont.)
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Figure 8b: Autocovariance (a) and variogram (b) of the fully developed turbulence
simulation image of fig. 6.

13. Conclusions-Comments

From the above investigations we can see that, based on the models used, the
Hurst coefficient H is relatively high (above 0.7 in most cases) in the above 2D
coloured images of turbulent wind structures in large scales (ch. 6), intermediate
ones (ch. 8) as well as small ones (ch. 11), indicating the clustering of colours of
similar intensity, i.e. a long-term structure. Similar values of H for turbulent
processes have been estimated by others (e.g. Dimitriadis and Koutsoyiannis, in
preparation, Helland and Van Atta, 1977). Also, the Gaussian distribution seems
appropriate only in the small scale case whereas for higher scales distributions
are highly skewed.
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